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Mammalian prion diseases are fatal neurodegenerative disorders dependent on the prion protein PrP.
Expansion of the oligopeptide repeats (ORE) found in PrP is associated with inherited prion diseases. Patients
with ORE frequently harbor PrP aggregates, but other factors may contribute to pathology, as they often
present with unexplained phenotypic variability. We created chimeric yeast-mammalian prion proteins to
examine the influence of the PrP ORE on prion properties in yeast. Remarkably, all chimeric proteins
maintained prion characteristics. The largest repeat expansion chimera displayed a higher propensity to
maintain a self-propagating aggregated state. Strikingly, the repeat expansion conferred increased conforma-
tional flexibility, as observed by enhanced phenotypic variation. Furthermore, the repeat expansion chimera
displayed an increased rate of prion conversion, but only in the presence of another aggregate, the [RNQ�]
prion. We suggest that the PrP ORE increases the conformational flexibility of the prion protein, thereby
enhancing the formation of multiple distinct aggregate structures and allowing more frequent prion conver-
sion. Both of these characteristics may contribute to the phenotypic variability associated with PrP repeat
expansion diseases.

The accumulation of misfolded proteins is a pathological
characteristic common to neurodegenerative disorders such as
Alzheimer’s, Parkinson’s, Huntington’s, and prion diseases.
Prion diseases are unique in this group by virtue of the self-
propagating and transmissible nature of the misfolded prion
protein (40). The prion replicates itself by converting solu-
ble protein into the insoluble prion conformation. Only one
prion protein has been identified in mammals, PrP, and its
conversion into the prion conformation causes neurodegenera-
tive diseases (40). Intriguingly, multiple proteins that behave as
prions have been discovered in fungi, but these self-propagat-
ing elements do not cause disease (49). Investigation of fungal
prions has provided much support for the prion hypothesis and
has introduced several new tools to study prion propagation
(11).

In Saccharomyces cerevisiae, the essential translation termi-
nation factor Sup35p can propagate as a prion called [PSI�]
(48). Cells containing the [PSI�] prion exhibit increased non-
sense suppression (48), presumably because the prion aggre-
gates preclude the Sup35 protein from participating as effi-
ciently in translation termination. The increase in nonsense
suppression due to the [PSI�] state can be observed in yeast
cells harboring premature stop codons in nutritional markers,
thereby allowing the prion state to be monitored phenotypi-
cally (11).

Since the function of the mammalian prion protein is un-
known, it is difficult to determine how mutations in PrP affect
function and phenotype. Inherited prion diseases arise as a
result of mutations in the gene encoding PrP, PRNP, some of

which may favor the formation of the infectious prion confor-
mation, PrPSc (52). Intriguingly, patients harboring disease-
associated PRNP mutations often present with highly variable
phenotypes. Even members of one family carrying identical
PRNP mutations can present with unique symptoms, including
variations in age of disease onset, disease severity, and disease
duration (16, 24, 27).

Mutations that result in expansion of the PrP oligopeptide
repeat (ORE) domain (ORD) are associated with dominant,
inherited prion diseases (52). Insertional mutations have been
identified in patients that expand the number of repeats up to
14 (27). Transgenic mice containing a 14-PrP repeat expansion,
Tg PrP(PG14), develop a neurological disease similar to that
of humans with inherited OREs (12, 13). The ORD is thought
to be dispensable for PrP to form infectious PrPSc (41), but the
PrP(PG14) protein accumulates in PrPSc-like deposits that are
abundant in the brains of Tg PrP(PG14) mice (12, 13). These
aggregates are not infectious (14), but protein aggregates from
patients harboring other PrP OREs have been demonstrated
to be transmissible to primates (7). Thus, it remains unclear
how PrP repeat expansions cause disease.

Conversely, how amino acid sequence changes correlate to
alterations in prion propagation has been determined for some
yeast prion proteins. The sequence necessary for the conver-
sion of Sup35p into the prion state has been defined by domain
mapping and mutagenesis studies (reviewed in reference 54).
The prion-forming domain (PFD) has been localized to the N
terminus of Sup35p and is necessary and sufficient for prion
propagation (30, 46). The PFD has a strikingly high percentage
of glutamine (Q) and asparagine (N) amino acids, and muta-
tion of certain Q or N residues eliminates [PSI�] (17). Inter-
estingly, one region in the Sup35p PFD is strikingly similar to
a region in PrP, the ORD (6). Sup35p contains 51/2 OREs, and
the ORD of PrP contains five octapeptide repeats. Deletion of
one or more Sup35p repeats prevents efficient propagation of
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[PSI�] (31, 38). Alternatively, expansion of the Sup35p ORD
results in enhanced prion conversion (31), suggesting that the
ORD of Sup35p influences the de novo formation of the prion
state.

In order to investigate the aggregation propensity associated
with the PrP repeats and the effect of disease-associated repeat
expansions, we developed a novel model system in yeast. Pre-
vious research demonstrated that one PrP repeat can replace
one Sup35p repeat and maintain prion competence in yeast
(38), suggesting that PrP repeats may structurally mimic the
Sup35p repeats. Here, we replaced the entire repeat region of
Sup35p with various PrP repeat lengths and determined that
the resulting chimeric proteins can behave as prions in yeast.
Interestingly, we found that the PrP repeat sequence altered
prion stability. The insertion of the longest repeat region (14-
PrP ORE) resulted in the strongest prion phenotype and en-
hanced phenotypic variability. In addition, spontaneous con-
version of the chimeric proteins to the prion state was
dramatically increased in comparison to that of wild-type
Sup35p, but only in the presence of [RNQ�]. Additional ex-
periments demonstrated that the 14-PrP ORE could replace
the N-terminal Q/N-rich region of the Sup35p PFD and suc-
cessfully maintain and propagate a prion. Taken together, our
results indicate that the ORE of PrP is more prion competent
and enhances phenotypic variability compared to the wild-type
PrP repeat length. We suggest that these properties may con-
tribute to the variability associated with inherited prion disor-
ders in humans.

MATERIALS AND METHODS

Strain construction. All of the yeast strains used in this study were derivatives
of 74-D694 (MATa or MAT� ade1-14 trp1-289 his3�-200 ura3-52 leu2-3,112)
(10). Yeast cells were grown and manipulated by standard techniques (22). A
74-D694 [PSI�] diploid with one copy of SUP35 replaced with a kanamycin
resistance cassette (sup35::KanMX4) was transformed with a plasmid containing
SUP35 (pYK810) (38). Haploid progeny cells containing pYK810 and
sup35::KanMX4 were obtained (74-D694 pYK810) from the diploid. The iso-
genic [psi�] 74-D694 pYK810 strain was created by growth on rich medium
(YPD) (22) containing 3 mM guanidine hydrochloride (GdHCl). The plasmid
shuffle technique was used to create strains expressing only the Sup35p-PrP
chimera (SP5, SP14, and P14MC strains). To obtain SP14/SUP35 diploid strains,
[SP14�] �sup35 cells were mated to wild-type [psi�] cells. The resulting progeny
cells showed a 2:2 segregation of the sup35 deletion, and only the �sup35 spores
harbored the SP14 plasmid. The absence of the plasmid in spores containing
chromosomal SUP35 is likely due to toxicity associated with the overexpression
of SUP35 in strong [PSI�] strains (19). The [PSI�] �rnq1 strain was created by
PCR amplification of the antibiotic resistance marker hygromycin B with primers
5�-GAACGTACATATAGCGATACAAACGTATAGCAAAGATCTGAAAT
GTCGTACGCTGCAGGTCGAC-3� and 5�-CAAATACGTAAACAAAGGAT
AGAAGGCGAACTGAATCATCGTTCAATCGATGAATTCGAGCTCG-3�
and subsequent transformation of the resulting product into [PSI�] 74-D694
pYK810. The plasmid shuffle approach was used to create chimeric [SP5�] �rnq1
and [SP14�] �rnq1 strains. To create haploid [RNQ�] strains, [sp5�] [rnq�] or
[sp14�] [rnq�] strains were crossed to [psi�] [RNQ�], diploids were obtained,
and tetrads were dissected. All deletion strains were verified by PCR and West-
ern blotting.

Plasmid construction. SUP35-PrP chimeras were created by precise replace-
ment of the repeat region of Sup35p (amino acids 40 to 96) with the octapeptide
repeats of PrP. To create the chimeric Sup35-PrP plasmids, a 5� fragment of
SUP35 that added a 5� BamHI restriction site and had the endogenous EcoRV
site was cloned into an intermediate vector. The resulting plasmid was cut with
HindIII and EcoRV to insert the various repeat regions of PrP containing DNA
encoding 5, 8, 11, and 14 repeats. The repeat regions of PrP were PCR amplified
from plasmids containing mouse PrP with 5, 8, 11, and 14 repeats (D. Harris,
unpublished data) with primers A (5�-GGTTATCAAGCTTACAATGCTCAA
GCCCAACCTCAGGGTGGCACCTGG-3�) and B (5�-ACCAGCTTGATATC

CTTGCAAATTGTTATTGTAGTTGAAGTTTTTGTAATTTCCACGTTGG
CCCCATCCACCGCC-3�). The DNA sequence of PrP was verified by DNA
sequencing, and the resulting translated repeat region for wild-type PrP was as
expected (PQGGTWGQ PHGGGWGQ PHGGSWGQ PHGGSWGQ PHGG
GWGQ). The PrP repeat expansion amino acid sequence was PQGGTWGQ
PHGGGWGQ (PHGGSWGQ PHGGSWGQ PHGGGWGQ)n, in which PrP
with 8 repeats contained n � 2, PrP with 11 repeats contained n � 3, and PrP
with 14 repeats contained n � 4. The chimeric fragments were removed from the
intermediate vector by BamHI and EcoRV and cloned into pUCK1512 (38),
which contained the rest of SUP35. The full-length chimeras were removed with
XhoI (blunted) and BamHI from pUKC1512 and cloned into p413TEF (35) cut
at the BamHI and SmaI sites. The resulting Sup35p-PrP chimeras with 5, 8, 11,
and 14 PrP repeats were called SP5, SP8, SP11, and SP14, respectively. The
positive control plasmid (pSup35) with the wild-type SUP35 sequence was cre-
ated in the same manner. The P14MC plasmid was created by PCR amplification
of the 14 PrP repeats with primers B and C (5�-CGGGATCCATGTCGCCTC
AGGGTGGCACCTGG-3�), and the resulting fragment was cloned into
pUKC1512 cut at the BamHI and EcoRV sites. The SP5-PFD-green fluorescent
protein (GFP) and SP14-PFD-GFP fusion constructs were made by PCR am-
plification of the specific PFD region of the chimeras with primers 5�GGCGC
AGGATCCATGTCGGATTCAAACCAA-3� and 5�GCGCCGCGGATCGTT
AACAACTTCGTCATCCAC-3�, and the products were digested with the
BamHI and SacII restriction enzymes. The products were cloned into a SUP35-
PFD-GFP plasmid (mCNMG) (39) digested with the same enzymes, replacing
the PFD of wild-type SUP35. All plasmids were verified by DNA sequencing.

Phenotypic and stability assays. To test for the prion phenotype, cells were
grown to an optical density at 600 nm (OD600) of �1.2 in YPD, serially diluted
fivefold, and spotted onto YPD, SD-ade, and YPD–3 mM GdHCl plates. To test
for the mitotic stability of [PSI�], [SP5�], and [SP14�] strains, cells were resus-
pended and spread onto YPD plates. Cells were counted and scored as sectoring,
solid red, or solid pink. To test for prion loss in [SP14�] chimera strains, cells
were grown in YPD and spread onto YPD plates. The percentage of solid red
colonies was determined, and the n-fold change in stability was calculated rela-
tive to the most stable strain (strong [SP14�]). The data presented represent
three independent experiments in which �15,000 colonies were scored for each
strain variant. To determine the prion conversion of [prion�] [rnq�] strains, the
ura3-14 allele was used (32). Transformants containing the pLeu2-ura3-14 con-
struct were grown overnight in SD-leu medium and plated on SD-ura-ade plates.
The number of [PRION�] cells was determined by color and curability by GdHCl
and compared to the total number plated. To determine the prion conversion of
[prion�] [RNQ�] strains, cells were resuspended, plated on YPD, and analyzed
for the number of pink colonies compared to the total number plated. All
[PRION�] cells were verified by curability by GdHCl.

Protein analysis. Sedimentation properties were analyzed as described previ-
ously with the addition of the mini EDTA-free protease inhibitor cocktail
(Roche) to the ST buffer (36). Large aggregates were separated by semidena-
turing detergent agarose gel electrophoresis (SDD-AGE) as previously de-
scribed (1), with the following minor changes. Lysis buffer contained the mini
EDTA-free protease inhibitor cocktail (Roche), and the lysates were incubated
in sample buffer for 7 min at room temperature before electrophoresis. Sup35p
and Sup35p-PrP chimeras were detected with a rabbit polyclonal antibody
against the middle region of Sup35p that is maintained in all chimeras, anti-
Sup35 (39).

PFD-GFP microscopy. Cells were transformed with a copper-inducible plas-
mid containing either an SP5-PFD-GFP or an SP14-PFD-GFP fusion, and flu-
orescence microscopy was performed after expression of the fusion protein was
induced in log-phase cells with 50 �M copper for 1 h (39).

Curing by overexpression of Hsp104p. Hsp104p overexpression was induced
from a galactose-inducible plasmid expressing Hsp104p (pYS-Gal104) by growth
in minimal medium lacking uracil (liquid or plates) supplemented with 2%
galactose and 1% raffinose, and final colony color was assessed on YPD (10).

Protein transformation. (i) Spheroplasting of cells. 74-D694 [prion�] cells
were grown to an OD600 of �0.5 and harvested. The cell pellet was washed
successively with 10 ml of water, 10 ml of 1 M sorbitol, and 1 ml of SCE buffer
(1 M sorbitol, 10 mM EDTA, 10 mM dithiothreitol, 100 mM sodium citrate, pH
5.8). The cells were spheroplasted in 500 �l of SCE buffer with lyticase (in
sodium citrate, pH 5.8) for 30 to 40 min at 30°C. After spheroplasting was
complete, cells were carefully washed twice with 1 ml 1 M sorbitol and twice with
1 ml STC buffer (1 M sorbitol, 10 mM CaCl2, 10 mM Tris, pH 7.5) and then
harvested at 800 	 g for 1 min at 4°C. Spheroplasted cells were resuspended in
1 ml of STC buffer at 4°C.

(ii) Prion particle preparation. [PRION�] and [prion�] cells were grown to an
OD600 of �0.5 and harvested. Cell pellets were washed successively with 10 ml
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of water, 10 ml of 1 M sorbitol, and 1 ml of SCE buffer. Cells were resuspended
in 600 �l of SCE buffer (containing 1 mM phenylmethylsulfonyl fluoride and
protease inhibitor cocktail [Sigma Chemical Co.]) and lysed with 300 �l of
sterilized glass beads by vortexing 10 times for 10 s each at 4°C. The crude lysate
was centrifuged twice at 4°C for 5 min at 800 	 g and 1,000 	 g. The protein
concentration of the supernatant was determined with the Bio-Rad protein assay
reagent (Bio-Rad Laboratories). The protein lysate was sonicated three times for
10 s each time prior to transformation (Sonic Dismembrator; Fisher Scientific).

(iii) Transformation procedure. The transformation mixture contained 5 �l of
pRS316 DNA (�300 ng/�l), �300 �g of sonicated protein lysate, 10 �l of carrier
DNA (10 mg/ml), 150 �l of spheroplasted cells, and 5 volumes of PEG 8000
buffer (20% [wt/vol] PEG 8000, 10 mM CaCl2, 10 mM Tris, pH 7.5) and was
incubated for 45 min at 25°C. The transformation mixture was harvested at 1,000 	
g and resuspended in 150 �l of SOS buffer (1 M sorbitol, 7 mM CaCl2, 0.25%
yeast extract, and 0.5% Bacto peptone supplemented with 0.3 mg of all of the
amino acids in which the yeast strain is deficient) and incubated for 30 min at
30°C. The SOS-cell mixture was plated on SD-ura/sorbitol plates (16.4% sorbitol,
3% glucose, 2% agar, complete supplement mixture without uracil, 0.67% yeast
nitrogen base without amino acids) overlaid with top agar (1.2 M sorbitol, 2.5%
agar, 2% glucose, complete supplement mixture without uracil, 0.67% yeast
nitrogen base without amino acids). The plates were incubated at 30°C for 5 days.
Transformants were spotted onto YPD, SD-ade, and 3 mM GdHCl media to
score the colonies for the prion state.

RESULTS

Chimeric Sup35-PrP proteins form prions. To test the ef-
fects of the repeat expansion of PrP in a genetically tractable
system, we expressed SUP35-PrP chimeras in yeast (Fig. 1). We
replaced the ORD of Sup35p with the wild-type number of 5
PrP repeats and an expanded length of 14 PrP repeats (Fig.
1A). The chimeric molecules, termed SP5 (for Sup35-PrP 5
repeats) and SP14 (for Sup35-PrP 14 repeats), replaced the
wild type by plasmid shuffle and were expressed as the only
copy of SUP35. Since SUP35 is essential in yeast, this approach
allowed us to evaluate the functionality of the chimeras in the
absence of wild-type Sup35p. The expression of the chimeric
proteins was similar to endogenous Sup35 protein levels, as
determined by Western blotting (Fig. 1B). A control plasmid
with wild-type SUP35 (termed pSup35) was generated and
used to ensure that the episomal expression of Sup35p mim-
icked that of chromosomal Sup35p.

To test if the chimeric proteins could propagate the prion
state, each chimera was introduced into a [PSI�] strain. The
strain contains the ade1-14 allele, which harbors a premature
stop codon that is read through in [PSI�] cells, thereby pro-
ducing full-length, functional Ade1p. Thus, [PSI�] cells with
the ade1-14 allele are adenine prototrophs and appear as light
pink colonies on a rich medium (YPD). In contrast, in [psi�]
cells, Sup35p is soluble and functional and therefore faithfully
terminates translation. As such, [psi�] cells that harbor the

FIG. 1. Chimeric Sup35-PrP proteins demonstrate yeast prion
properties. (A) Schematic depiction of Sup35p and PrP highlighting
the consensus sequence of each ORD. PrP(PG14) contains nine ad-
ditional repeats. The chimeric Sup35-PrP protein (SP14) is also shown.
Numbers below the diagrams represent Sup35p amino acids, and those
above correspond to PrP. (B) Lysates from cells containing the
Sup35p, SP5, and SP14 proteins were analyzed by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis and Western blotting to de-
termine relative chimeric Sup35 protein levels. The blot was reprobed
with antibodies to Pgk1p to confirm equal protein loading. (C) Strong
(s) [PSI�] strain variant, weak (w) [PSI�] strain variant, [psi�], plas-
mid-borne SUP35-supported [PSI�] (pSup35[PSI�]), [SP5�], and
[SP14�] cells were spotted onto YPD and SD-ade media. GdHCl-
cured cells were subsequently spotted onto YPD (post GdHCl).

(D) Cell lysates of the chimeras were subjected to ultracentrifugation,
and the chimeric proteins in the total (T), supernatant (S), and pellet
(P) fractions were analyzed by Western blotting. (E) [SP5�], [sp5�],
[SP14�], and [sp14�] cells expressing the corresponding PFD-GFP
constructs were analyzed by fluorescence microscopy. (F) Prion parti-
cles isolated from [SP5�] and [SP14�] cells can convert [prion�] cells.
Protein harvested from [sp5�] or [sp14�] cells was transformed into
[sp5�] or [sp14�] cells, respectively (top, [prion�]3 [prion�]). Protein
harvested from [SP5�] or [SP14�] cells was transformed into [sp5�] or
[sp14�] cells, respectively (bottom three lines, [PRION�] 3 [prion�]).
Individual isolates were spotted onto YPD and SD-ade, cured on YPD
with 3 mM GdHCl, and subsequently spotted onto YPD (post GdHCl).
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ade1-14 allele are adenine auxotrophs and colonies appear red
on YPD. If SP5 or SP14 protein is able to propagate the prion
state, then cells containing these chimeric proteins will display
a nonsense suppression phenotype in the absence of wild-type
Sup35p and remain pink on YPD. Both SP5- and SP14-con-
taining cells remained pink on YPD and grew on SD-ade
medium after replacement of wild-type Sup35p in a [PSI�]
strain (Fig. 1C), suggesting that these chimeric proteins main-
tain the prion phenotype. We refer to the prion states of SP5
and SP14 as [SP5�] and [SP14�], respectively. To determine if
the [SP5�] and [SP14�] phenotypes could be eliminated
(cured) in a manner similar to that of [PSI�], the cells were
grown on YPD medium containing 3 mM GdHCl. The [SP5�]
and [SP14�] cells became red after growth on medium con-
taining GdHCl (Fig. 1C) and could no longer grow on SD-ade
medium (data not shown). Moreover, when the chimeras were
assessed as the only copy of SUP35 in a [psi�] strain, the cells
remained red and could not grow on SD-ade medium (data not
shown), demonstrating that both chimeras are functional in
translation termination. Since the PrP repeat expansion con-
sisting of 14 PrP repeats is pathogenic in humans, we asked if
other pathogenic PrP ORD insertions could maintain prion
properties in chimeras. Chimeras containing 8 and 11 PrP
repeats were created and assayed. These chimeras also be-
haved phenotypically, biochemically, and genetically as yeast
prions (data not shown). Since all of the chimeras were able to
maintain the prion state, we analyzed SP5 and SP14 further to
determine the effects of repeat expansions on prion properties.

The [SP14�] cells displayed more robust growth on SD-ade
medium and a lighter pink colony color on YPD in comparison
to [SP5�] cells (Fig. 1C). This suggests that the repeat-ex-
panded SP14 protein maintains a stronger prion than SP5.
Interestingly, cells with wild-type SUP35 can harbor strain vari-
ants of the [PSI�] prion that display heritable differences in the
strength of nonsense suppression without any alteration in
amino acid sequence (21). These changes in nonsense suppres-
sion can be phenotypically distinguished in yeast cells harbor-
ing the ade1-14 allele as different shades of pink on YPD and
different growth rates on SD-ade medium (Fig. 1C) (50). The
differences in nonsense suppression between [SP5�] and
[SP14�] cells suggest that the chimeras are propagating struc-
turally distinct prion strain variants.

The aggregation and resulting insolubility of Sup35p are
defining characteristics of the [PSI�] prion state (48). To ex-
amine if the chimeric [SP5�] and [SP14�] prion phenotypes
are associated with insoluble protein aggregates, we subjected
lysates from [SP5�], [sp5�], [SP14�], and [sp14�] cells to ul-
tracentrifugation to determine the fractionation pattern of the
chimeric proteins. [SP5�] cells contained chimeric protein in
both the supernatant and pellet fractions, while [sp5�] cells
had most the protein in the supernatant (Fig. 1D). The pres-
ence of soluble protein in the [SP5�] prion cells was not un-
expected, given the weak nonsense suppression phenotype ob-
served (Fig. 1C). Lysate from [SP14�] cells, however, showed
all of the chimeric protein in the pellet fraction, consistent with
the stronger nonsense suppression phenotype, and lysate from
[sp14�] cells displayed all of the protein in the supernatant
(Fig. 1D).

To further investigate the aggregation of the chimeric prion
proteins, the cellular distribution of the chimeric proteins was

monitored by GFP fluorescence. An inducible PFD-GFP con-
struct specific for each repeat region (SP5-PFD-GFP or SP14-
PFD-GFP) was expressed in the corresponding [PRION�] and
isogenic [prion�] cells. Cells containing [SP5�] prions displayed
aggregates and diffuse background fluorescence, whereas [sp5�]
cells showed only diffuse fluorescence (Fig. 1E). [SP14�] cells
showed primarily a punctate fluorescence pattern, whereas
[sp14�] cells displayed diffuse fluorescence. Taken together, these
data demonstrate that the chimeric proteins assume an aggre-
gated state in cells displaying a nonsense suppressor phenotype
and both traits are reversed by curing.

In order to further demonstrate the prion nature of the SP5
and SP14 chimeras, we conducted protein transformations (25,
43). Protein harvested from [SP5�] and [SP14�] strains was
transformed into [sp5�] and [sp14�] cells, respectively. As ex-
pected, protein obtained from [PRION�] cells, but not [prion�]
cells, was able to convert [prion�] cells to the prion state (Fig.
1F). Together, these results demonstrate that the SP5 and
SP14 chimeras behave as yeast prions.

Chimeric prions display enhanced instability. To determine
the mitotic stability of the chimeric prions, [SP5�], [SP14�],
and [PSI�] cells were plated on YPD and the colonies were
scored as solid red, pink, or sectoring. Wild-type strong (s)
[PSI�] cells never displayed sectoring colonies, and less than
0.02% of the colonies spontaneously appeared red (Table 1).
In contrast, approximately 85% of both [SP5�] and [SP14�]
colonies sectored. This suggests that the heritable stability of
the chimeric prions is much lower than that observed with
[PSI�] cells. Since the ORD of PrP is known to bind copper
(33), we tested whether the addition of copper to the medium
influenced mitotic stability and found no change (data not
shown). A striking difference between [SP5�] and [SP14�]
cells was noted when the nonsectoring populations of cells
were analyzed (Table 1). All nonsectoring [SP5�] colonies
were red, indicating loss of the prion state. In contrast, most of
the nonsectoring population of [SP14�] colonies was light
pink, indicating maintenance of the prion state. Thus, although
the SP5 protein propagates as a prion, the maintenance of the
prion state is enhanced with the repeat expansion.

[SP14�] prions display epigenetic inheritance and strain
variants. A hallmark of yeast prions is dominant, epigenetic
transmission of the prion phenotype (48). In a cross between
[psi�] and [PSI�] cells, the [PSI�] state is dominant in the
diploid and when sporulated, all four meiotic progeny display
the prion phenotype. To determine if the [SP14�] prion phe-
notype could be inherited in an epigenetic manner, [SP14�]
cells were crossed to [sp14�] cells. The resulting diploid dis-
played the nonsense suppression phenotype, as did all meiotic
progeny (Fig. 2A). Moreover, [SP14�] cells were also able to
convert [sp5�] cells to [SP5�] in a cross between heterologous

TABLE 1. Mitotic stability of the 
PRION�� state in the chimeras

Cell type Avg % of sectoring
colonies � SD

Avg % of nonsectoring
colonies � SD

Red Pink

s 
PSI�� 0 0.02 �99.98

SP5�� 85.7 � 3.8 14.2 � 3.8 0

SP14�� 84.1 � 4.8 1.8 � 3.1 14.1 � 2.6
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strains (data not shown). These results demonstrate that
[SP14�] does indeed behave as a prion genetically. To deter-
mine if [SP14�] could transmit the prion phenotype to wild-
type Sup35p, [SP14�] cells were crossed to [psi�] cells. The
resulting diploid and meiotic progeny were analyzed for the
prion phenotype. [SP14�] cells, [psi�] cells and SP14/SUP35
diploid cells were spotted onto YPD and SD-ade media to
assess nonsense suppression (Fig. 2B). The SP14/SUP35
[PRION�] diploid grew on SD-ade medium but displayed both
pink and red colonies on YPD, suggesting inefficient inheri-
tance of the nonsense suppression phenotype. Tetrads from
the SP14/SUP35 [PRION�] diploid were spotted onto YPD
and SD-ade media to assess inheritance of the prion phenotype

in the progeny. The tetrads were also spotted onto selective
medium to follow the 2:2 segregation of the sup35 deletion and
the presence of SP14. Spores expressing SP14 protein dis-
played phenotypic variability, as shown in the example tetrad
(Fig. 2B): one light pink colony and one dark pink colony
(YPD). The light pink SP14 colony grew better on SD-ade
medium than the dark pink colony. Spores containing wild-
type SUP35 also inherited the prion phenotype but showed a
high degree of instability, as both pink and red colonies were
seen on YPD. The loss of nonsense suppression in the progeny
expressing wild-type Sup35p suggests inefficient templating of
the [SP14�] prion structure onto the Sup35 protein. However,
once a single pink colony containing wild-type Sup35p was
purified by restreaking, a stable [PSI�]-dependent nonsense
suppression phenotype was established (data not shown). Dif-
ferent strengths of nonsense suppression in [PSI�] cells are
observed in prion strain variants (Fig. 1C, top two rows). The
SP14-containing progeny displayed differential nonsense sup-
pression phenotypes, suggesting that the SP14 protein propa-
gates distinct strain variants in [SP14�] cells.

Strain variants of [SP14�] show a distinct change in mitotic
stability. Weak [PSI�] strain variants are mitotically unstable
in comparison to strong [PSI�] strain variants (21, 26). To
explore the possibility that [SP14�] meiotic progeny shared
this characteristic of prion strain variants, we examined the
mitotic stability of the chimeric prions in the SP14 progeny.
SP14-containing progeny displaying a strong and a weak non-
sense suppression phenotype, in addition to the original
[SP14�] isolate, were analyzed for prion loss (the appearance
of red colonies). Cells were plated on YPD, and the number of
solid red colonies was scored as a percentage of the total. The
weak [SP14�] strain variant had almost a 20-fold higher prion
loss compared to the strong strain variant (Fig. 2C). These data
show that the weak [SP14�] strain variant displaying less non-
sense suppression is mitotically less stable than the strong
[SP14�] strain variant.

Since strain variants of [PSI�] and PrPSc are due to struc-
turally distinct aggregates (15, 28, 44), we hypothesized that
weak and strong yeast prion strain variants might show differ-
ential transmission of their respective structures onto soluble
proteins with different amino acid sequences. Therefore, we
tested whether each isolated strain variant could transmit its
prion state to soluble wild-type Sup35p or soluble SP14 pro-
tein. Strong and weak [PSI�] cells were mated to [psi�] and
[sp14�] cells. Diploids were obtained, and tetrads were dis-
sected. As expected, analysis of the tetrads showed that both
strong (s) and weak (w) [PSI�] could transmit to [psi�] and
convert Sup35p to [PSI�] (Table 2). However, only strong
[PSI�] could transmit prion properties to [sp14�] to generate
[SP14�] cells. The capacity of strong [PSI�], but not weak
[PSI�], to propagate the prion structure in SP14-containing
cells provides additional genetic evidence for the structural
difference between wild-type [PSI�] strain variants. Similarly,
to examine the transmission of the [SP14�] variants, strong (s)
and weak (w) variants were crossed to [psi�] and [sp14�] cells.
Analysis of the tetrads demonstrated that two independent
strong [SP14�] variants could efficiently transmit the prion
structure to either [psi�] or [sp14�] cells (Table 2). In contrast,
two independent weak [SP14�] strain variants could transmit
the prion state to [sp14�] cells but could not transmit the prion

FIG. 2. [SP14�] prions display non-Mendelian inheritance and mi-
totic instability. (A) A representative tetrad from a cross of [SP14�] to
[sp14�] illustrated epigenetic inheritance of the prion phenotype.
(B) [SP14�], weak (w) [PSI�], [psi�], an SP14/SUP35 [PRION�] dip-
loid (containing one copy of SP14 and one copy of SUP35), and a
tetrad from the SP14/SUP35 [PRION�] diploid were spotted onto
YPD and SD-ade media. The relative strength of nonsense suppres-
sion in the progeny is described as strong (s), medium (m), or weak
(w). The SUP35 allele expressed in the progeny is indicated parenthet-
ically. (C) The original isolate of [SP14�] and phenotypically weak and
strong [SP14�] variants were plated on YPD and analyzed for prion
loss (red colonies). Prion loss was calculated as the change compared
to the most stable [SP14�] variant.
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state to wild-type [psi�] cells. Thus, weak variants of either
[PSI�] or [SP14�] cells were unable to transmit the prion
structure to proteins containing amino acid sequence differ-
ences; however, both were able to transmit the prion structure
to proteins with identical sequences. These results suggest that
the aggregate structures of strong and weak [SP14�] prion
variants are different from one another.

[SP5�] and [SP14�] cells contain large protein aggregates.
Changes in mitotic stability of [PSI�] have been previously
correlated to increased aggregate size (4, 5, 29). To investigate
if the decreased mitotic stability of the chimeric prions might
result from different aggregate sizes, we performed SDD-AGE
and detected Sup35p by Western blotting. The aggregated
Sup35p from [PSI�] cells migrates as a large smear (Fig. 3A),
whereas Sup35p from [psi�] cells is monomeric and appears as
a faster-migrating band (29). Aggregates of Sup35p from weak
[PSI�] strain variants typically display a larger smear than
aggregates isolated from strong [PSI�] variants (Fig. 3A) (29).
The chimeric protein from [SP5�] and [SP14�] cells showed
much larger smears of protein and a broader range of sizes in
comparison to Sup35p from [PSI�] strain variants (Fig. 3A).
Interestingly, protein from weak and strong [SP14�] strain
variants showed the same large aggregates as seen in [SP5�] and
[SP14�] cells. These data suggest that the prion protein aggre-
gates contained in [SP5�] and [SP14�] cells differ from those in
weak or strong [PSI�] cells and the large aggregates may contrib-
ute to the decreased mitotic stability of the chimeras.

Hsp104p overexpression stabilizes the [SP14�] prion phe-
notype. Hsp104p is required for the propagation of the [PSI�]
prion (10) and is hypothesized to break up Sup35p aggregates
in [PSI�] cells to facilitate the propagation and inheritance of
the prion into daughter cells through mitosis (reviewed in
reference 47). If the endogenous level of Hsp104p is insuffi-
cient to perform this function on the large aggregates of the
chimeric proteins, then this could contribute to the observed
mitotic instability (4, 5, 29). Deletion of HSP104 in the chime-
ras cured the prion phenotype (data not shown), indicating
that Hsp104p is required for chimeric prion maintenance.
Therefore, we investigated whether the overexpression of
Hsp104p would affect their propagation. As expected, overex-
pression of Hsp104p had a curing effect on wild-type [PSI�]
cells (Fig. 3B, upper right) (10). However, the overexpression
of Hsp104p in [SP14�] cells produced primarily pink colonies
(Fig. 3B, lower right). The phenotypic instability in [SP14�]
cells remained in the empty-vector control, as evident by the
frequent appearance of red colonies (Fig. 3B, lower left).

Hence, in contrast to its curing effect on wild-type [PSI�] cells,
Hsp104p overexpression stabilized the [SP14�] prion pheno-
type. Therefore, we asked if the [SP14�] aggregates were dra-
matically altered by the overexpression of Hsp104p. Protein
from [SP14�] cells subjected to overexpression of Hsp104p was
analyzed by SDD-AGE and Western blotting (Fig. 3C). Nei-
ther the size nor the range of the aggregates from [SP14�] cells
changed following the overexpression of Hsp104p. However,
the amount of monomeric protein was decreased in the pres-
ence of excess Hsp104p. Taken together, these data suggest
that the overexpression of Hsp104p stabilizes the [SP14�] phe-
notype without changing the size of the observable protein
aggregates. Given the broad range of aggregate sizes and the
ability of SP14 to maintain multiple independent structures in
a cell, we hypothesize that the stabilization of the [SP14�]
prion could occur because Hsp104p is disaggregating the more
unstable aggregates in the [SP14�] prion population (47). In-
deed, it remains unclear how these aggregates observed by
SDD-AGE relate to the prion phenotype.

FIG. 3. [SP14�] contains large aggregates which are unaffected by
prion stabilization. (A) Protein aggregates and monomeric Sup35p
from wild-type [PSI�] (strong [s] and weak [w]) and [SP5�] and
[SP14�] (original isolate, weak and strong) strains were separated by
SDD-AGE and detected by Western blotting. (B) Wild-type [PSI�]
and [SP14�] cells with and without the overexpression (OE) of
Hsp104p plated on YPD. (C) Protein aggregates and soluble protein
(monomer) from lysates of [SP14�] cells with (�) or without (�)
Hsp104p overexpression were separated by SDD-AGE and detected
by Western blotting.

TABLE 2. Meiotic transmission of 
SP14�� strain variants

Cell type Growth on
SD-adeb

Transmission to

psi��

Transmission to

sp14��

s 
PSI�� ���� Yes Yesa

w 
PSI�� � Yes Noa

s 
SP14�� v1 ���� Yes Yes
s 
SP14�� v2 ���� Yes Yes
w 
SP14�� v1 �� No Yes
w 
SP14�� v2 �� Rare Yes

a Weak 
PSI�� and strong 
PSI�� also show this difference in transmission to

sp5��.

b ����, very good; ��, good; �, fair.
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[SP14�] strain variants interconvert readily. Our genetic
analysis suggests that strain variants of the chimeric [SP14�]
prions behave similarly to wild-type [PSI�] strain variants.
Prion strain variants that occur with wild-type Sup35p rarely
interconvert (26). However, we observed that [SP14�] strain
variants frequently interconvert between strong and weak non-
sense suppression phenotypes (Fig. 4A). Interconversion was
detected by plating a [SP14�] culture on YPD and subse-
quently restreaking isolated colonies. Individual colonies were
determined to be strong or weak phenotypically on the basis of
colony color (Fig. 4A, first streak). An individual weak or
strong [SP14�] colony was selected, resuspended in liquid me-
dium, and plated on YPD. Colonies that started as one phe-
notype did not maintain the same phenotype in all mitotic
progeny (Fig. 4A, second streak). This suggests that not only

does the SP14 protein display multiple prion strain variants,
but an individual colony potentially contains more than one
self-propagating structure.

Alternatively, the interconversion of the [SP14�] variants
could suggest that the prion conformation of SP14 protein may
be lost and then reacquired frequently. To determine if this
was the case, we tested if the spontaneous conversion of
[sp14�] to the prion state was enhanced in comparison to the
conversion of [sp5�] or [psi�]. The spontaneous conversion of
both chimeras and [psi�] to their respective [PRION�] states
occurred at about the same rate (�1 in 105 cells). Thus, if there
is increased conformational flexibility in the SP14 protein due to
the repeat expansion, it does not enhance the de novo appearance
of the prion state. Intriguingly, this result differed from that of the
wild-type Sup35p repeat expansion in which a dramatic increase
in frequency of prion conversion was observed (31).

Given this difference, we set out to explore extragenic fac-
tors that may play a role in conversion frequency. It is now
known that another epigenetic element, [RNQ�], influences
the induction of Sup35p into the prion state (18, 20, 37) but is
not necessary for continued propagation of [PSI�] (20). We
determined that the [RNQ�] prion was not required for con-
tinued propagation of the chimeric prions [SP5�] and [SP14�]
by expressing the chimeras in a �rnq1 strain (data not shown).
Since we initially assessed spontaneous conversion in cells that
were [rnq�] (Fig. 4B), we examined the impact of the [RNQ�]
prion on the spontaneous conversion of the chimeric proteins.
Unlike the induction of [PSI�], which is enhanced by [RNQ�]
(20), we found that the spontaneous conversion of [psi�] to
[PSI�] is not affected by [RNQ�] (�1 in 105 cells in both [rnq�]
and [RNQ�] cells). However, the spontaneous conversion of
[sp5�] [RNQ�] and [sp14�] [RNQ�] cells to the [PRION�]
state was markedly enhanced (Fig. 4C). Strikingly, cells con-
taining the SP14 protein converted to [SP14�] more frequently
(�3 	 10�1) than cells containing the SP5 protein converted to
[SP5�] (�6 	 10�2). This suggests that the repeat expansion
does influence the spontaneous prion conversion of the chi-
meric protein, but only in the presence of another aggregate,
[RNQ�].

Expanded PrP repeats can replace the Sup35p PFD. We
observed that the expanded repeat domain in SP14 enables the
protein to initiate and propagate many structural conforma-
tions, thereby suggesting that the repeat expansion confers
enhanced structural flexibility to PrP. Both the PFD of Sup35p
and the N terminus of PrP, including the ORD, are highly
unstructured regions (42, 51). The Q/N-rich character of the
extreme N terminus of Sup35p has been shown to be critical
for the maintenance of [PSI�] (17). Our initial chimeras char-
acterized retained the Q/N-rich region of the N terminus of
Sup35p. Since the SP14 results suggested enhanced conforma-
tional flexibility, we asked if the 14-PrP repeats could also
replace the essential N-terminal portion of the Sup35p PFD.
Therefore, we created a new chimera termed P14MC (PrP 14
repeats fused to the middle [M] and carboxy-terminal [C] do-
mains of Sup35p) and expressed it in yeast as the sole copy of
Sup35p by the plasmid shuffle approach. The expression of
P14MC protein was similar to endogenous Sup35p levels (data
not shown). Cells expressing the P14MC protein were analyzed
for the maintenance and propagation of the prion state. Strong
[PSI�], weak [PSI�] and [psi�] cells, as well as cells expressing

FIG. 4. [SP14�] variants show frequent interconversion and higher
spontaneous conversion in a [RNQ�]-dependent manner. (A) [SP14�]
cells were plated on YPD (1st streak). A single strong [SP14�] variant
and a single weak variant were isolated (as indicated by the arrows)
and replated on YPD (2nd streak) to analyze variant stability. (B) Red
colonies expressing SP5 and SP14 in [rnq�] cells remained red on YPD
and were stable as [prion�]. (C) Red colonies expressing SP5 and SP14
in [RNQ�] cells gave rise to pink colonies and frequently converted to
[PRION�].
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P14MC protein in the prion state, [P14MC�], and nonprion
state, [p14MC�], were grown on YPD, SD-ade, and medium
containing GdHCl to assess nonsense suppression and curing
(Fig. 5A). [P14MC�] cells were pink on YPD and grew well on

SD-ade medium, suggesting that the protein maintains the
nonsense suppression phenotype in the prion state. Con-
versely, [p14MC�] cells were red on YPD and could not grow
on SD-ade medium, suggesting that the protein is functional in
the nonprion state.

We next analyzed the biochemical properties of the P14MC
protein. Cell lysates were subjected to ultracentrifugation to
determine the aggregation state of the protein in [P14MC�]
and [p14MC�] cells. Most of the protein from [P14MC�] cells
was present in the pellet fraction, whereas that from [p14MC�]
cells was in the supernatant (Fig. 5B). Thus, the nonsense
suppression phenotype observed in the [P14MC�] cells corre-
lates with the aggregation of the P14MC protein. In addition,
curing [P14MC�] cells concomitantly resolubilized the protein
and reversed the nonsense suppression phenotype (Fig. 5A
and B). In agreement with the sedimentation results, expres-
sion of SP14-PFD-GFP showed a distinct punctate fluores-
cence pattern in [P14MC�] cells and diffuse fluorescence in
[p14MC�] cells (Fig. 5C). To further examine the aggregates,
chimeric Sup35p from [P14MC�] lysate was analyzed by SDD-
AGE and Western blotting. Protein aggregates from
[P14MC�] cells were larger than those from wild-type strong or
weak [PSI�] cells (Fig. 5D) and resembled aggregates from
[SP5�] and [SP14�] cells (Fig. 3A). Furthermore, this assay
demonstrated that [p14MC�] cells contain only monomeric
P14MC protein. These results suggest that the P14MC protein
biochemically behaves as a prion.

Next, we determined if the [P14MC�] prion aggregates
could be inherited in an epigenetic manner, as is characteristic
of yeast prions. We mated [P14MC�] cells to [psi�] (data not
shown), [p14MC�], [sp14�], or [sp5�] cells, obtained diploids,
and dissected tetrads. The meiotic progeny all showed a 4:0
nonsense suppression phenotype, indicating that the
[P14MC�] prion was transmitted in an epigenetic fashion to
the chimeras (Fig. 5E) but displayed a slightly weaker non-
sense suppression phenotype than [SP14�] (Fig. 5E; also com-
pare SD-ade panels in Fig. 1C and 5A). In addition, protein
obtained from [P14MC�] cells converted [p14MC�] cells to
[P14MC�] after protein transformation (data not shown). We
also examined if the lack of the Q/N region in the P14MC
protein affected the stability of the [P14MC�] prion in com-
parison to [SP14�] cells (Fig. 5F). [P14MC�] cells plated on
YPD displayed both red and sectoring colonies, suggesting that
the change in the context of the 14-PrP repeats did not alter
the stability of the chimeric prion, as [SP14�] cells also showed
red and sectoring colonies (Table 1). Taken together, these
results indicate that 14-PrP repeats can replace both the N-
terminal Q/N region and the ORD of Sup35p and still main-
tain prion competence. While the PFD of wild-type Sup35p
has a striking 44% Q/N content, the prion-competent P14MC
PFD contains only 18% Q/N. This suggests that the structural
requirements for a yeast prion protein are not limited by a
critical percentage of Q/N residues and that there may be other
ways to achieve the structural flexibility required for yeast
prion propagation.

DISCUSSION

Here, we describe a novel model system using a chimeric
yeast-mammalian prion to evaluate the functionality of the PrP

FIG. 5. PrP repeat expansion maintains prion competence in the
absence of the Q/N region of Sup35p. (A) Strong (s) [PSI�] and weak
(w) [PSI�], [psi�], and P14MC in [P14MC�] and [p14MC�] cells were
spotted onto YPD and SD-ade media. GdHCl-cured cells were sub-
sequently spotted onto YPD (post GdHCl). (B) Lysates from
[P14MC�] and [p14MC�] cells were subjected to ultracentrifugation,
and the total (T), supernatant (S), and pellet (P) fractions were ana-
lyzed by Western blotting. (C) Fluorescence microscopy of SP14-PFD-
GFP expressed in [P14MC�] and [p14MC�] cells. (D) Cell lysates from
wild-type (wt) strong [PSI�] and weak [PSI�] and strains with a
P14MC chimera in either the [P14MC�] or the [p14MC�] state were
analyzed by SDD-AGE and Western blotting. (E) A [P14MC�] strain
was crossed to [p14MC�], [sp14�], and [sp5�] strains. Tetrads dis-
sected from the resulting diploids are shown. (F) [P14MC�] cells
struck onto YPD generated colonies that maintained stable [P14MC�]
(pink), colonies that completely lost the prion (red), and colonies that
frequently lost the prion (sectored).
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repeats in the context of the yeast prion protein Sup35p. Pre-
cise replacement of the entire repeat domain of Sup35p with
the PrP ORD resulted in a tractable system to evaluate the
effect of the PrP repeat expansion. The wild-type number of
PrP repeats and all ORD expansions in the Sup35p-PrP chi-
meras behaved phenotypically, biochemically, and genetically
as prions, although the PrP repeats did confer unique charac-
teristics on the resulting prions. SP14 displayed a stronger
prion phenotype in comparison to SP5, suggesting that the
addition of octapeptide repeats allowed for a more stable self-
replicating structure. This resembles what is seen in human
patients with PrP repeat expansions, considering that the re-
peat expansion is associated with aggregation and spontaneous
development of prion disease (16). The 14-PrP repeats also
facilitated the establishment and propagation of prion strain
variants, as indicated by differences in phenotype, mitotic sta-
bility, and prion transmission. Furthermore, in the presence of
[RNQ�], SP14 converted into the prion form more readily than
SP5. Strikingly, the 14-PrP repeats replaced the Q/N-rich re-
gion and the repeat region of Sup35p and maintained prion
properties. Our data suggest that the PrP repeat expansion can
influence prion conversion and enhance the formation of mul-
tiple aggregate structures.

Strain variants of both yeast prions and PrPSc are believed to
be composed of structurally unique self-propagating aggre-
gates (15, 25, 28, 43). Although conformationally distinct vari-
ants have been associated with PrPSc strains (2, 3), they have
not been associated with inherited PrP mutations. The pheno-
typic variability associated with some pathogenic point muta-
tions in PrP has been attributed to changes in glycoform ratio,
but this did not correlate with the repeat expansion mutations
(23). We suggest that the phenotypic variability observed in
inherited repeat expansion prion diseases could result, in part,
from differences in the structures acquired by the mutant pro-
tein.

Our data show that the repeat-expanded chimera displays
phenotypic variation reminiscent of prion strains. The pheno-
typically distinct [SP14�] strain variants exhibited different mi-
totic stabilities (Fig. 2C) and differential transmission to im-
perfect prion protein sequences (Table 2). Taken together,
these data suggest that the prions within these variants possess
unique characteristics that might be structural, although the
nature of the structural differences could not be elucidated. To
date, the precise nature of the structural differences in mam-
malian and yeast prion strain variants also has not been de-
scribed. A unique feature of the [SP14�] strain variants was
their enhanced ability to interconvert. Strong variants could
spontaneously give rise to weak variants, and vice versa (Fig.
4A). This observation suggests that the SP14 protein is not
entirely committed to one particular prion conformation.
There are two possibilities of how the interconversion could
arise. First, the [SP14�] cells could maintain multiple struc-
tures and distinct phenotypes emerge when they separate and
multiply (upon restreaking). The phenotype observed in one
colony need not indicate structural homogeneity of the chi-
meric protein, but rather the colony might only show the phe-
notype of the dominant structure. Second, the SP14 protein
may spontaneously create new prion aggregates when the
prion state is lost, and these need not be the same strain
variant. The influence of [RNQ�] could then contribute to

interconversion via reacquisition. In the absence of the
[RNQ�] prion, the [sp5�] and the [sp14�] cells did not spon-
taneously convert to the [PRION�] state more readily than
[psi�] converts to [PSI�] (Fig. 4B). However, in the presence
of [RNQ�], the spontaneous conversion of the chimeric pro-
teins was greatly enhanced (Fig. 4C). This result is similar to
that obtained with the Sup35p repeat expansion, which also
had a higher frequency of spontaneous conversion in compar-
ison to wild-type Sup35p (31). We have found that the previ-
ously described Sup35p repeat expansion (31) also converted
more frequently to [PSI�] only in the presence of the [RNQ�]
prion (E. M. H. Tank and H. L. True, unpublished data).

In vitro studies suggest that the repeat expansion in PrP
decreases the lag phase of amyloid formation (34) and in-
creases the accessibility of the N terminus of the mutant pro-
tein (53), thereby allowing a quicker conformational change
into a pathogenic state. Our in vivo model indicates that the
spontaneous conversion of the repeat expansion protein to an
aggregated state need not be the sole mechanism whereby
these mutations affect structure and, ultimately, disease. In-
stead, the repertoire of conformations achieved by the 14-PrP
repeat chimeric protein appeared to be increased. However, in
the presence of an additional aggregate, the conversion rate of
SP14 was considerably enhanced. Therefore, other misfolded
proteins may act as a potential source for initiating a confor-
mational change in the repeat-expanded PrP mutants ex-
pressed in the brain. The ORD expansion proteins may inter-
act with other preexisting aggregates to foster a change in
conformation or create a high local concentration of the mu-
tant protein which then aggregates.

Our model provides a possible explanation for the behavior
of PrP repeat expansions and their propensity not only to cause
disease but to contribute to the large degree of phenotypic
variability observed in patients. Our data suggest that addi-
tional repeats in PrP may allow the formation of multiple
unique aggregate conformations that could propagate in dif-
ferent tissues at different rates. In addition, if multiple aggre-
gate structures are present in expanded PrP repeat diseases,
then this could offer an explanation as to why infectious ag-
gregate structures may also be produced in some cases (7) but
not others (8, 14, 45). When we investigated the interaction
between SP5 and SP14 by analyzing strains expressing both
chimeras, indeed, we did observe a wide range of phenotypes
(data not shown). Previous analyses of repeat expansion mu-
tants isolated from human brain tissue demonstrated coaggre-
gation with wild-type PrP, suggesting that phenotypic variabil-
ity might be explained by the extent of this association (9). We
suggest that differential association of mutant and wild-type
PrP might be a consequence of different structures of the
repeat expansion-containing PrP. Thus, while other genetic
modifiers may play a role in disease variability, at least some
of the phenotypic variability observed with PrP repeat ex-
pansion diseases may be based on intragenic features of the
mutant.
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