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In this study, oxygen and nitrate regulation of transcription and subsequent protein expression of the unique
narK1K2GHJI respiratory operon of Pseudomonas aeruginosa were investigated. Under the control of PLAC, P.
aeruginosa was able to transcribe nar and subsequently express methyl viologen-linked nitrate reductase activity
under aerobic conditions without nitrate. Modulation of PLAC through the LacI repressor enabled us to assess both
transcriptional and posttranslational regulation by oxygen during physiological whole-cell nitrate reduction.

Pseudomonas aeruginosa is a ubiquitous gram-negative bac-
terium capable of growth and/or survival anaerobically through
arginine catabolism (36), pyruvate fermentation (6), or deni-
trification in the presence of nitrogen oxides (37). The latter
process allows this organism to persist in soil as part of the
global nitrogen cycle. Additionally, denitrification has been
implicated in infections by this opportunistic pathogen in the
airways of cystic fibrosis patients (9, 18, 35).

During anaerobic growth of Escherichia coli, the Fnr protein
is responsible for activation of the synthesis of anaerobic
respiratory enzymes such as nitrate reductase (28, 31). In ad-
dition, the presence of external nitrate induces the transcrip-
tion of the nitrate reductase operon through the dual two-
component regulatory systems of narX-narL (31, 32) and narQ-
narP (3, 21, 22). Parallel studies of P. aeruginosa have resulted
in the characterization of a unique nar operon (24, 27) regu-
lated by the proteins Anr and Dnr (40) as well as narX and
narL (24). However, a narQ homologue has not been identified
(30, 34).

Posttranslationally, oxygen also has the capacity to inhibit
denitrification immediately at the level of nitrate uptake and
nitrite excretion (10, 11, 33) as well as through the diversion of
electron flow to oxygen in E. coli and in Paracoccus denitrifi-
cans (4, 33). Despite these studies, an experimental method for
the measurement of posttranslational regulation by oxygen has
been lacking.

In the present study, the effects of oxygen and nitrate on the
expression of the narK1K2GHJI operon (27) were examined
during aerobic or anaerobic growth with and without nitrate.
In addition, a PLAC element was inserted upstream of the
respiratory nitrate reductase genes (narK2GHJI) of P. aeruginosa
to overcome transcriptional regulation of the nar operon by

oxygen and nitrate. The levels of transcription, respiratory
nitrate reductase activity, and whole-cell physiological reduc-
tion of nitrate to nitrite were measured under both aerobic and
anaerobic conditions, thus allowing quantitative assessment of
posttranslational regulation by oxygen.

The bacterial strains and plasmids used in this study are
listed in Table 1. All bacteria were grown at 37°C from single-
colony isolates or overnight cultures in Luria-Bertani (LB)
broth (Fisher Scientific, Pittsburgh, PA). The medium was
supplemented with 1% (wt/vol) KNO3 (LB-NO3) when indi-
cated. Aerobic cultures were set up as 50-ml volumes of LB or
LB-NO3 in a 500-ml Erlenmeyer flask by inoculating 500 �l of
cells and shaking at 250 rpm to an optical density at 600 nm of
0.3 to 0.4. Cultures used to measure anaerobic transcription of
narG and to conduct in vitro anaerobic respiratory nitrate
reductase assays were first grown aerobically to an optical
density at 600 nm of 0.3 to 0.4, after which time they were
shifted to complete anaerobic conditions (BBL Anaerobic
GasPak System) for 3 h. For anaerobic growth cultures and
nitrite excretion studies, 1 ml of mid-log-phase cells was inoc-
ulated in 100-ml volumes of LB-NO3 and incubated with mag-
netic stirring in a 125-ml Erlenmeyer flask with rubber stoppers
equipped with ports for sample withdrawal and one-way gas
release valves. To ensure complete anaerobiosis of the system,
the medium was supplemented with 2% (wt/vol) Oxyrase
(Oxyrase, Inc., Mansfield, OH) and flushed with argon. The
antibiotics (BioWorld, Dublin, OH) used for E. coli were as
follows: ampicillin (100 �g/ml), gentamicin (15 �g/ml), and
tetracycline (25 �g/ml). Gentamicin (300 �g/ml) and carbeni-
cillin (500 �g/ml) were used for P. aeruginosa.

For the construction of strain JVC, a 1.5-kb SmaI digest
containing Gmxlac was blunt ended into the NotI site of
pEX18Ap::narK1K2. Single-copy, chromosomal gene disrup-
tions were created using a gene replacement technique previ-
ously described (25, 29). loxP excision of the gentamicin resis-
tance marker was conducted by transformation with pCRE
into a P. aeruginosa strain with a narK1-Gmxlac disruption.
Several passages of growth in LB containing 500 �g/ml car-
benicillin were followed by selection for the loss of growth in
LB containing 300 �g/ml gentamicin. The pCRE plasmid was
cured from the strain through one passage in LB, followed by
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growth in LB containing 5% sucrose and selection for carben-
icillin sensitivity. Constructs were confirmed by PCR using
primers listed in Table 1.

JVC was constructed by inserting the Gmxlac cassette
within narK1 for two reasons. First, it has been shown for P.
aeruginosa that while narK1K2GHJI is transcribed as an
operon, only NarK2 is required for respiratory nitrate re-
duction (27). Second, we did not want to interfere with
physiologically regulated anaerobic transcription of the nar
promoter since expression levels manipulated through a lac
promoter could be either limiting or overexpressed and,
thus, will not reflect physiological responses. Using the same
reasoning, transcriptional termination sequences were not
placed upstream of PLAC in the pUCGmxlac vector. Thus,
the transcriptional activity of narK2GHJI would be under

the control of both the nar promoter and the PLAC element
during anaerobic conditions and be under the control of
solely PLAC during aerobic conditions.

Transcription of nar under aerobic and anaerobic condi-
tions in JVC (narK1-PLAC). To test the ability of PLAC to
aerobically transcribe narK2GHJI, the mRNA levels of narG in
PAO1 and JVC were measured through quantitative reverse
transcription-PCR in LB with or without nitrate in aerobic and
anaerobic conditions. The results further corroborated the pre-
vious experimental proof that in P. aeruginosa, narK1 and
narK2 were contained in the nar operon (27) and demon-
strated that the presence of nitrate alone was not sufficient for
the transcription of narG in wild-type PAO1 and that anaero-
bic conditions were required (Table 2). In contrast, JVC tran-
scribed narG aerobically in both the presence and the absence

TABLE 1. Strains, plasmids, and oligonucleotide primers

Strain, plasmid, or primer Relevant genotype, description or sequence (5� to 3�)a Source or
reference

Strains
E. coli

DH5� recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 �lacU169(�80lacZ�M15) Gibcoe

TOP10F� F� �lacIq Tn10(Tetr)� mcrA �(mrr-hsdRMS-mcrBC) �80lacZ�M15 �lacX74 Invitrogene

recA1 araD139 �(ara-leu)7697 galU galK rpsL (Strr) endA1 nupG
SM10 Kmr; mobilizer strain 29

P. aeruginosa
PAO1 Wild type C. Manoil
JVC PAO1 with narK1-Plac This study

Plasmids
pUCP18 Apr; broad-host-range cloning vector 26
pUCGMlox Gmr; Gmr cassette flanked by lox sequences 20
pUCGMxlac Gmr; PLAC promoter ligated within the ClaI and SacII sites of pUCGMlox This study
pGem-lacIq Apr; 1-kb PCR fragment containing lacIq from TOP10F� in pGEM-T Easy vector (Promega) This study
pREP Apr; ligation of a blunt-ended 1-kb EcoRI fragment containing lacIq from pGem-lacIq into

the blunt-ended EcoRI and SapI sites of pUCP18
This study

pFLP2 Apr; Flp vector containing sacB and flp (Flp recombinase) 12
pCM157 Tcr; source of cre recombinase 15
pCR2.1-cre Apr; Kmr; 1.3-kb PCR fragment containing cre recombinase in pCR2.1 (Invitrogen) This study
pCRE Apr; 1.3-kb EcoRI fragment of pCR2.1-cre ligated into an EcoRI digest of pFLP2 This study
pEX18Ap::narK1K2 Apr; 2.7-kb EcoRI fragment containing narK1 and narK2 ligated into the EcoRI site of

pEX18Ap
27

pEXJVC Apr; Gmr; 1.5-kb SmaI fragment from pUCGMxlac blunt ended into the NotI site of
pEX18Ap::narK1K2

This study

Primer/templateb

Plac/Pucp18 (�) TGTATCGATTCGCCACCTCTGACTT This study
Plac/Pucp18 (	) CTCCGCGGCGTAATCATGGTCATAG This study
lacIq/Top 10F� DNA (�) GTGCAAAGCTCTTCGCGGTAT This study
lacIq/Top 10F� DNA (	) CGCGAATTCACATTAATTGCGTTG This study
cre/pCM157 (�) GAATTCGCAAACCGCCTCTC This study
cre/pCM157 (	) CCAGTGAATTCTTACTAATCGCCATC This study
narK1K2 (�)c CCTGTCACTACCTCCAAAG 27
narK1K2 (	)c AGAAGCTGATATTGGACATG 27
narG (�)d ACGACCTCAACACCTCCGAC This study
narG (	)d GATCTCCCAGTCGCTCTTGG This study
rpoD (�)d GGGCGAAGAAGGAAATGGTC 23
rpoD (	)d CAGGTGGCGTAGGTGGAGAA 23

a Kmr, Apr, Gmr, and Tcr indicate resistance to kanamycin, ampicillin, gentamicin, and tetracycline, respectively. Underlined nucleotides were modified to
accommodate a restriction site.

b Template DNA used with the corresponding primer is indicated; plus and minus symbols indicate forward and reverse primers, respectively.
c Used for mutant confirmation.
d Used for real-time PCR.
e Located in Carlsbad, CA.
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of nitrate (15.5 
 3.8 and 23.4 
 6.0 relative severalfold in-
creases, respectively). The level of narG transcription anaero-
bically was significantly higher for both PAO1 and JVC since
the operon was under the physiological control of the nar
promoter. Finally, we manipulated the transcription of narG by
transforming a plasmid containing lacIq (pREP) into JVC. As
expected, the addition of pREP significantly reduced aerobic
narG transcriptional levels in JVC (Table 2).

The addition of PLAC upstream of narK2GHJI enabled us to
constitutively transcribe the operon in both the presence and
the absence of oxygen and nitrate and to modulate aerobic
transcriptional activity by utilizing pREP.

Respiratory nitrate reductase activity. To determine
whether the same trends are observed at the enzyme level,
methyl viologen-linked respiratory nitrate reductase activity
was measured (14) in cell extracts of strains grown in LB with
or without nitrate aerobically and anaerobically (Table 3). The
results indicated that enzyme activity was detected only in
wild-type PAO1 under anaerobic conditions in the presence of
nitrate (Table 3), confirming the narG transcriptional activities
measured in Table 2 and the requirement of both nitrate and
anaerobiosis for expression of the respiratory nitrate reduc-
tase. P. aeruginosa also contains a periplasmic nitrate reductase
(38), but we did not detect any enzyme activity for P. aeruginosa
under aerobic conditions (17, 27). Nitrate reductase activity in

JVC was consistently detected even in the absence of nitrate
and under aerobic conditions due to the expression of narGHJI
through PLAC (Table 3). Eighty percent of the specific activity
detected aerobically without nitrate was retained within the
insoluble fraction of the crude extract, indicating that the aer-
obic nitrate reductase measured was predominantly membrane
bound (data not shown). Anaerobically, the nitrate reductase
activity of JVC was approximately twice the level observed in
wild-type PAO1 (1,120 
 150 and 560 
 77 nmol nitrite min	1

mg	1 protein, respectively [Table 3]). We also determined the
ability of pREP to inhibit nitrate reductase activity and found
both aerobic and anaerobic nitrate reductase activities to be
significantly reduced in JVC with pREP (Table 3). Although
pREP did not completely diminish anaerobic nitrate reductase
activities, the level of inhibition was sufficient to significantly
hinder anaerobic growth (data not shown).

Posttranslational oxygen regulation of nitrate reduction.
Through quantitative reverse transcription-PCR and methyl vi-
ologen-linked respiratory nitrate reductase activity, we have
shown that oxygen inhibition of transcription and translation of
the nar operon was overcome by modulating transcription of
narK2GHJI through PLAC. The use of pREP also allowed us to
express nitrate reductase activity anaerobically in JVC over a wide
range from 218 
 7 to 1,120 
 150 nmol nitrite min	1 mg	1

protein. More importantly, the levels of enzyme activity in JVC
with pREP under anaerobic conditions are similar to those ob-
served aerobically in JVC alone (218 
 7 and 210 
 9 nmol nitrite
min	1 mg	1 protein, respectively). These expression levels al-
lowed us to measure whole-cell nitrate reduction to nitrite aero-
bically and anaerobically in strains with comparable nitrate re-
ductase activities and thus explore posttranslational regulation by
oxygen (Table 3). We examined JVC for physiological whole-cell
nitrate reduction (non-methyl viologen driven) to nitrite indi-
rectly by measuring the levels of nitrite in the growth medium.
Specifically, the supernatant was collected by centrifugation
(10,000 � g, 4°C, 10 min) and measured for nitrite (16). The
disappearance of nitrite was not considered since previous studies
have shown that the presence of nitrate inhibits the reduction of
nitrite and that its subsequent secretion by whole cells is stoichi-
ometrically correlated to the disappearance of nitrate (5, 13). The
JVC strain excreted nitrite when grown aerobically (1.5 
 1 nmol
nitrite �g	1 protein [Table 4]) while the levels of aerobic nitrite
excretion in wild-type PAO1 remained undetectable. During an-
aerobic growth, the JVC strain containing pREP excreted nitrite
at a rate approximately sixfold higher than the levels observed
under aerobic conditions in the same strain without pREP (9.4 


TABLE 2. Transcriptional levels of narG in P. aeruginosa
PAO1 and JVC

Straina

Relative fold increase under indicated conditionsb

Aerobic Anaerobic

LB LB � 1% nitrate LB � 1% nitrate

PAO1 1 1.1 
 0.1 31.3 
 2.2
PAO1 � pREP NDc 1.5 
 0.9 ND
JVC 23.4 
 6.0 15.5 
 3.8 55.5 
 4.4
JVC � pREP ND 6.2 
 0.9 ND

a The PAO1 and JVC strains were grown in LB with or without 1% (wt/vol)
KNO

3
under aerobic and anaerobic conditions as described in the text.

b The difference (n-fold) was calculated using the Pfaffl model (19), setting
PAO1 in LB aerobically as 1. Values shown are means 
 standard errors as
calculated from three independent cell suspensions. PCR was accomplished by a
3-min denaturation step at 95°C, followed by 40 cycles of 30 s at 95°C, 45 s at
60°C, and 45 s at 72°C.

c ND, not determined.

TABLE 3. Nitrate reductase activities of P. aeruginosa PAO1 and JVC

Straina

Nitrate reductase activity (nmol nitrite min	1 mg	1

protein) under indicated conditionsb

Aerobic Anaerobic

LB LB � 1%
nitrate LB LB � 1%

nitrate

PAO1 �1 �1 �1 560 
 77
PAO1 � pREP �1 �1 �1 548 
 64
JVC 222 
 27 210 
 9 367 
 66 1,120 
 150
JVC � pREP 23 
 7 28 
 12 36 
 13 218 
 7

a PAO1 and JVC were grown in LB with or without 1% (wt/vol) KNO3 under
aerobic and anaerobic conditions as described in the text.

b Nitrate reductase activities were determined in cell extracts by using reduced
methyl viologen as the electron donor. Values shown are means 
 standard
errors as calculated from three independent cell suspensions.

TABLE 4. Nitrite excretion levels of P. aeruginosa PAO1 and JVC

Straina

Nitrite excretion
(nmol nitrite �g	1 protein)b

Aerobic Anaerobic

PAO1 �0.1 131.1 
 5.6
PAO1 � pREP �0.1 128.0 
 9.9
JVC 1.5 
 0.1 123.6 
 4.7
JVC � pREP 0.5 
 0.1 9.4 
 0.5

a PAO1 and JVC were grown aerobically and anaerobically in LB with 1%
(wt/vol) KNO3 as described in the text.

b Nitrite levels were determined as described in the text. Values shown are
means 
 standard errors as calculated from three independent measurements.
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0.5 and 1.5 
 0.1 nmol nitrite �g	1 protein, respectively [Table
4]). Although similar nitrate reductase activities were observed in
aerobic JVC and anaerobic JVC with pREP (Table 3), the levels
of nitrite excretion were significantly lower under aerobic condi-
tions. The PLAC insertion enabled JVC to aerobically transcribe
nar and produce functional wild-type levels of respiratory nitrate
reductase activity under aerobic conditions, thus clearly demon-
strating the physiological significance of posttranslational regula-
tion by oxygen at the level of nitrate transport and/or diversion of
electron flow (4, 10, 11).

The results in this investigation are consistent with those of
past studies of transcriptional regulation of nar (1, 2, 8, 27,
39–41) that were recently challenged by a DNA microarray-
based study (7) which reported no significant changes in narG
transcription aerobically versus anaerobically in P. aeruginosa
grown on complex medium supplemented with nitrate. The
authors of that recent study concluded that nitrate alone was
sufficient for nar expression in both aerobic and anaerobic
environments.

Finally, the modification of pUCGMlox allowed us to mod-
ulate the expression of the narK2GHJI operon for physiologi-
cal studies which would otherwise be difficult to perform by
utilizing plasmid expression vectors currently available for P.
aeruginosa. With the combination of pREP and PLAC, we were
able to conditionally express nitrate reductase activities chromo-
somally. Intermediate levels of nitrate reductase activities can
even be obtained using IPTG (isopropyl--D-thiogalactopyrano-
side) (data not shown). Therefore, the use of this technique en-
ables the investigator to integrate a regulatory element(s) and
modulate gene expression of operons and multiple open reading
frames to further take advantage of the available P. aeruginosa
genome database (34).
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