
Salmonella enterica Serovar Typhimurium
Exploits Inflammation to Compete
with the Intestinal Microbiota
Bärbel Stecher

1
, Riccardo Robbiani

1[
, Alan W. Walker

2[
, Astrid M. Westendorf

3
, Manja Barthel

1
, Marcus Kremer

4
,

Samuel Chaffron
5

, Andrew J. Macpherson
6

, Jan Buer
3

, Julian Parkhill
2

, Gordon Dougan
2

, Christian von Mering
5

,

Wolf-Dietrich Hardt
1*

1 Institute of Microbiology, Swiss Institute of Technology Zurich, Zurich, Switzerland, 2 Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom, 3 Department

of Mucosal Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany, 4 Technical University Munich, Munich, Germany, 5 Bioinformatics Group, Institute

of Molecular Biology, University of Zurich, Zurich, Switzerland, 6 Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada

Most mucosal surfaces of the mammalian body are colonized by microbial communities (‘‘microbiota’’). A high density
of commensal microbiota inhabits the intestine and shields from infection (‘‘colonization resistance’’). The virulence
strategies allowing enteropathogenic bacteria to successfully compete with the microbiota and overcome colonization
resistance are poorly understood. Here, we investigated manipulation of the intestinal microbiota by the
enteropathogenic bacterium Salmonella enterica subspecies 1 serovar Typhimurium (S. Tm) in a mouse colitis model:
we found that inflammatory host responses induced by S. Tm changed microbiota composition and suppressed its
growth. In contrast to wild-type S. Tm, an avirulent invGsseD mutant failing to trigger colitis was outcompeted by the
microbiota. This competitive defect was reverted if inflammation was provided concomitantly by mixed infection with
wild-type S. Tm or in mice (IL10�/�, VILLIN-HACL4-CD8) with inflammatory bowel disease. Thus, inflammation is necessary
and sufficient for overcoming colonization resistance. This reveals a new concept in infectious disease: in contrast to
current thinking, inflammation is not always detrimental for the pathogen. Triggering the host’s immune defence can
shift the balance between the protective microbiota and the pathogen in favour of the pathogen.

Citation: Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, et al. (2007) Salmonella enterica serovar Typhimurium exploits inflammation to compete with the
intestinal microbiota. PLoS Biol 5(10): e244. doi:10.1371/journal.pbio.0050244

Introduction

The evolution of pathogenic microorganisms has been
shaped to a great extent by their interaction with cognate
host species. Colonization is the first step of any infection.
For enteropathogenic bacteria, this poses a formidable task as
the target host organ is already colonized by a dense
microbial community, the microflora, or ‘‘microbiota’’.
Intestinal colonization by microbiota begins immediately
after birth and lasts for life. In a healthy intestine, the
microbiota is quite stable, and its gross composition at higher
taxonomic levels is similar between individuals, and even
between humans and mice [1]. The intestinal ecosystem is
shaped by symbiotic interactions between the host and the
microbiota. Microbiota composition is influenced by nutrient
availability, local pH, and possibly also by the host’s immune
system [2]. Conversely, the microbiota optimizes nutrient
utilization [3,4], and boosts maturation of intestinal tissues
and the intestinal immune system [5–7]. In addition, the
microbiota provides an efficient barrier against infections
(‘‘colonization resistance’’), which must be overcome by
enteropathogenic bacteria. It is poorly understood how
enteropathogens can achieve that task. Here, we used
Salmonella enterica subspecies 1 serovar Typhimurium (S. Tm)
and a mouse colitis model to study strategies by which
enteropathogenic bacteria break colonization resistance. S.
Tm infects a broad range of animal species and is a frequent
cause of intestinal infections in the human population. The
normal murine microbiota provides colonization resistance

and prevents intestinal colonization upon oral S. Tm
infection. Oral treatment with the antibiotic streptomycin
(20 mg of streptomycin intragastric [i.g.]) transiently reduces
the microbiota by .80% and disrupts colonization resistance
for a period of 24 h [8,9]. The residual microbiota re-grows
within 2–3 d, and colonization resistance is re-established ([9];
unpublished data). These studies have provided the basis for a
‘‘streptomycin mouse model’’ for Salmonella enterocolitis [10]:
1 d after streptomycin treatment, oral infection with S. Tm
leads to efficient colonization of the murine intestine,
especially the cecum and the colon (approximately 109

colony-forming units [CFU]/gram; Figures 1A and S1)
[8,9,11]. Wild-type S. Tm (S. Tmwt) triggers pronounced
intestinal inflammation (colitis) and colonizes the intestinal
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lumen at high densities over extended periods of time [8,10–
12]. This ‘‘streptomycin mouse model’’ can be used to study
bacterial virulence factors required for colonization and
triggering of intestinal inflammation. For example, S. Tm
strains lacking the two virulence-associated type III secretion
systems (e.g., S. Tm DinvG sseD::aphT [S. Tmavir] [13]) cannot
trigger colitis. In addition, these mutants were found to
colonize the murine intestine only transiently [11,13]. The
reason for this colonization defect has remained elusive.

To explore this, we analyzed microbiota compostition in S.
Tmwt– and S. Tmavir–infected mice and the role of inflam-
mation for Salmonella colonization and competition against
the intrinsic microbiota. We found that inflammation shifts
the balance between the protective microbiota and the
pathogen S. Tm in favour of the pathogen. This principle
might apply to various other pathogens and therefore
constitute a novel paradigm in infectious biology.

Results

S. Tmavir but Not S. Tmwt Is Outcompeted by Commensal
Microbiota

First, we confirmed the differential colonization efficiency
of S. Tmwt and S. Tmavir in the streptomycin mouse model.
Unlike S. Tmwt, intestinal S. Tmavir colonization levels
decreased significantly by day 4 post-infection (p.i.) in a
highly reproducible fashion (Figure 1B). This coincided with
re-growth of the microbiota as revealed by immunofluor-
escence microscopy (Figure 1C–1H). By anaerobic culture,
DNA isolation, and 16S rRNA gene sequencing, high densities
of characteristic members of the intestinal microbiota
(Clostridium spp., Bacteroides spp., and Lactobacillus spp. [14])
were found in S. Tmavir–infected, but not in S. Tmwt–infected,
animals at day 4 p.i. (Table 1). Both the S. Tm/microbiota ratio
and the composition of the microbiota itself differed between
mice infected with S. Tmavir and S. Tmwt. These data
demonstrated that residual microbiota surviving the strepto-
mycin treatment can re-grow, outcompete S. Tmavir, and
thereby re-establish colonization resistance. In contrast, S.

Tmwt can suppress re-growth of the residual microbiota.
Therefore, the streptomycin mouse model allows study of the
principal mechanisms by which enteropathogens manipulate
the intestinal ecosystem.

S. Tmwt Alters Composition of the Microbiota in the
Streptomycin Mouse Model
To better characterize the effect of S. Tm on microbiota

composition, we employed 16S rRNA gene sequencing (see
Materials and Methods). This method allows a quantitative
comparison of microbial communities, including bacterial
species that cannot be cultivated in vitro. The analysis
comprised five different groups of mice and addressed the
effect of the streptomycin pretreatment per se as well as the
effect of S. Tmavir and S. Tmwt infection on microbiota
composition (Figure 2).
In line with published data, a large fraction of the murine

microbiota in unmanipulated mice belonged to either the
Firmicutes (including Clostridium spp. and Lactobacillus spp.;
39% 6 10%) or the Bacteroidales (53% 6 13%; Figure 2)
[1,15–17]. Streptomycin treatment reduced the global density
of the microbiota by approximately 90% (Figure 2; see also
Figure 1C and 1D) and changed its relative composition
(Figure 2A and 2B; Table 2). The composition of the
remaining microbiota varied substantially between individual
members of this group (Figure 2B). Most likely, this is
attributable to the unstable situation created by the antibiotic
and may arise from slight animal-to-animal variations in the
timing or speed of the gut passage of the antibiotic and/or
from species-specific differences in antibiotic susceptibility
and rate of re-growth.
Five days after the antibiotic treatment, the microbiota had

re-grown to normal density and microbiota composition, at
least at the phylum level (Figure 2A and 2B; Table 2; p ¼
0.35078). Infection with S. Tmavir did not interfere detectably
with re-growth of the normal microbiota in the streptomycin-
pretreated mouse model (Figure 2B; Table 2).
In contrast, S. Tmwt significantly altered the cecal micro-

biota composition (Figure 2A and 2B; Table 2; p , 0.00001).
Proteobacterial 16S rRNA gene sequences represented .90%
of all sequences, and Salmonella spp. generally represented the
most prominent (up to 100%) proteobacterial species in the
S. Tmwt–infected animals. These observations were confirmed
by fluorescence in situ hybridization (FISH) of fixed cecal
content (Figure S2). This demonstrates that S. Tmwt interferes
with microbiota re-growth and represents the predominant
species at day 4 p.i.
It should be noted that other proteobacterial species (e.g.,

Escherichia coli) were also present in significant numbers in the
cecum of most S. Tmwt–infected animals (Figure 2A). These
proteobacterial strains are low abundance members of the
normal gut microbiota of our mouse colony (,107 CFU/g of
cecal content). In many mice the proportion of these
commensal proteobacterial species increased concomitant
with the S. Tmwt infection. This suggests that other bacterial
species closely related to S. Tm may also be able to benefit
from the S. Tmwt–triggered inflammation. Further work will
be required to address this issue.
The observed changes in microbiota growth in S. Tmwt–

infected mice were verified in a competitive infection
experiment with a specific member of the microbiota. For
this purpose we selected a rifampicin-resistant variant of
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Author Summary

A dense microbial community colonizes the intestinal tract of
mammals, contributing to health and nutrition and conferring
efficient protection against most pathogenic intruders. Intestinal
pathogens can overcome this colonization resistance and cause
disease; however, the mechanisms used to do this are still elusive. In
this study we analyzed intestinal infection by the model pathogen
Salmonella enterica subspecies 1 serovar Typhimurium (S. Tm). We
show that the virulent wild-type pathogen overcomes colonization
resistance by inducing the host’s inflammatory immune response
and exploiting it for its purpose. In contrast, an avirulent Salmonella
mutant defective in triggering inflammation was unable to over-
come colonization resistance by itself. Colonization by this mutant
was restored if inflammation was provided concomitantly, in mice
with inflammatory bowel disease (genetic and inducible) or by co-
infection with wild-type S. Tm. These findings reveal a previously
unrecognized strategy by which pathogenic bacteria overcome
colonization resistance: abusing the host’s inflammatory immune
response to gain an edge against the normal microbial community
of the gut. This represents a first step towards unravelling the
molecular mechanisms underlying this three-way interaction of host,
microbiota, and pathogens.



Lactobacillus reuteri strain RR (L. reuteri RRRif). This strain was
isolated as a commensal from our mouse colony. Streptomy-
cin-treated mice were infected i.g. with either S. Tmwt or S.
Tmavir (5 3 107 CFU i.g.) and gavaged 1 d p.i. with L. reuteri
RRRif (8 3 106 CFU i.g.). L. reuteri RRRif colonized the S.
Tmavir–infected mice at levels of 105–106 CFU/g of intestinal

content. In S. Tmwt–infected mice, similar L. reuteri RRRif

colonization levels were observed at day 2 p.i., but coloniza-
tion levels declined below the detection limit by day 4 p.i. (p¼
0.008; Figure 3). Thus, alteration of microbiota composition
by S. Tmwt can be demonstrated at the level of a single
bacterial strain.

Figure 1. Microbiota Outcompete S. Tmavir but not S. Tmwt

(A) Streptomycin-treated mouse model. The antibiotic transiently reduces the microbiota (grey circles) in the lumen of the large intestine, reduces
colonization resistance, and allows colonization and induction of colitis by S. Tmwt.
(B) Streptomycin-treated C57BL/6 mice (n¼ 7 per group) were infected with S. Tmavir (blue) or S. Tmwt (red; 5 3 107 CFU i.g.). At indicated time points
mice were sacrificed, S. Tm loads were determined in cecal content, mLN, and spleen, and cecal pathology was scored. Detection limits (dotted lines):
cecal content, 10 CFU/g; mLN, 10 CFU/organ; spleen, 20 CFU/organ. *, p � 0.05; statistically significant difference between S. Tmavir and S. Tmwt. Boxes
indicate 25th and 75th percentiles, black bars indicate medians, and whiskers indicate data ranges.
(C–H) Representative confocal fluorescence microscopy images of cecum tissue sections from the mice shown in (B). Nuclei and bacterial DNA are
stained by Sytox green (green), the epithelial brush border actin by Alexa-647-phalloidin (blue), and extracellular S. Tm in the intestinal lumen by anti–S.
Tm LPS antiserum (red). Normal microbiota in unmanipulated mice (C), microbiota 1 d after streptomycin (sm) treatment (D), streptomycin-treated mice
infected for 1 or 4 d with S. Tmavir or S. Tmwt (E–H). The S. Tm colonization levels are indicated (CFU/g); L, cecum lumen.
doi:10.1371/journal.pbio.0050244.g001
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Intestinal Inflammation Is Sufficient to Enhance
Colonization by S. Tmavir

The above findings prompted us to investigate whether
there is a cause-and-effect relationship between triggering of
inflammation and enhanced colonization by S. Tm. In this
case one would predict that S. Tmavir (which cannot trigger
inflammation) competes successfully with the microbiota if
inflammation is triggered by other means. Three different
experimental approaches lent evidence for this hypothesis:

First, we analyzed whether inflammation induced by S.
Tmwt improved S. Tmavir colonization efficiency. Earlier
experiments had shown that infections with 1:1 mixtures of
S. Tmwt and attenuated mutants led to full-blown colitis
(Figure 4A and data not shown). Thus, streptomycin-treated
mice were infected with a 1:1 mixture of S. Tmwt and S. Tmavir

(a total of 53107 CFU i.g.). Control groups were infected with
S. Tmwt or S. Tmavir only (5 3 107 CFU i.g.; Figure 4A).
Pronounced colitis was observed in all animals infected with
S. Tmwt and the S. Tmwt–S. Tmavir mixture, but not in animals
infected with S. Tmavir alone. Furthermore, S. Tmavir was
severely defective at colonizing lymph nodes and spleen in
single and mixed infections. Despite its non-pathogenic
phenotype, S. Tmavir colonized the cecal lumen up to wild-
type levels in mixed infections with S. Tmwt. Thus, concom-
itant colitis created favourable conditions in the intestinal
lumen that suppressed microbiota regrowth and rescued S.
Tmavir colonization in tandem. This was confirmed in long-
term infection experiments using 129Sv/Ev mice, which
develop a chronic form of colitis (Figures 4B and S3) [12].

Next, we studied whether cecal inflammation per se (in

absence of S. Tmwt) could enhance S. Tmavir colonization. For
this purpose we employed knockout mouse models lacking
the key anti-inflammatory cytokine IL10. Depending on the
exact genetic background and the composition of the
microbiota, these animals develop colitis spontaneously
earlier (week 6; C3H/HeJBirIL10�/� model [18]) or later in life
(week 30–50; C57BL/6IL10�/� model [19]). To test the effect of
pre-existing colitis on S. Tmavir colonization, groups of 8-wk-
old C3H/HeJBirIL10�/� mice and C3H/He control mice were
infected (5 3 107 CFU of S. Tmavir i.g.; no streptomycin
treatment). Fecal shedding (day 1 p.i.), colonization, and
colitis (day 2 p.i.) were analyzed. Colonization of the intestinal
lumen by S. Tmavir was significantly enhanced in mice
displaying colitis (day 2 p.i., p ¼ 0.016; Figures 5A, S3, and
S4). Similar observations were made using the C57BL/6IL10�/�

model. In C57BL/6IL10�/� mice, the onset of colitis is quite
random and varies anywhere from 30 to 50 wk even between
littermates. Accordingly, we infected C57BL/6IL10�/� litter-
mates 30–50 wk of age (5 3 107 CFU of S. Tmavir i.g.; no
streptomycin treatment). Again, colonization of the intestinal
lumen by S. Tmavir was enhanced in littermates displaying
colitis (day 1 p.i., p ¼ 0.016; Figures 5B, S3, and S4). This
suggested that inflammation per se can enhance S. Tmavir

colonization.
To verify this hypothesis we employed the alternative,

recently developed VILLIN-HACL4-CD8 mouse model for T
cell–induced colitis [20]. This model employs VILLIN-HA
transgenic mice expressing the HA epitope in the gut
epithelium and T cells (CD8þ; HA-directed a/b T cell
receptor; from CL4-TCR transgenic mice) recognizing the

Table 1. Bacterial Genera Recovered by Anaerobic Culture from S. Tm Infected Mice

Taxonomy according to

16S rRNA Gene Sequence

Day 4 after S. Tmavir Infection Day 4 after S. Tmwt Infection

Genus Phylum Percent of Colonies Analyzeda CFU/gram Percent of Colonies Analyzedb CFU/gram

Salmonella spp. Proteobacteria ,1% 6.56 3 1006 87.5% 6.40 3 1009

Enterococcus spp. Firmicutes ,1% n.d. 7.9% 5.78 3 1008

Lactobacillus spp. Firmicutes 29.3% 2.24 3 1009 4.6% 3.33 3 1008

Clostridium spp. Firmicutes 28.3% 1.71 3 1009 ,1% ,3 3 1007

Erysipelothrix spp. Firmicutes ,1% 3.60 3 1007 ,1% ,3 3 1007

Bacteroides spp. Bacteroidetes 41.8% 3.93 3 1009 ,1% ,3 3 1007

Total CFU/gram 7.93 3 1009 7.31 3 1009

aTotal of 1,437 colonies.
bTotal of 329 colonies (see Materials and Methods).
n.d., not determined.
doi:10.1371/journal.pbio.0050244.t001

Figure 2. 16S rRNA Gene Sequence Analysis of Microbiota Manipulation by S. Tmwt and S. Tmavir in the Streptomycin Mouse Model

Cecal contents were recovered from unmanipulated mice, mice at days 1 or 5 after streptomycin treatment (20 mg i.g.), and streptomycin-treated mice
4 d after infection with S. Tmavir and S. Tmwt (5 3 107 CFU i.g.; all n¼ 5). Total DNA was extracted, and bacterial 16S rRNA genes were PCR-amplified
using universal bacterial primers, cloned, and sequenced (approximately 100 sequences per animal; five animals per group; see Materials and Methods).
(A) Pie diagrams showing the microbiota composition at the phylum level. Numbers below the diagrams indicate bacteria/gram cecal content as
defined by Sytox green staining. *The lower bacterial density in S. Tmwt–infected mice is attributable to a high proportion of cellular debris in the
intestinal lumen (see Figure 1G). #In these groups no Salmonella 16S rRNA genes were identified. zProteobacterial sequences belonged to Salmonella (E.
coli) in the following percentages: 91 (1), 15 (70), 87 (11), 55 (38), and 100 (0). See also Table S1.
(B) Visual depiction of the microbiota composition of individual mice. The animals were grouped based on the similarity of their microbiota composition
at the phylum level (using the Canberra distance as metric). The resulting groupings are depicted as a dendrogram, and observed phylum counts for
each mouse are shown as a heat map (0%–100% of all identified 16S rRNA gene sequences). Labels indicate unique mouse identifier numbers. The
experimental groups are indicated. p.sm., post–streptomycin treatment.
doi:10.1371/journal.pbio.0050244.g002

PLoS Biology | www.plosbiology.org October 2007 | Volume 5 | Issue 10 | e2442180

Inflammation Impairs Colonization Resistance



PLoS Biology | www.plosbiology.org October 2007 | Volume 5 | Issue 10 | e2442181

Inflammation Impairs Colonization Resistance



HA epitope. Adoptive transfer of these T cells into VILLIN-
HA transgenic mice results in severe inflammation of the
small and the large intestine at 4–5 d post-transfer (Figure
6A) [20]. This model was of particular interest because
intestinal inflammation develops quickly, occurs in the
majority of animals, and does not involve i.g. treatment with
chemicals that might themselves influence the microbiota–
pathogen competition.

To study the impact of inflammation on S. Tmavir

colonization we infected VILLIN-HA transgenic mice receiv-

ing CL4-CD8 T cells and unmanipulated VILLIN-HA control
mice. In the unmanipulated VILLIN-HA mice (no T cells
transferred), no intestinal inflammation was apparent and S.
Tmavir colonization efficiency was low (Figure 6B). In contrast,
the animals receiving 4 3 106 CL4-CD8 T cells (VILLIN-
HACL4-CD8 mice) developed intestinal inflammation 4 or 5 d
after T cell transfer, and S. Tmavir efficiently colonized the
intestine of these animals (p ¼ 0.01; Figure 6B). It should be
noted that the initial colonization by S. Tmavir was poor (fecal
samples at days 2 and 3 after T cell transfer) and that the
onset of efficient S. Tmavir colonization closely correlated
with the onset of the intestinal inflammation (day 4–5 after T
cell transfer [20]). At this stage, ‘‘Salmonella’’ sequences
represented 26%–46% of all bacterial 16S rRNA genes
recovered from the cecal contents (Figure 6C). This con-
firmed that colitis per se creates conditions in the gut skewing
the competition between Salmonella spp. and the microbiota
in favour of the pathogen.
As additional controls, we analyzed the fecal microbiota

composition of unmanipulated VILLIN-HA transgenic mice
(n ¼ 4) and non-infected VILLIN-HA transgenic mice (n ¼ 2)
at day 4 after CL4-CD8 T cell transfer (Figures 6C and S6;
Table S2). The latter two animals showed intestinal inflam-
mation comparable to that in mice that received CL4-CD8 T
cells and S. Tmavir (data not shown). At the phylum level, we
did not detect any significant differences between the
microbiota recovered from the feces of the unmanipulated
mice (no gut inflammation), the VILLIN-HA transgenic mice
that had received CL4-CD8 T cells (gut inflammation), and
the S. Tmavir–infected VILLIN-HA transgenic mice that had
not received CL4-CD8 T cells (no gut inflammation). These

Table 2. Phylum-Level Comparison of Microbiota in Strepto-
mycin-Treated S. Tm–Infected Mice from Experiment Described
in Figure 2

Group 1 Group 2 p-Value Difference

5 d p. sm Unmanipulated 0.35078 Indistinguishable

4 d p. S. Tmavir 5 d p. sm 0.02493 Indistinguishable

4 d p. S. Tmavir Unmanipulated 0.00206 Difference

1 d p. sm 4 d p. S. Tmavir ,0.00001 Clear difference

1 d p. sm 4 d p. S. Tmwt ,0.00001 Clear difference

1 d p. sm 5 d p. sm ,0.00001 Clear difference

1 d p. sm Unmanipulated ,0.00001 Clear difference

4 d p. S. Tmavir 4 d p. S. Tmwt ,0.00001 Clear difference

4 d p. S. Tmwt 5 d p. sm ,0.00001 Clear difference

4 d p. S. Tmwt Unmanipulated ,0.00001 Clear difference

p � 0.005 indicates no significant difference detectable (see Materials and Methods).
p., post; sm, streptomycin.
doi:10.1371/journal.pbio.0050244.t002

Figure 3. S. Tmwt Can Suppress Colonization with L. reuteri RRRif

Groups of streptomycin-treated mice (n¼5) were first infected with S. Tmavir or S. Tmwt (5 3 107 CFU i.g.) and inoculated 1 d later with L. reuteri RRRif (8 3
106 CFU i.g.). Colonization levels were monitored in the feces (2 and 3 d p.i.), the cecal content (4 d p.i.), the mLN, and the spleen. Box plots show S.
Tmavir (open blue boxes), S. Tmwt (open red boxes), L. reuteri RRRif in S. Tmavir–infected mice (filled blue boxes), and L. reuteri RRRif in S. Tmwt–infected
mice (filled red boxes). In all groups cecal pathology was scored at day 4 p.i. *, p � 0.05; statistically significant difference in L. reuteri RRRif colonization
between S. Tmavir– and S. Tmwt–infected mice. L. reuteri RRRif was not detected in mLN and spleen. Boxes indicate 25th and 75th percentiles, black bars
indicate medians, and whiskers indicate data ranges.
doi:10.1371/journal.pbio.0050244.g003
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data suggest that inflammation per se does not drastically
alter the gross gut flora composition (at least not in the short
term). Further work is required to determine whether the loss
of colonization resistance in the inflamed VILLIN-HA trans-
genic mice is attributable to suppression of some particular,
low abundance member(s) of the microbiota.

Finally, our data show that S. Tmavir colonization efficiency
in the murine intestine is restricted by the intestinal
microbiota. In the absence of microbiota, S. Tmavir should
colonize efficiently. This was confirmed in germ-free mice

that lack microbiota in the first place. S. Tmavir colonized the
large intestine of germ-free mice at wild-type levels up to day
4 p.i. (approximately 109 CFU/g) but did not cause colitis
(Figure S5). Thus, S. Tmavir efficiently colonizes the murine
intestine as long as competing microbiota is lacking.
Furthermore, inflammation is not required for colonizing
the intestinal lumen in the absence of microbiota. However, it
should be noted that germ-free mice represent a useful but
highly artificial tool. In natural habitats, Salmonella spp. always
encounters a dense intestinal microbiota, and intestinal

Figure 4. S. Tmwt–Induced Inflammation Enhances Colonization of S. Tmavir

(A) Mixed infection with S. Tmwt complements the colonization defect of S. Tmavir. Streptomycin-treated C57BL/6 mice (n¼ 5/group) were infected with
5 3 107 CFU i.g. of S. Tmavir only (open blue boxes), S. Tmwt only (open red boxes), or a 1:1 mixture of the two strains (filled blue and red boxes,
respectively). Colonization was measured in the feces (days 0–3 p.i.) and the cecal content (day 4 p.i.) (left panel). Colonization of mLN and spleen
(middle panel) and cecal pathology (right panel) were determined at day 4 p.i.
(B) Mixed infection with S. Tmwt complements the colonization defect of S. Tmavir in a chronic Salmonella colitis model (129Sv/Ev mice). Groups of
streptomycin-treated mice (NRAMPþ 129Sv/Ev mice raised by C57BL/6 foster mice; n¼ 4 per group) were infected with 5 3 107 CFU i.g. of S. Tmavir only
(blue-striped boxes) or a 1:1 mixture of S. Tmavir and S. Tmwt (filled blue and red boxes, respectively). One additional control group (four streptomycin-
treated C57BL/6 mice) was infected with S. Tmavir (5 3 107 CFU i.g.; open blue boxes). Colonization was measured in the feces (days 1–40 p.i.) and the
cecal content (day 47 p.i.) (left panel). Colonization of mLN and spleen (middle panel) and cecal pathology (right panel) were analyzed at day 47 p.i.
Boxes indicate 25th and 75th percentiles, black bars indicate medians, and whiskers indicate data ranges.
doi:10.1371/journal.pbio.0050244.g004
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colonization will be enhanced by the triggering of inflamma-
tion.

Discussion

Based on these data we propose a three-way microbiota–
pathogen–host interaction model for murine Salmonella
colitis (Figure 7). The resident microbiota and the incoming
pathogen compete for growth. In a ‘‘healthy’’ intestine the
normal microflora is shaped and stabilized by mutually
beneficial interactions with the intestinal mucosa. It effec-
tively excludes S. Tmwt and S. Tmavir from the intestinal
lumen. Colonization resistance can be transiently alleviated
by streptomycin treatment. Inflammatory host responses—
triggered by specific S. Tm virulence factors (TTSS-1 and
TTSS-2), by genetic pre-disposition (IL10�/�), or by T cell–
inflicted damage (VILLIN-HACL4-CD8 model)—alter condi-
tions in the intestinal lumen and shift the competition in
favour of the incoming pathogen. Suppression of the micro-
biota or enhanced pathogen growth may be involved (Figure
7). In either case, S. Tmwt can enhance intestinal colonization
via an indirect mechanism—by triggering the host’s immune
defence. Thus, S. Tmwt infection involves two different steps:
triggering inflammation, and surviving in and profiting from
the altered ecological niche. The avirulent mutant S. Tmavir is
unable to trigger colitis but it is still capable of taking
advantage of the ecological niche opened by inflammation
and thus successfully competes with the microbiota if
inflammation is induced by other means.

How does intestinal inflammation subvert colonization
resistance? The inflammation involves increased secretion of
antibacterial peptides and lectins [21,22] and mucins (B.

Stecher and W. Hardt, unpublished data), phagocyte infiltra-
tion/transmigration, and release of oxygen and nitrogen
radicals. Potentially, there are a number of different ways this
may subvert colonization resistance. (1) Released antibacte-
rial factors may kill or retard growth of specific members of
the microbiota that would normally inhibit S. Tm growth in
the healthy intestine. (2) There may be ‘‘commensal network
disruption’’, i.e., loss of one or more specific microbiota
species that might be required for efficient growth of the
microbiota species that slow pathogen growth in the normal,
healthy intestine. These protecting species and their integra-
tion into microbiota growth networks have not been
identified. (3) There may be differential defence suscepti-
bility. Microbiota species conferring colonization resistance
might be susceptible to antibacterial defences that S. Tm can
resist. This would be in line with the discovery of numerous S.
Tm genes that function to enhance antimicrobial peptide
resistance and radical detoxification [23–25]. (4) There may
be enhanced pathogen growth. The altered nutrient mix
available in the inflamed gut might foster efficient pathogen
replication. Under these conditions, microbiota may simply
grow slower and are thus overgrown by the pathogen. The
model is summarized in Figure 7. Future work will have to
address which of these mechanisms contribute to subversion
of gut inflammation by S. Tm.
Inflammation induced by S. Tm, self-reactive T cells, or IL-

10 deficiency enhances colonization by the pathogen and
reduces growth of the commensal microbiota. Other proteo-
bacteria closely related to S. Tm may also benefit from
inflammation (e.g., E. coli; see Figure 2). Thus, this principle
may also apply to other enteric infections. For example, in
calves, which are naturally susceptible to Salmonella enter-
ocolitis, defects of Salmonella TTSS-2 mutants in triggering
inflammation are associated with attenuation of intestinal
colonization [26,27]. Similar observations were made with
Shigella flexneri, Vibrio cholerae, and Citrobacter rodentium, the
causative agents of bacillary dysentery, cholera, and trans-
missible murine colonic hyperplasia: ablation of colitis by
disrupting the hosts’ innate immune response or specific
bacterial virulence factors coincided with reduced intestinal
colonization [28–31]. Thus, intestinal inflammation and
efficient colonization may be linked in a broad range of
enteropathogenic infections.
Some data are available for human Salmonella enterocolitis.

In line with findings in the murine system, antibiotics are
known to reduce human colonization resistance, and altered
microbiota composition is commonly observed in patients
with inflammatory bowel disease (IBD) [32–34]. Furthermore,
some studies suggest an increased incidence of Salmonella
colonization in IBD patients [35–40].
Microbiota composition in IBD patients significantly

differs from that in healthy controls. Currently, an imbalance
in normal gut microbiota is regarded as one possible factor
triggering the inflammation in Crohn disease and ulcerative
colitis [41–43]. Our data suggest that the altered gut flora
might not be the cause, but rather one of the many symptoms,
of intestinal inflammation in IBD patients. Further inves-
tigation into this idea will be of importance for basic research
exploring the aetiology and pathogenesis of Crohn disease
and ulcerative colitis.
The outcome of any infection is determined through

competition between the bacterial virulence factors (enhanc-

Figure 5. Intestinal Inflammation in IL10�/� Mice Enhances Colonization

of S. Tmavir

(A) C3H/HeJBirIL10�/� (n¼ 18) and C3H/HeJ control animals (n¼ 5) were
infected with S. Tmavir (5 3 107 CFU i.g.; no streptomycin treatment). S.
Tmavir colonization was analyzed in feces (day 1 p.i.) and cecum content
(day 2 p.i.), and cecal pathology was scored (see Material and Methods).
Open blue circles indicate mice with colitis score , 4; blue circles with
red filling indicate mice with colitis score � 4. *, p¼ 0.03; **, p¼ 0.004.
(B) C57BL/6IL10�/� (n ¼ 12) and C57BL/6 control animals (n ¼ 4) were
infected with S. Tmavir (5 3 107 CFU i.g.; no streptomycin treatment). S.
Tmavir colonization and cecal pathology were analyzed as described
above. Open blue circles indicate mice with colitis score , 4; blue circles
with red filling indicate mice with colitis score � 4. *, p¼ 0.006; **, p¼
0.016. �One animal was sacrificed at the end of day 1 p.i. for humane
reasons.
doi:10.1371/journal.pbio.0050244.g005
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ing pathogen replication/persistence) and the host’s immune
defences (eliminating the pathogen). In the case of enter-
opathogens, which target a niche colonized by the micro-
biota, the virulence factors can serve an additional function
that has remained unrecognized: they allow triggering of
intestinal inflammation that subverts the host’s immune
defences for undermining colonization resistance. This may
represent a common virulence strategy of enteropathogenic

bacteria including Clostridium difficile, which is a frequent
cause of antibiotic-associated colitis. In fact, inflammation
may promote pathogen competitiveness at any colonized site
of the human body, and pathogens infecting the respiratory
tract, the uro-genital system, and the skin might also use this
strategy. Molecular analysis of the complex three-way
pathogen–host–microbiota interactions poses a great tech-
nological challenge for future research and promises to reveal

Figure 6. Gut Inflammation in the VILLIN-HACL4-CD8 Model Boosts S. Tmavir Colonization

(A) The VILLIN-HACL4-CD8 model including the time course of intestinal inflammation and the infection regime employed in the experiment shown
below.
(B) Gut colonization by S. Tmavir is enhanced when inflammation occurs. Seven VILLIN-HA mice received 4 3 106 CL4-CD8 T cells (open white boxes) at day
0. Five unmanipulated VILLIN-HA transgenic mice served as control (blue boxes; no T cell transfer). Both groups of mice were inoculated with
5 3 107 CFU i.g. of S. Tmavir at days 1 and 2. S. Tmavir colonization was measured in the feces (days 1 and 2 p.i.). When symptoms of colitis (weight loss and
diarrhoea) were observable in the animals from the experimental group (day 4/5), mice were sacrificed and S. Tmavir loads in the cecal content (left) as well
as cecal pathology (right) were determined (open red boxes indicate inflammation). *, p¼ 0.01; **, p¼ 0.003. Boxes indicate 25th and 75th percentiles,
black bars indicate medians, and whiskers indicate data ranges.
(C) Pie diagrams showing the fecal microbiota composition at the phylum level. The average for n¼ 2 animals per group (approximately 100 16S rRNA
gene sequences per animal) is shown for all groups except ‘‘no T cell transfer, not infected’’, for which the average for four mice is shown. Information
at higher taxonomic resolution is provided in Table S1. The p-values are shown in Table S2.
doi:10.1371/journal.pbio.0050244.g006
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novel avenues for determining prevention strategies and
cures for infectious disease.

Materials and Methods

Animals. All aspects of animal procedures were approved by local
authorities and performed according to the legal requirements. Sex-
and age-matched specified pathogen free (SPF) C57Bl/6 (Elévage
Janvier; http://www.janvier-breedingcenter.com/), 129Sv/Ev, C3H/He
(Charles River Laboratories, http://www.criver.com/), C57BL/6IL10�/�

[19], and C3H/HeJBirIL10�/� [18] mice were held under barrier
conditions at the Rodent Centre, Swiss Institute of Technology Zurich,
Zurich, Switzerland, and the Biologisches Zentrallabor, University of
Zurich, Zurich, Switzerland. VILLIN-HA [44] and CL4-TCR [45]
transgenic mice were raised under SPF barrier conditions at the
Helmholtz Centre for Infection Research, Braunschweig, Germany,
and transferred to the Rodent Centre 1 wk before the infection
experiment. Germ-free C57BL/6 mice were bred and infected in the
germ-free facility of the Biologisches Zentrallabor. 129Sv/Ev mice used
for long-term infection experiments (Figure 4) were transferred to
C57BL/6 fostermice at the day of birth, and raised andweaned as usual.

In the streptomycin mouse model, mice were treated with
streptomycin (20 mg i.g.) [13] and infected 24 h later with S. Tm strains
(53107 CFU i.g.) as indicated. For super-infection, L. reuteri RRRif (83
106 CFU i.g.) was administered 24 h after S. Tm infection. No
streptomycin treatment was performed in spontaneous colitis models
and germ-free mice (Figure 3C and 3D).

For induction of acute colitis, CD8þ T cells from CL4-TCR
transgenic mice that express an a/bT cell receptor recognizing an
epitope of the HA protein presented by MHC class I (the H-
2Kd:HA512–520 complex) were adoptively transferred into VILLIN-
HA mice that express the A/PR8/34 HA epitope from influenza virus
A under control of the enterocyte-specific villin promoter [20].
Single-cell suspensions were prepared from the spleen of CL4-TCR
transgenic mice. Cell suspensions were depleted of CD4þ, CD11bþ,
CD45Rþ, DX5þ, and Ter-119þ cells by using the MACS CD8 T cell
isolation kit (Miltenyi Biotec, http://www.miltenyibiotec.com/). CL4-
TCR T cells were purified by negative selection according to the
manufacturer’s instructions. Isolated CD8þ T cells were washed once
in PBS and resuspended (4 3 107 cells/ml of PBS). Then 4 3 106

purified CL4-TCR transgenic T cells were injected intravenously into
VILLIN-HA transgenic mice. Disease symptoms (weight loss and
diarrhoea) were observed 4–5 d after adoptive transfer.

Bacteria. The streptomycin-resistant wild-type strain S. Tmwt

(SL1344 wild-type [46]) and the isogenic mutant S. Tmavir (DinvG
sseD::aphT; kanR [13]) were grown in LB 0.3 M NaCl as described [13].

Colonization was defined by plating on MacConkey agar plates
(Oxoid, http://www.oxoid.com/; 100 lg/ml streptomycin). Co-infec-
tions with S. Tmavir were evaluated by replica-plating on medium
containing kanamycin (50 lg/ml).

Culturable intestinal microbiota were grown on Wilkins Chalgren
agar supplemented with 5% defibrillated sheep blood (Oxoid) for 3–5
d in an atmosphere of 7% H2, 10% CO2, and 83% N2 at 37 8C in
anaerobic jars. 16S rRNA gene sequencing was performed as described
below. L. reuteri RRRif was selected on MRS medium (100 lg/ml of
rifampicin; Laboratoire Labo’Life, http://www.labolife.com/) and
grown anaerobically.

Analysis of bacterial loads in intestinal content and systemic
organs. Fresh fecal pellets collected from individual mice and cecum
content were resuspended in PBS. Mesenteric lymph nodes (mLN),
spleen, and liver were removed aseptically and homogenized in cold
PBS (0.5% tergitol and 0.5% BSA). Bacteria were enumerated by
plating on appropriate medium.

Bacterial 16S rRNA gene amplification. Colonies were isolated and
purified twice on Wilkins Chalgren agar (5% sheep blood). DNA was
recovered by lysis (Tris/EDTA; 0.5% SDS and 0.1 mg/ml of proteinase
K; 37 8C; 1 h), CTAB treatment (1%; 62.5 mM NaCl; 65 8C; 10 min),
phenol-chloroform extraction, and 2-propanol precipitation. Broad-
range bacterial primers fD1 (59-AGA GTT TGA TCC TGG CTC AG-
39) and rP1 (59-ACG GTT ACC TTG TTA GCA CTT-39) [47] were used
for 16S rRNA gene PCR amplification (94 8C, 5 min; 35 cycles of 94 8C,
1 min; 43 8C, 1 min; 72 8C, 2 min; and 7-min final extension at 72 8C).
The PCR product was purified and sequenced with primer rP1.

Quantification of cultured bacteria. First, bacteria were grouped
according to colony morphology. Then, representative colonies were
typed by 16S rRNA gene sequencing and comparison to the
Ribosomal Database Project II [48]. This allowed a rough estimation
of the abundance of the respective bacterial species (Table 1). Two
mice were analyzed per condition (S. Tmwt and S. Tmavir infection day
4 p.i.). Six colony morphological groups were assigned for S. Tmwt

infection, and ten for S. Tmavir infection.
Histopathological evaluation. Tissues were cryo-embedded in

Tissue Tek OCT Compound (Sysmex, http://www.sysmex-europe.
com/), 5-lm cryosections were stained with hematoxylin and eosin
(HE), and cecum pathology was evaluated using a histopathological
scoring scheme as previously described [49,50] (see Figure S1).
Evaluation scored submucosal edema (score 0–3), polymorphonu-
clear leukocyte infiltration into the lamina propria (score 0–4), loss
of goblet cells (score 0–3), and epithelial damage (score 0–3). The
combined pathological score for each tissue sample was determined
as the sum of these averaged scores: 0–3, no to minimal signs of
inflammation that are not sign of a disease (this is frequently found
in the cecum of SPF mice); 4–8, moderate inflammation; and 9–13,
profound inflammation.

Immunofluorescence microscopy. Cecal tissues were fixed in PBS
(4% paraformaldehyde [pH 7.4]; 4 8C; 12 h), washed in PBS,
equilibrated in PBS (20% sucrose and 0.02% NaN3; 4 8C; 12 h) and
cryo-embedded in OCT. Cryosections (7 lm) were mounted on glass
slides, air-dried (21 8C; 2 h), fixed in PBS (4% paraformaldehyde, 5
min), washed, and blocked with 10% (w/v) normal goat serum in PBS
(1 h). S. Tm was stained with polyclonal rabbit anti–Salmonella O
antigen group B serum (factors 1, 4, 5, and 12, Brunschwig, http://
www.brunschwig-ch.com/; 1:500 in PBS, 10% goat serum) and a Cy3-
conjugated goat anti-rabbit antibody (Milan; 1:300 in PBS, 10% goat
serum). The specificity of the anti–Samonella O (1, 4 ,5, and 12)
antiserum was checked extensively by immunofluorescence micro-
scopy. This was done by analyzing cecum tissue sections from
uninfected mice (negative), S. Tm–infected mice (positive), S. enterica
serovar Enteritidis–infected mice (negative; the LPS of this serovar
does not react with this antiserum), and mice with .10 different
commensal species, including commensal E. coli strains from our
mouse colony, grown in vitro (all negative). DNA was stained with
Sytox green (0.1 lg/ml; Sigma-Aldrich, http://www.sigmaaldrich.com/)
and F-Actin with Alexa-647-phalloidin (Molecular Probes, http://
probes.invitrogen.com/). Sections were mounted with Vectashield
hard set (Vector Laboratories, http://www.vectorlabs.com/) and sealed
with nail polish. Images were recorded using a PerkinElmer (http://
www.perkinelmer.com/) Ultraview confocal imaging system and a
Zeiss (http://www.zeiss.com/) Axiovert 200 microscope. For quantifi-
cation of total bacterial numbers, cecal contents were weighed, fixed
in 4% paraformaldehyde, and stained with Sytox green (0.1 lg/ml).
Bacteria were counted in a Neubauer’s counting chamber using an
upright fluorescence microscope (Zeiss).

Broad-range bacterial 16S rRNA gene sequence analysis. Total
DNA was extracted from cecal contents using a QIAmp DNA stool
mini kit (Qiagen, http://www1.qiagen.com/) and a Tissuelyzer device

Figure 7. Working Model for the Microbiota–Host–Pathogen Interaction

in Health and Disease

Colonization resistance (or lack thereof) results from growth competition
between microbiota and incoming pathogens. Host responses can skew
growth conditions in the intestinal lumen in either direction. Left: the
normal microbiota is shaped by mutually beneficial interactions with the
intestinal mucosa and mediates colonization resistance against incoming
pathogens. Right: S. Tm employs specific virulence factors for triggering
colitis. Inflammation alters the luminal conditions and shifts the growth
competition in favour of the pathogen, thus alleviating colonization
resistance. Inhibitory effects on the microbiota (a) and/or improved
growth conditions for the pathogen (b) may be involved. Furthermore,
the microbiota–pathogen growth competition can be affected by
antibiotic treatment or by pre-existing intestinal inflammation.
doi:10.1371/journal.pbio.0050244.g007
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(Qiagen). 16S rRNA genes were amplified by PCR using primers Bact-
7F (59-AGA GTT TGA TYM TGG CTC AG-39) and Bact-1510R (59-
ACG GYT ACC TTG TTA CGA CTT-39) and the following cycling
conditions: 95 8C, 5 min; 22 cycles of 95 8C, 30 s; 58 8C, 30 s; 72 8C, 2
min; followed by 72 8C, 8 min; 4 8C, ‘. Reaction conditions (100 ll)
were as follows: 50 mM KCl, 10 mM Tris-HCl (pH 8.3), 1.5 mM Mg2þ,
0.2 mM dNTPs, 40 pmol of each primer, and 5 U of Taq DNA
polymerase (Eppendorf, http://www.eppendorf.com/). Fragments were
purified by gel electrophoresis, excised, recovered using the gene
clean kit (Qbiogene; http://www.qbiogene.com/) and dried. The PCR
products were suspended in 10 ll of sterile distilled water and
between 2 and 5 ll was ligated into pGEM-T Easy Vectors (Promega,
http://www.promega.com/). The ligated vectors were transformed into
high-efficiency competent JM109 E. coli cells (Promega), plated on LB-
carbenicillin agar, and subjected to blue-white screening of colonies.
White colonies were picked into 96-well boxes containing 500 ll of
Circlegrow medium (Qbiogene, http://www.qbiogene.com/) per well
and grown overnight at 37 8C, and the plasmid DNA was then
prepped using a modified semi-automated alkaline lysis method.
Sequencing was carried out using Applied Biosystems (http://www.
appliedbiosystems.com/) BigDye terminators (version 3.1) and run on
Applied Biosystems 3730 sequencers. The 16S rRNA gene inserts were
sequenced using two primers targeted towards the vector end
sequences, M13r (59-CAGGAAACAGCTATGACC-39) and T7f (59-
TAATACGACTCACTATAGGG-39), and one towards an internal
region of the gene, 926r (59-CCGTCAATTC[A/C]TTT[A/G]AGT-39),
in order to bridge any gaps between the sequences generated from
the two end primers.

Contigs were built from each three-primer set of sequences using
the GAP4 software package [51] and converted to ‘‘sense’’ orientation
using OrientationChecker software [52]. These files were then aligned
using MUSCLE [53], and the alignments were manually inspected and
corrected using the sequence editor function in the ARB package
[54]. The files were then tested for the presence of chimeric sequences
using Mallard [52] and Bellerophon [55], and putative chimeras were
checked using Pintail [56] and BLAST [57]. Positively identified
chimeras were removed, and the remaining sequences were examined
with the Classifier function at the Ribosomal Database Project II Web
site [48] in order to give a broad classification at the phylum level. To
obtain more detailed taxonomic information the sequences were
divided into phylotypes by generating distance matrices in ARB (with
Olsen correction), which were then entered into the DOTUR
program [58] set to the furthest neighbour and 99% similarity
settings. The resulting phylotypes were then assigned similarities to
nearest neighbours using BLAST.

Statistical analysis of bacterial colonization and intestinal pathol-
ogy. Statistical analyses of viable CFU and pathological scores were
performed using the exact Mann-Whitney U Test and the SPSS
version 14.0 software, as described before [8]. Values of p , 0.05 were
considered statistically significant. Box-plots were created using
GraphPad Prism 4 version 4.03 (GraphPad Software, http://www.
graphpad.com/).

Statistical analysis of microbiota composition. Differences in the
phylogenetic compositions of samples were assessed by first assigning
the detected 16S rRNA gene sequences to their respective phyla, and
then computing the normalized Euclidean distance between the
phyla counts. The observed differences were judged for their
statistical significance by performing Monte Carlo randomizations:
16S rRNA gene sequences were shuffled between two samples, such
that overall sample sizes and total counts for each phylum were
maintained. Euclidean distances were then re-computed, and the
fraction of distances larger than or equal to the observed distances
determined the p-values. Bonferroni correction for multiple testing
means that p-values below 0.005 indicate statistical significance in
Figures 2 and 6 and Table 2.

Supporting Information

Figure S1. Colitis Score Developed for the Streptomycin-Pretreated
Mouse Model for Salmonella Colitis [8]

Mice were pretreated with a single dose of streptomycin (20 mg i.g.)
and 24 h later infected with 53107 CFU of S. Tmavir (A) or S. Tmwt i.g.
(B). Mice were sacrificed 1 d p.i.
Left panels of (A) and (B): macroscopic appearance of the cecum
from S. Tmavir– and S. Tmwt–infected mice, respectively. Note the
reduction in size and purulent cecal content in case of S. Tmwt–
induced colitis.
Middle panels: HE-stained cross-section of ceca shown in left panel

(scale bar: 1 mm). Note the submucosal edema (se), which is a
characteristic of S. Tmwt–induced colitis. L, cecal lumen.
Right panels: at higher magnification, large numbers of goblet cells
(gc) are observed in the cecal mucosa of healthy mice. Colitis leads to
reduced numbers of goblet cells due to pronounced epithelial
regeneration. Note infiltrating polymorphonuclear leukocytes and
desquamated epithelium in the S. Tmwt–infected cecum (scale bar:
0.05 mm).
Detailed parameters for colitis score are listed in table at bottom of
figure.

Found at doi:10.1371/journal.pbio.0050244.sg001 (272 KB PDF).

Figure S2. FISH Analysis of Microbiota Manipulation by S. Tmwt and
S. Tmavir in the Streptomycin Mouse Model

Cecal contents were fixed in PBS (4% paraformaldehyde [pH 7.4]; 4
8C; 12 h), washed in PBS, applied onto polylysine-coated slides, and
air-dried. Bacteria were permeabilized (70.000 U/ml of lysozyme; 5
mM EDTA; 100 mM Tris/HCl [pH 7.5]; 37 8C; 10 min), dehydrated
with ethanol, and hybridized with HPLC-purified, 59-labelled 16S
rRNA probes (5% formamide, 90 mM NaCl, 20 mM Tris/HCl [pH 7.5];
46 8C; 2 h): Eub338-cy5 (59-GCT GCC TCC CGT AGG AGT-39;
detection of all eubacteria [59]), LGC-cy3 or LGC-fluorescein (59-TCA
CGC GGC GTT GCT C-39; detection of gram-positive bacteria with
low GþC content; Firmicutes [60]), and Bac303-cy3 or Bac303-
fluorescein (59-CCA ATG TGG GGG ACC TT-39; detection of the
Bacteroidales group of the Bacteroidetes [61]). Slides were washed at
48 8C (636 mM NaCl, 5 mM EDTA, 0.01% SDS, 20 mM Tris/HCl [pH
7.5]) as described [59]. S. Tm was detected by immunostaining (see
above), and FISH detection was performed using the Eub338-cy5
probe. The relative abundance of Firmicutes, Bacteroidales, and S.
Tm was determined by co-staining and imaging at 6303 magnifica-
tion using a PerkinElmer Ultraview confocal imaging system and a
Zeiss Axiovert 200 microscope. For each condition, 500–1,750
bacteria were evaluated.
FISH analysis of cecal microbiota from the mice shown in Figure 2.
Cecal contents from unmanipulated mice, from mice at days 1 or 5
after streptomycin treatment (20 mg, i.g.), and from streptomycin-
treated mice 4 d after infection with S. Tmavir and S. Tmwt (5 3 107

CFU i.g.; all n¼5) were recovered, fixed on cover slips, and hybridized
with Eub338 (all bacteria). Firmicutes and Bacteroidales were
recognized by hybridization with LGC and BAC303 probes, respec-
tively, and S. Tm by an anti–S. Tm LPS antiserum (see Materials and
Methods). Firmicutes (green), Eub338þ Bac303� LGCþ; Bacteroidales
(yellow), Eub338þ Bac303þ LGC�; Salmonella (red with white stripes),
Eub338þ LPSþ; ‘‘unknown’’ (grey), Eub338þ LGC� Bac303� LPS�.
Abundance of respective groups is expressed as percentage of total
Eub338þ bacteria.
The results of the FISH analysis confirmed the results obtained via
16S rRNA gene sequencing (Figure 2). Slight differences in the
percent composition of the microbiota with respect to Firmicutes,
Bacteroidales, and Salmonella spp. obtained via both methods are
attributable to species-specific differences in lysis efficiency and 16S
rRNA gene copy number.

Found at doi:10.1371/journal.pbio.0050244.sg002 (124 KB PDF).

Figure S3. Cecal Histopathology in Acute and Chronic Mouse Colitis
Models Shown in Figures 4 and 5

Frozen sections of cecal tissues (5 lm) were stained with HE (scale bar:
200 lm). Acute Salmonella colitis was observed in C57BL/6 mice
infected with S. Tmwt (A) but not with S. Tmavir (B) 4 d p.i. (compare
with Figure 3A). Chronic Salmonella colitis was observed in 129Sv/Ev
mice infected with S. Tmwt (C) but not with S. Tmavir (D) 47 d p.i.
(compare with Figure 3B). Genetic predisposition (lack of anti-
inflammatory cytokine IL10) leads to sporadic occurrence of colitis in
C57/BL6IL10�/� mice (E). However, some C57/BL6IL10�/� mice are not
affected (F) (compare with Figure 3C). A large number of C3H/
HeJBirIL10�/� mice were affected by cecal inflammation (G), but one
was not (H) (compare with Figure 3C). L, cecal lumen; se, submucosal
edema.

Found at doi:10.1371/journal.pbio.0050244.sg003 (735 KB PDF).

Figure S4. Colitis Scores for C57/BL6IL10�/� and C3H/HeJBirIL10�/�

Mice

(A) Frozen sections of cecal tissues (5 lm) were stained with HE (scale
bar: 200 lm). Histopathology was scored with respect to submucosal
edema (black), polymorphonuclear leukocyte infiltration (grey), loss
of goblet cells (dark grey), and epithelial destruction (light grey). The
scoring scheme is shown in Figure S1. Scores are plotted as stacked
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vertical bars. One animal was sacrificed at the end of day 1 p.i. for
humane reasons (marked with �).
(B) Confocal fluorescence microscopy image of cecal lumen reveals
normal high microbiota densities. Upper left: C3H/HeJBirIL10�/�

animal marked with z in (A). The remaining images show animals
described in Figure 6B. Upper right: VILLIN-HA control, S. Tmavir

infected. Lower left: VILLIN-HAþCL4-CD8 (inflammation), non-
infected. Lower-right: VILLIN-HAþCL4-CD8 (inflammation), S.
Tmavir infected. Bacterial DNA is stained by Sytox green (green)
and extracellular S. Tm by anti-S. Tm LPS antiserum (red). Scale bar:
20 or 50 lm as specified.

Found at doi:10.1371/journal.pbio.0050244.sg004 (1.8 MB PDF).

Figure S5. S. Tmavir Efficiently Colonizes Germ-Free Mice

Germ-free C57BL/6 mice (n¼ 8) were infected with S. Tmavir (53 107

CFU i.g.) and sacrificed at day 2 or 4 p.i. (open blue boxes). For
comparison, previous data [62] from five mice infected for 1 d with S.
Tmwt are included (open red boxes). S. Tm colonization was analyzed
in the cecum content (day 2 p.i.), and cecum pathology was scored
(see Material and Methods). Detection limits (dotted line): cecum, 10
CFU/g; mLN, 10 CFU/organ; spleen, 20 CFU/organ. At day 4 p.i., S.
Tmavir colonization levels in germ-free mice in the absence of re-
growing microbiota were significantly higher when compared to
streptomycin-treated SPF mice (p ¼ 0.002; compare with Figure 3A,
left panel).

Found at doi:10.1371/journal.pbio.0050244.sg005 (105 KB PDF).

Figure S6. 16S rRNA Gene Sequence Analysis of Microbiota in
VILLIN-HACL4-CD8 Model

Visual depiction of the microbiota composition of individual mice.
The animals were grouped based on the similarity of their microbiota
composition at the phylum level (using the Canberra distance as
metric). The resulting groupings are depicted as a dendrogram, and
observed phylum counts for each mouse are shown as a heat map
(0%–100% of all identified 16S rRNA gene sequences). Labels give
unique mouse identifier numbers. The experimental groups are
indicated.

Found at doi:10.1371/journal.pbio.0050244.sg006 (64 KB PDF).

Table S1. Broad-Range Bacterial 16S rRNA Gene Sequence Analysis
of the Microbiota Composition from the Experiment Shown in
Figures 2 and 6

Found at doi:10.1371/journal.pbio.0050244.st001 (277 KB XLS).

Table S2. Phylum-Level Comparison of Microbiota of VILLIN-
HACL4-CD8 Model from the Experiment Described in Figure 6

Found at doi:10.1371/journal.pbio.0050244.st002 (35 KB DOC).

Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov/Genbank/) accession num-
bers for the 16S RNA gene sequences shown in Figure 2 are
EF604903–EF605247, and for those shown in Figure 6C are
EF604904–EF605247 and EU006095–EU006496.
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