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GUEST COMMENTARY

Hypothetical Functions of Toxin-Antitoxin Systems�
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Department of Biological Sciences, University of Alabama in Huntsville, 301 Sparkman Drive, WH 258, Huntsville, Alabama 35758

Toxin-antitoxin systems are very commonly found both on
large, low-copy plasmids, where they increase effective stability
(35), and on bacterial chromosomes, where their function has
been the subject of considerable speculation. In this issue of
the Journal of Bacteriology, Virginie Tsilibaris and colleagues
(65) in the laboratory of Laurence Van Melderen ask “What is
the benefit to Escherichia coli of having multiple toxin-anti-
toxin systems in its genome?” To answer this question, the
authors compared the fitness levels of wild-type Escherichia
coli and an isogenic strain simultaneously deleted for five chro-
mosomal toxin-antitoxin systems. Relative fitness was assessed
by head-to-head competition in liquid culture with reciprocal
markers. By this rigorous test, the benefit, under the conditions
tested, is little or none. This is a stunning bit of news that poses
a serious challenge to the heretofore preeminent stress re-
sponse/growth control hypothesis.

DEFINING CHARACTERISTICS

A proteic toxin-antitoxin system (35) can be defined an “ad-
dictive” genetic element (Fig. 1) that encodes two intracellular
proteins, a stable toxin and an unstable antitoxin (Fig. 2).
Transcription of the two genes is typically autoregulated by the
protein products. This homeostatic negative-feedback loop
may help to maintain steady levels of toxin and antitoxin (43).

Multiple mechanisms for activation. If the homeostatic ca-
pacity of the system is exceeded by transcriptional inhibitors,
translational inhibitors (61), severe starvation, or addition of
serine hydroxamate (a convenient if severe facsimile of starva-
tion) (10), then the toxin may be unveiled and the cell arrested.
Potentially, the specific transcriptional or translational down-
regulation of the operon (2), the activation of another toxin-
antitoxin system (34), or the specific upregulation of the ap-
propriate protease (9) might also be sufficient or helpful in
revealing the toxin. Additionally, the actual loss of the toxin-
antitoxin genes, by segregation, exclusion, mutation, or recom-
bination, can liberate the toxin and arrest the cell.

Multiple mechanisms for action. The toxins so far character-
ized include gyrase inhibitors, phosphotransferases, site-specific
ribonucleases, ribosome-dependent ribonucleases, and a pos-
sible riboexonuclease (5, 7, 70). In principle, any essential
structure or process could be targeted by these toxins. In prac-

tice, mRNA-targeting ribonucleases are particularly common
(13) (Fig. 3). Interestingly, the immediate effects of these
RNase toxins are bacteriostatic rather than bactericidal (3, 53)
and can be counteracted by the action of tmRNA (11). Impor-
tantly, no toxin has been reported to be directly bacteriolytic.

Multiple and polymorphic toxin-antitoxin systems. Bioin-
formatic surveys indicate that prokaryotic genomes may con-
tain zero, one, or many toxin-antitoxin systems (51). Esche-
richia coli, with at least a half a dozen toxin-antitoxin systems,
is fairly typical. It is increasingly apparent that toxin-antitoxin
systems are frequently polymorphic, meaning that they are
found in some but not all isolates of a given species (51, 66, 67)
(Table 1). Stable polymorphisms may be attributed to niche-
specific adaptations or to frequency-dependent selection. Mul-
tiplicity is generally regarded as strong evidence of functional
specialization. Other selfish genetic elements, such as restric-
tion-modification systems (49) and colicins (59), share these
distinctive bioinformatic characteristics.

NINE POSSIBLE FUNCTIONS OF CHROMOSOMAL
TOXIN-ANTITOXIN SYSTEMS

(i) Junk. Chromosomal toxin-antitoxin systems are genomic
junk, acquired from plasmids or other sources and lost in due
course, albeit at an unusually low rate, due to their addictive
qualities. This is an important null hypothesis against which
any other hypothesis must be compared (41, 50).
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FIG. 1. Toxin-antitoxin systems are addictive. An addictive genetic
element (small circle) can increase effective plasmid stability approx-
imately 10- to 1,000-fold (35) by the arrest or elimination of element-
free daughter cells (lower right). Potentially, the loss of the addictive
genetic element may occur by (mis-) segregration, exclusion, mutation,
or recombination. If the environment is sufficiently structured and has
limited resources, then the elimination of element-free cells will leave
more food for element-containing cells. Since plasmid-borne toxin-
antitoxin systems can be found on chromosomes (66) and since chro-
mosomal toxin-antitoxin systems can stabilize plasmids (12, 26), there
is at present little evidence of any obligatory location-specific special-
izations. Restriction modification systems (48), hok-sok-type postseg-
regational killing systems (25), and eukaryotic meiotic drive systems
(6) possess similar addictive properties but are mechanistically distinct.
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(ii) Stabilization of genomic parasites. The presence of toxin-
antitoxin systems on larger genomic parasites, such as conju-
gative transposons (17) and temperate bacteriophage (16),
may benefit the parasite by reducing the effective deletion rate.
Many “chromosomal” toxin-antitoxin systems may be found,
upon closer examination, to map to chromosomal parasites or
to the remnants of such parasites (58).

(iii) Selfish alleles. The recombinational (28) or segrega-
tional (14, 15, 37, 45, 46) loss of a toxin-antitoxin system fol-
lowing a sexual encounter results in addictive arrest. Thus,
nonaddictive alleles cannot replace addictive alleles, but the
reciprocal event is permitted (Fig. 4). In a limited and struc-
tured environment (8), this asymmetry generates a slight ben-
efit for the addictive element and a slight detriment to any
nonaddictive allele. Since different toxin-antitoxin systems at
different locations occupy different ecological niches, the mul-
tiplicity of the toxin-antitoxin systems is well explained. Poly-
morphisms may reflect a balance between infected and unin-
fected loci and are thus also expected. There are serious
quantitative difficulties with this hypothesis, but they may not
be insuperable (64).

(iv) Gene regulation. Since many of the toxins encode site-
specific ribonucleases, they can shift gene expression away
from site-rich messages and toward site-poor messages. This
effect may be used for autoregulation (60, 69), for specific
regulation (47, 54), and possibly for global regulation (18, 20).

(v) Growth control. Toxin-antitoxin systems can be activated
by starvation or other stresses (1, 7, 10, 33, 38). Since many of
the RNase toxins are bacteriostatic rather than bactericidal in
nature, their effects can potentially be reversed (53) by the
action of tmRNA (11). The quick arrest of growth, in response
to starvation or other stresses, may permit improved survival
during starvation or a quicker resumption of growth when
conditions improve or both (23, 24). At present, however, there
is no evidence that toxin-accentuated arrest actually creates an
advantage later on, and the first real attempt to test this pre-
diction (65) has failed to reveal any substantial benefit during
head-to-head competition in liquid culture. Additionally, this
hypothesis cannot predict the existence of multiple and poly-
morphic toxin-antitoxin systems (Table 1) without invoking
accessory hypotheses (such as those regarding functional spe-

FIG. 2. Organization of toxin-antitoxin systems. (A) Typically, the
antitoxin gene precedes the toxin gene. (B) In some families, the usual
order is reversed and a second promoter is observed. In both cases,
antitoxin and toxin genes are usually small and often have overlapping
stop and start codons, indicating that translation may be coupled.
Transcription of the two genes is generally autoregulated by the pro-
tein products. The antitoxin is synthesized at a greater rate than the
toxin but is also degraded at greater rate, due to the action of a specific
host-encoded ATP-dependent protease, such as Lon, ClpXP, or ClpAP.
At steady state, there is sufficient antitoxin to bind and neutralize the
toxin. If the genes are lost or if their synthesis is sufficiently disrupted,
the continuing proteolysis of the unstable antitoxin may liberate the
stable toxin and produce biological effects. In at least a few atypical
instances, a third protein product is implicated in the functioning of
the system or the toxin is unusually large. Numerous reviews are
available (19, 23, 29, 31, 35, 56, 57, 68, 70).

FIG. 3. Phylogenetic network of chimeric toxin-antitoxin systems.
The known toxins belong to a diverse and polyphyletic set of at least
four major families, and the antitoxins are equally heterogeneous (4,
51). The N-terminal moiety of the antitoxin typically contains a DNA-
binding domain belonging to any one of four of more repressor fam-
ilies, while the C-terminal moiety contains a flexible antitoxin domain
that is typically too short and too diverse to be of any significant
bioinformatic utility. The major toxin-antitoxin families can be loosely
connected in an evolutionary sense only by their propensities to swap
operator-repressor and antitoxin-toxin modules, thereby generating a
network of chimeric systems (4, 22, 27, 30, 44, 63).

TABLE 1. Polymorphism of toxin-antitoxin systems
in Escherichia coli

Escherichia coli
strain

Presence of indicated K-12 toxina

yoeB mazF relE chpB yafQ hipA

K-12 � � � � � �
0157:H7 � � � � � �
UT189 � � � � � �
CFT073 � � � � � �

a Results indicate the presence and absence of K-12 toxins in the genomes of
Escherichia coli strains. �, a very good match for the K-12 toxin; �, no match or
only a distant match for the K-12 toxin.
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cializations and niche-specific adaptations) for which there is
little or no independent evidence.

(vi) Persisters. At least one toxin-antitoxin system is impli-
cated in the generation of “persisters,” a subfraction of the
population that is characterized by low growth and high resis-
tance to �-lactam antibiotics (36, 39). By adapting a mixed
strategy in which some cells are specialized for growth while
others are specialized for persistence, the culture can insure itself
against a sudden and catastrophic loss (40).

(vii) Programmed cell arrest and the preservation of the
commons. The toxin-mediated early arrest of growth by the
culture may leave more resources in the medium and therefore
may improve long-time survival. This scenario requires a rea-
sonably well-structured environment (such as an agar plate) or
some other mechanism to ensure that the benefits do not
accrue without limit to the cheaters (42). Polymorphisms might
be interpreted as a balance between good citizens and selfish
cheaters. A multiplicity of toxin-antitoxin systems might be
useful in reducing the rate at which cheaters are generated.
This hypothesis and the following ones predict that toxin-an-
titoxin systems will be beneficial in pure culture or in a struc-
tured habitat, such as an agar plate, but may fail to show any
benefit in a mixed-liquid culture.

(viii) Programmed cell death. Programmed cell death is
similar to the process for the preceding hypothesis, except that
it requires a heterogeneous response to stress (since no one
can benefit if everyone dies) (2, 18, 42). The prediction of
heterogeneity might be tested experimentally using green flu-
orescent protein fusions or other single-cell techniques. Cur-
rently, there is no uncontested and unambiguous evidence of
toxin-mediated cell death (65).

(ix) Antiphage. Since bacteriophage can interfere with host
transcription and translation (55), they may activate addictive
systems, which would then limit phage production (32, 52),
unless the phage could inhibit host proteases (21, 62), neutral-
ize the toxins, or exit the cell before the toxins were activated.
Toxin-antitoxin diversity and multiplicity arise as a natural
consequence of the host-parasite conflict.

Multiple hypotheses may apply. Multiple hypotheses may
apply to a single toxin-antitoxin system. In principle, one toxin-
antitoxin system could be a parasite (hypothesis iii), could
stabilize a larger parasite (hypothesis ii), could benefit individ-
ual cells (hypotheses iv, v, and vi), and could benefit the colony,
by mediating cooperative (hypothesis vii) and altruistic (hy-
potheses viii or ix) strategies, all at the same time. At present,
however, there is no particularly compelling case for even one
of these possibilities. Progress will require interdisciplinary
studies and a combination of creativity, collegiality, and critical
thinking.
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