

NIH Public Access

Author Manuscript

Bioorg Med Chem Lett. Author manuscript; available in PMC 2008 May 15.

Published in final edited form as: Bioorg Med Chem Lett. 2007 May 15; 17(10): 2894–2898.

Antitumor Agents. 256. Conjugation of Paclitaxel with Other Antitumor Agents: Evaluation of Novel Conjugates as Cytotoxic Agents

Kyoko Nakagawa-Goto^a, Seikou Nakamura^a, Kenneth F. Bastow^b, Alexander Nyarko^a, Chieh-Yu Peng^a, Fang-Yu Lee^C, Fang-Chen Lee^C, and Kuo-Hsiung Lee^{a,*}

a Natural Products Research Laboratories, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA

b Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA

c Yung-Shin Pharmaceutical Co. Ltd., Ta-Chia, Taichung, Taiwan

Abstract

Fifteen different taxoid conjugates were prepared by linking various anticancer compounds, including camptothecin (CPT), epipodophyllotoxin (EP), colchicine (COL), and glycyrrhetinic acid (GA), at the 2'- or 7-position on paclitaxel (TXL, 1) through an ester, imine, amine, or amide bond. Newly synthesized conjugates were evaluated for cytotoxic activity against replication of several human tumor cell lines. Among them, TXL-CPT conjugates, **8–10**, were more potent than TXL itself against the human prostate carcinoma cell line PC-3 (ED₅₀ = 14.8, 3.1, 19.4 nM compared with 55.5 nM), and conjugate **10** was also eightfold more active than TXL against the LN-CAP prostate cancer cell line. These compounds also possessed anti-angiogenesis ability as well as lower inhibitory effects against a normal cell line (MRC-5). Thus, conjugates **8–10** are possible antitumor drug candidates, particularly for prostate cancer.

Keywords

Paclitaxel; Conjugation; Cytotoxity; Prostate cancer

Paclitaxel (TXL, **1**, Figure 1), a plant derived antimitotic agent, $^{1-2}$ is currently in clinical use against ovarian and breast cancer. It promotes the irreversible assembly of tubulin into microtubules by binding to and stabilizing microtubules. This mechanism of action is unique among the established antitumor drugs, including the vinca alkaloids, vincristine and vinblastine, which prevent microtubule assembly by microtubule binding.³ Other natural products, including camptothecin (CPT),⁴ which is approved for clinical use in the United State, epipodophyllotoxin (EP),⁵ and colchicine (COL),⁶ also possess potent antitumor activities with different mechanisms of action³ from TXL. Some EP derivatives, such as etoposide (**2d**), topotecan, and irinotecan, are approved by the FDA for cancer treatment, although their therapeutic use is often limited by undesired side effects, such as myelosuppression, multidrug resistance and poor water solubility. In addition, glycyrrhetinic

^{*}Corresponding author. Tel.: 919-962-0066; fax: 919-966-3893; e-mail address: khlee@unc.edu

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Conjugation of two antitumor agents with different mechanisms of action can possibly augment the potency of both compounds or reduce the side effects and drug-resistance development. We have already reported the unique antitumor activities of such conjugates, including TXL-CPT,⁸ TXL-EP,⁹ and CPT-EP.¹⁰ In our continuous effort to develop new classes of antitumor agents based on TXL, we investigated the syntheses and evaluation of TXL conjugates with the above mentioned antitumor or antitumor-promoter compounds through various linkages at the TXL C-2' and C-7 positions as reported herein.

Newly synthesized conjugates are shown in Figure 2. In conjugates **6–15**, EP, CPT, COL, and GA are connected to the TXL C-2' position through various linkages, while conjugates **16–21** contain EP, COL, and GA connected to the C-7 position of TXL. As shown in Scheme 1, a linking group was introduced directly at the TXL C-2' position using the appropriate anhydride or carboxylic acid to provide **22–25**.¹¹ For the C-7 linked conjugates, the TXL C-2' hydroxyl group was first protected with a Cbz or TBS group, the linking carboxylic acid was added at C-7, and the protecting group was then removed to afford **26–28**. Compounds **22–24**, **26**, and **27** were conjugated with EP derivative **2c**.¹² COL derivatives **4b–d**.¹³ and GA (**5**), respectively, by using EDCI in the presence of DMAP to provide **6**, **7**, **11–13**, **15–17**, and **21**. Heating intermediates **22** and **23** with 7-formyl-CPT (**3b**)¹⁴ in benzene produced the corresponding imines **8** and **10**, respectively. In the same way, imines **14**, **18**, and **20** were prepared from **25** with **4d** and **28** with **2b** or **4d**, respectively. Hydrogenation of **8** and **18** produced the corresponding amines **9** and **19**.

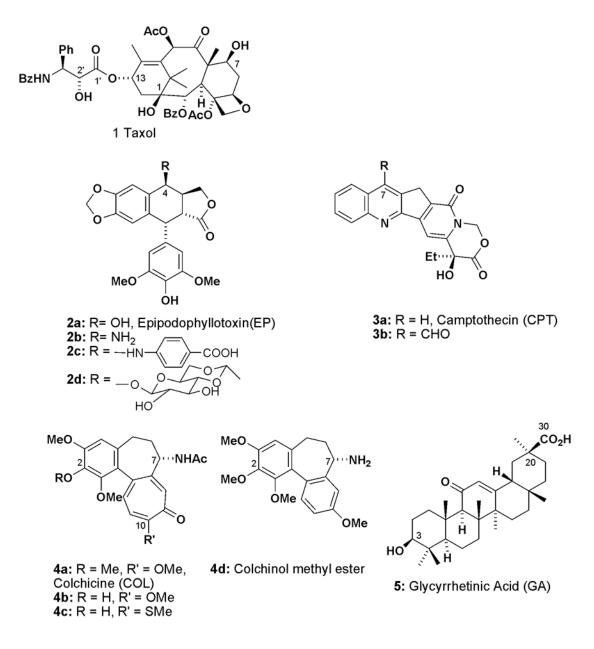
All synthesized compounds were evaluated for cytotoxic activity against replication of several human tumor cell lines, human ovarian carcinoma (1A9), human lung carcinoma (A549), breast cancer (MCF-7), human prostate carcinoma (LN-CAP, PC-3, DU-145), human epidermoid of the nasopharynx (KB), and multi-drug resistant expressing P-glycoprotein (KB-VIN) and against the normal cell line, human embryonic fibroblast (MRC-5). The results are shown in Table 1 with the values for TXL (1), EP derivatives **2b–c**, etoposide (**2d**), CPT (**3a**), 7-formyl-CPT (**3b**), 2-demethyl-COL (**4b**), 2-demthylthio-COL (**4c**), and GA (**5**) for comparison. All conjugated compounds showed better activity than the partner compounds, although most of them were less potent than TXL itself. However, TXL-CPT conjugates **8–10** displayed different patterns of inhibition against the LN-CAP and PC-3 prostate cancer cell lines, with less effect on the normal cell line, MRC-5. Imine **10** had an ED₅₀ value of 0.34 nM and was 7.7-fold more potent than TXL against LN-CAP cells, while compound **9** had an ED₅₀ value of 3.1 nM and was 18-fold more potent than TXL against PC-3 cells.

Cytotoxic activity was somewhat dependant on the conjugated position on TXL as well as the type of linkage. From comparison of the TXL-EP conjugates **6**, **7**, **16**, and **17**, the conjugates linked at the C-2' position (**6**, **7**) showed better activity than conjugates linked at the C-7 position (**16**, **17**) against all cell lines. Moreover, the linkage with two methylenes (**6**, **16**) gave better results than the one with three methylenes (**7**, **17**). However, TXL-COL conjugates **14** (2'-linkage) and **20** (7-linkage) showed similar potency against most cell lines. A phenyl imino linkage was better than the linear amido linkage, as TXL-COL conjugate **14** was four- to nine-fold more potent than **13 a**gainst 1A9, A549, and KB cells.

The results of selected compounds in an anti-angiogenesis assay are shown in Table 2. Compared with the other conjugates, imines **8** and **10** possessed significant activity with ED_{50} values of 0.73 and 0.98 µg/mL, respectively.

In conclusion, we have synthesized fifteen different conjugates between paclitaxel (TXL) and other antitumor agents, including camptothecin (CPT), epipodophyllotoxin (EP), colchicine

Bioorg Med Chem Lett. Author manuscript; available in PMC 2008 May 15.


(COL), and glycyrrhetinic acid (GA). The two components were joined by an ester, imine, amine or amide linkage at the 2'- or 7-position of TXL. Among them, TXL-CPT conjugates, **8–10**, showed different in vitro cytotoxic activity profiles against human prostate carcinoma, LN-CAP and PC-3, with less effect against normal cells. These compounds also possessed anti-angiogenesis ability; therefore, conjugates **8–10** are possible antitumor drug candidates, particularly for prostate cancer.

Acknowledgements

This study was supported by grant CA-17625 from the National Cancer Institute, NIH, awarded to K. H. L.

References and notes

- 1. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT, Sim GA. J Am Chem Soc 1971;93:2325. [PubMed: 5553076]
- 2. Itokawa, H.; Lee, KH. Taxus. Taylor & Francis; London and New York: 2003.
- 3. Islam MN, Iskander MN. Mini-Rev in Med Chem 2004;4:1077. [PubMed: 15579115]
- 4. Recent review, Li QY, Zu YG, Shi RZ, Yao LP. Curr Med Chem 2006;13:2021. [PubMed: 16842195]
- 5. Lee KH, Zhiyan X. Anticancer Agents from Natural Products 2005:71.
- 6. Capraro, HG.; Brossi, A. The Alkaloids. Brossi, A., editor. Academic Press; New York: 1984.
- 7. Recent review, Baltina LA. Curr Med Chem 2003;10:155. [PubMed: 12570715]
- Ohtsu H, Nakanishi Y, Bastow KF, Lee FY, Lee KH. Bioorg Med Chem 2003;11:1851. [PubMed: 12659771]
- 9. Shi Q, Wang HK, Bastow KF, Tachibana Y, Chen K, Lee FY, Lee KH. Bioorg Med Chem 2001;9:2999. [PubMed: 11597482]
- 10. Bastow KF, Wang HK, Cheng YC, Lee KH. Bioorg Med Chem 1997;5:1481. [PubMed: 9313854]
- Deutsh HM, Glinski JA, Hernandez M, Haugwits RD, Narayanan VL, Suffness M, Zalkow LH. J Med Chem 1989;32:788. [PubMed: 2564894]
- Xiao Z, Bastow KF, Vance JR, Sidwell RS, Wang HK, Chen MS, Shi Q, Lee KH. J Med Chem 2004;47:5140. [PubMed: 15456257]
- 13. a) Nakagawa-Goto K, Chen CX, Hamel E, Wu CC, Bastow KF, Brossi A, Lee KH. Bioorg Med Chem Lett 2005;15:235. [PubMed: 15582446] b) Nakagawa-Goto K, Jung MK, Hamel E, Wu CC, Bastow KF, Brossi A, Ohta S, Lee KH. Heterocycles 2005;65:541.
- a) Wang HK, Liu SY, Hwang KM, Taylor G, Lee KH. Bioorg Med Chem 1994;2:1397. [PubMed: 7788302] b) Miyasaka T, Sawada S, Nokata K. Heterocycles 1981;16:1719.

Figure 1.

Structures of paclitaxel (1) and other antitumor agents used for conjugation.

NH►EP

NH-EP

OMe

Ψ

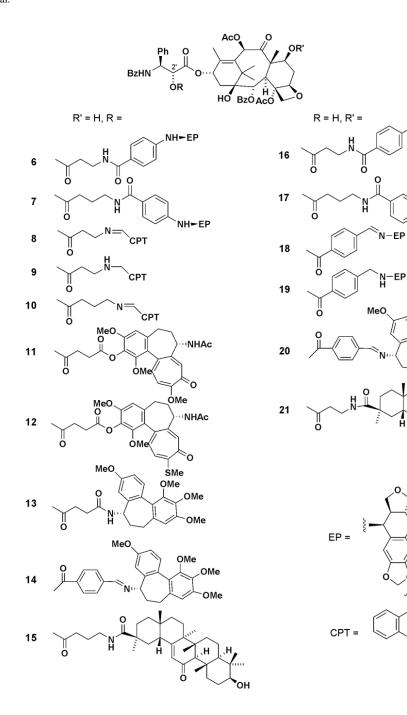
OMe

MeÒ

Et....

ò

он


C

0

OMe

OMe

он

Figure 2. Structures of conjugates.

1 ────► BzH	Ph N R	HO BZ	H H DAcO	0-R'	b) PhH c) H ₂ , F		Conjugates
Condition		R		R'	COI		
1) EDCI, DMAP, HO ₂ C(CH ₂) _n NHCbz	22	-C(O)-(CH ₂) ₂ NH	l ₂	Н	2c 3b	(a) (b)	6 8 <u></u> 9
2) H ₂ , Pd/C	23	-C(O)-(CH ₂) ₃ NH	2	н	2c 3b 5	(a) (b) (a)	7 10 15
Succinic anhydride, py	24	-C(O)CH ₂ CH ₂ C	O ₂ H	н	4b 4c 4d	(a) (a) (a)	11 12 13
4-Carboxybenzaldehyde, EDCI, DMAP	25	-c(o)-	СНО	н	4d	(b)	14
1) Benzylchloroformate, py 2) EDCI, DMAP, HO ₂ C(CH _{2)n} NHCbz	26	н	-C(O)-(C	$(H_2)_2 NH_2$	2c 5	(a) (a)	16 21
3) H ₂ , Pd/C	27	н	-C(O)-(C	$H_2)_3NH_2$	2c	(a)	17
1) TBSCI, imid. 2) 4-Carboxybenzaldehyde, EDCI, DMA 3) HF-Py, Py	28 \P	н	-c(o)-	сно	2b 4d	(b) (b)	18 <mark>→</mark> 19 20

Scheme 1. Synthesis of conjugates.

Bioorg Med Chem Lett. Author manuscript; available in PMC 2008 May 15.

Page 6

NIH-PA Author Manuscript

1 alder NIH-PA Author Manuscript

NIH-PA Author Manuscript

Cytotoxic activity data of taxol conjugates

IA9 A549 MCF7 LNCAP PC3 DU-145 KB-VIN MIC-3 1 10 23 11 10 23 11 24 311 MI MIC-3 311 MIC-3 3111	A340 MCF-7 LN-CAP PC.3 DU-145 KB KB-VIN 2.3 1.1 2.6 55.5 1.3 1.13 2.031 2.3 1.1 2.6 55.5 1.3 1.11 2.030 1074 6.6 8.6 530.1 9422 10.0 111.2 2.031 1609 11659 530.1 9422 10.0 2.09 111.2 2.031 1609 11659 530.1 9422 10.0 2.09 114.47 1609 11659 530.1 9422 10.0 112.2 2.09 950.6 510.0 324.7 475.4 7.1 2.09 5.09 950.6 50.9 50.9 50.9 5.09 5.09 5.09 950.6 50.7 112.2 112.2 113.5 47.9 7426 237 24.1 10.2 12.3 3.25 13.9 6.24 26.7 1.2 1.2	11 1.0 2b 2b 2b 2b 2b 739 3a 3b 3b 4.5 3b 4.5 4b 183.7 4c 43.6 5 >20b 6 2.9 8 1.6 9 1.5	<u> 4 540</u>							
2.3 1.1 2.6 55.5 1.3 1.8 311 1074 686 680 1234 3107 111.2 2050 1609 11659 530.1 9432 1600 1365 14447 6.9 3.1 2.2 20.1 16.7 10.9 20.9 1444 6.9 3.1 3.24.7 4.75.3 611.9 146.1 28977 950.6 51.0 539.1 947.3 611.9 80.6 23 99.8 59.9 539.9 122.1 13.5 47.6 28977 99.8 59.9 520 ⁴ 20.7 12.1 80.6 23 10.1 6.4 4.2 12.1 8.6 8.4 9964 23.7 26.7 10.2 12.1 8.6 8.4 9964 23.7 26.7 10.2 12.1 8.6 8.4 9964 21.9 26.7 11.2 13.9 20.9 520 ⁵ 20.9 21.9 26.7 11.2 14.8 31.9	2.3 1.1 2.6 55.5 1.3 1.8 311 1074 686 680 1234 3107 111.2 2050 1609 11659 53.0.1 1647 1060 1365 1447 12.8 4.3 2.0 1647 1060 111.2 2050 12.8 3.12 3.24.7 175.3 611.9 1461 2897 9506 391.0 59.9 59.9 145.3 611.9 146.1 2897 9506 361.0 59.9 59.9 1135 47.9 7426 25 9506 50.0 12.1 12.1 12.1 13.5 47.9 7426 23.7 2.1 10.2 4.2 13.9 65.3 146.1 25 23.7 2.1 1.2 13.3 6.4 4.2 13.9 62.3 2.1 1.2 1.2 1.2 1.3 2.5 50.6 2.6 2.6 2.7 1.2 1.2 3.1 3.5 1.3 62.4 2.0<	1 1.0 2b 739 2d 739 3a 3a 3b 44b 4c 43.7 4c 43.6 6 2.9 7 88.1 8.1 1.6 9.1 1.6		MCF-7	LN-CAP	PC-3	DU-145	KB	KB-VIN	MRC-5
		2b 2d 3a 3b 4b 4c 5 5 284.9 33 3 3 284.9 3.2 4c 5 5 5 2.0 6 8.1 1.6 9 1.5	2.3	1.1	2.6	55.5	1.3	1.8	311	_p LN
		2d 284.9 3a 32 3b 4b 183.7 4c 4b 183.7 5 5 43.6 6 2.9 8 8.1 1.6 1.5	1074	686	680	1234	3107	111.2	2050	IN
		3a 3b 4b 4b 4c 4c 4c 4 4 4 5 6 5 6 6 5 6 6 6 6 7 4 3 7 4 8 3 .7 4 3 .7 4 6 6 6 6 7 7 7 8 3 .7 7 7 8 3 .7 7 7 6 6 6 7 7 7 7 7 7 7 7	1609	11659	530.1	9452	1600	1365	14447	>30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 3b 4b 4c 4c 43.6 5 200^b 6 8.1 1.5 9 	6.9	3.2	2.0	16.7	10.9	20.9	15	Į
950.6361.0324.7475.3611.9146.12897799.859.959.959.9112.2113.547.97426 $>20^b$ >20^b>20^b>20^b>20^b>20^b10.1644.212.218.68.499642.62.710.242.83.71.36.2.42.62.6.73.01.4.83.71.36.2.42.62.71.121.123.11.91.92.62.71.123.11.23.71.32.62.71.21.23.11.92.42.62.71.123.11.23.11.92.62.71.23.11.91.96.2.42.62.71.123.11.91.92.002.62.71.23.33.42.35.0.72.732.6512.950.731.91.92.002.732.6512.950.731.91.92.652.732.657.1.82.9.817.0 $>2.0^{6}$ 2.852.922.3.770.434.42.1.57 $>2.0^{6}$ 2.8513.916.586.383.431.6 >2.63 2.8513.910.51.45.310.7 >2.67 2.8513.91.67.586.35.43.082.1111.048.690.11.45.31.70 </th <th>950.6361.0324.7475.3611.9146.12897799.859.959.959.9112.2113.547.9742.692.050.959.9112.2113.547.9742.692.16.44.212.2113.547.9742.623.72.671.024.2.83.3.71.39562.62.711.024.2.83.3.71.39562.62.771.2.93.10.3.41.99562.62.771.2.93.11.91.92062.7.32.6.51.2.950.731.91.92062.7.32.6.51.2.950.731.91.92062.7.32.6.51.2.950.731.91.92062.7.32.6.51.2.950.731.91.92062.7.32.6.51.2.950.731.91.92062.8.52.9.27.1.82.9.81.7.0$> 20^6$2.8.52.9.21.3.96.3.431.91.92.6.52.8.52.9.21.1.85.0.731.91.92.6.52.8.52.9.21.9.57.43.4.42.1.57$> 20^6$2.8.513.91.5.62.1.88.33.43.1.6$> 20^6$3.10125.086.383.431.105.3.6$> 20^6$3.11.0125.090.1145.313.9.1<th> 4b 4c 4c 43.6 5 >20^b 6 2.9 8.1 9 1.5 </th><th>12.8</th><th>4.3</th><th>4.3</th><th>18.4</th><th><i>T.T</i></th><th>80.6</th><th>25</th><th>IN</th></th>	950.6361.0324.7475.3611.9146.12897799.859.959.959.9112.2113.547.9742.692.050.959.9112.2113.547.9742.692.16.44.212.2113.547.9742.623.72.671.024.2.83.3.71.39562.62.711.024.2.83.3.71.39562.62.771.2.93.10.3.41.99562.62.771.2.93.11.91.92062.7.32.6.51.2.950.731.91.92062.7.32.6.51.2.950.731.91.92062.7.32.6.51.2.950.731.91.92062.7.32.6.51.2.950.731.91.92062.7.32.6.51.2.950.731.91.92062.8.52.9.27.1.82.9.81.7.0 $> 20^6$ 2.8.52.9.21.3.96.3.431.91.92.6.52.8.52.9.21.1.85.0.731.91.92.6.52.8.52.9.21.9.57.43.4.42.1.57 $> 20^6$ 2.8.513.91.5.62.1.88.33.43.1.6 $> 20^6$ 3.10125.086.383.431.105.3.6 $> 20^6$ 3.11.0125.090.1145.313.9.1 <th> 4b 4c 4c 43.6 5 >20^b 6 2.9 8.1 9 1.5 </th> <th>12.8</th> <th>4.3</th> <th>4.3</th> <th>18.4</th> <th><i>T.T</i></th> <th>80.6</th> <th>25</th> <th>IN</th>	 4b 4c 4c 43.6 5 >20^b 6 2.9 8.1 9 1.5 	12.8	4.3	4.3	18.4	<i>T.T</i>	80.6	25	IN
99.859.959.959.959.9112.2113.547.97426>20>20>20>20>20>20>20>20>202.62.71.2.110.24.212.18.68.499642.62.71.24.83.71.3905490642.62.71.24.83.71.390642.62.71.23.11.22.31.990642.62.71.23.11.22.31.990642.62.71.23.11.22.31.990642.62.71.23.11.22.31.92.62.7.32.6.51.2.95.0.73.191.91.92.0502.7.32.6.51.2.95.0.73.191.91.92.0532.7.32.6.51.2.95.0.73.191.91.92.662.7.32.6.51.1.22.3.770.43.42.1.572.062.8.52.9.22.3.770.43.42.1.57 $>2.0^6$ 3.8NTNTNTNT5.43.0877.43.8.7103.66.8.35.3.6 $>2.0^6$ 3.811.1048.690.11.45.3139.15.45.063.813.912.5.770.43.42.1.57 $>2.0^6$ 3.813.91.5.78.38.3.4 <th>99859.959.959.9112.2113.547.97426>207>207>207>207>207>207>207$207$>20710.16.44.21.2.18.68.68.499642.62.71.21.2.18.68.499642.62.71.23.12.3.12.31.999642.62.71.23.12.33.19.69642.62.71.23.12.31.99.59642.62.71.23.12.31.99.59642.62.71.23.12.32.31.99.52.7.32.6.511.23.11.91.99.52.7.32.6.512.95.073.1.91.99.062.7.32.6.512.95.073.1.91.99.052.7.32.4.719.570.43.42.1.52.072.8.52.9.22.3.770.43.42.1.572.073.8NTNTNTNTNT5.43.08111.04.5.64.6.2103.66.8.35.43.061319125.09.01145.313.9.15.45.071319125.09.1103.66.8.35.43.08111.1.04.8.69.01145.313.9.15.45.203.8125.09.1<th>4c 43.6 5 >20^b 6 2.9 8 1.1 9 1.5</th><th>950.6</th><th>361.0</th><th>324.7</th><th>475.3</th><th>611.9</th><th>146.1</th><th>28977</th><th>TN</th></th>	99859.959.959.9112.2113.547.97426>207>207>207>207>207>207>207 207 >20710.16.44.21.2.18.68.68.499642.62.71.21.2.18.68.499642.62.71.23.12.3.12.31.999642.62.71.23.12.33.19.69642.62.71.23.12.31.99.59642.62.71.23.12.31.99.59642.62.71.23.12.32.31.99.52.7.32.6.511.23.11.91.99.52.7.32.6.512.95.073.1.91.99.062.7.32.6.512.95.073.1.91.99.052.7.32.4.719.570.43.42.1.52.072.8.52.9.22.3.770.43.42.1.572.073.8NTNTNTNTNT5.43.08111.04.5.64.6.2103.66.8.35.43.061319125.09.01145.313.9.15.45.071319125.09.1103.66.8.35.43.08111.1.04.8.69.01145.313.9.15.45.203.8125.09.1 <th>4c 43.6 5 >20^b 6 2.9 8 1.1 9 1.5</th> <th>950.6</th> <th>361.0</th> <th>324.7</th> <th>475.3</th> <th>611.9</th> <th>146.1</th> <th>28977</th> <th>TN</th>	4c 43.6 5 >20 ^b 6 2.9 8 1.1 9 1.5	950.6	361.0	324.7	475.3	611.9	146.1	28977	TN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 6 7 8.1 1.6 1.5 1.5	8.66	59.9	59.9	112.2	113.5	47.9	7426	Į
		6 2.9 8 1.6 9 1.5	$>20^{b}$	$>20^{b}$	$>20^{b}$	$>20^{b}$	$>20^{b}$	$>20^{b}$	$>20^{b}$	IN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23.722.110.242.832.513.962.312.6 26.7 3.0 14.8 3.7 1.3 62.4 2.6 26.7 3.0 14.8 3.7 1.3 62.4 1.9 34.1 0.34 19.4 1.2 3.1 1.9 50.5 27.3 26.5 12.9 50.7 31.9 1.9 52.6 27.3 26.5 12.9 50.7 31.9 1.9 52.6 27.3 26.5 12.9 50.7 31.9 1.9 52.6 27.3 26.5 12.9 50.7 31.9 1.9 52.6 27.3 26.7 12.9 50.7 31.9 12.7 52.6 27.3 26.7 12.8 71.8 29.8 17.0 $>20^6$ 23.7 70.4 34.4 21.57 $>20^6$ $>20^6$ 3.8 NT NT NT NT NT 54.4 30.8 77.4 38.7 46.2 103.6 68.3 53.6 $>20^6$ 3.8 170.6 86.3 83.4 31.6 $>20^6$ 111.0 48.6 90.1 145.3 139.1 53.6 111.0 48.6 90.1 145.3 139.1 52.0 3.8 NT NT NT NT 2.3 224.8 129.8 192.7 652.1 311.0 147.3 520^6 224.8 129.8 192.7 652.1	7 8.1 8 1.6 1.5	10.1	6.4	4.2	12.1	8.6	8.4	9964	>10 ^c
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 1.6 9 1.5	23.7	22.1	10.2	42.8	32.5	13.9	6231	6174
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 1.5	2.6	26.7	3.0	14.8	3.7	1.3	62.4	177.7
1.934.10.3419.41.91.5 56.3 27.3 26.5 12.9 50.7 31.9 1.5 56.3 23.2 24.7 19.571.8 29.8 17.0 $>20^{0}$ 28.5 29.2 23.7 70.4 31.9 19.0 $>20^{0}$ 28.5 29.2 23.7 70.4 31.9 17.0 $>20^{0}$ 28.5 29.2 23.7 70.4 34.4 21.57 $>20^{0}$ 3.8NTNTNTNT NT 5.4 308 77.4 38.7 46.2 103.6 68.3 5.4 308 45.6 43.9 22.11 86.3 83.4 31.6 $>20^{0}$ 1319 125.0 NTNTNT 37.2 87.4 520^{0} 111.0 48.6 90.1 145.3 139.1 53.8 6220 3.8 NTNTNT 37.2 87.4 5200^{0} 3.8 NTNTNT NT 311.0 147.3 520^{0} 224.8 129.8 192.7 652.1 311.0 147.3 520^{0}	1.934.10.3419.41.91.556.327.326.512.950.731.91.556.323.224.719.571.829.817.0 $>20^b$ 28.529.223.770.434.4 21.57 $>20^b$ 3.8NTNTNTNTNT33.4 21.57 $>20^b$ 3.8NTNTNTNTNT34.4 21.57 $>20^b$ 77.438.746.2103.668.353.6 $>20^b$ 1319125.0NTNTNT31.6 $>20^b$ 111.048.690.1145.3139.153.6 $>20^b$ 3.8NTNTNT31.6 $>20^b$ 111.048.690.1145.3139.153.8 62.20^b 3.8NTNTNT31.0147.3308224.8129.8192.7652.1311.0147.3 $>20^b$ 224.8129.8192.7652.1311.0147.3 $>20^b$		2.6	2.7	1.2	3.1	2.3	1.9	2050	6133
27.326.512.950.731.919.0>20^b23.224.719.571.829.817.0>20^b28.529.223.770.434.421.57>20^b3.8NTNTNTNTNT33.421.57>20^b77.438.770.434.421.57>20^b77.438.770.434.421.57>20^b77.438.770.434.421.57>20^b77.438.770.386.383.431.6>20^b1319125.0NTNTNTNT34.2NA111.048.690.1145.3139.153.862203.8NTNTNTNT34.753.852003.8NTNTNTNT2.3308224.8129.8192.7652.1311.0147.320^b224.8129.8192.7652.1311.0147.320^b	27.326.512.950.731.919.0>20^b23.224.719.571.829.817.0>20^b28.529.223.770.434.4 21.57 >20^b28.529.223.770.4 34.4 21.57 >20^b3.8NTNTNTNTNT5.430877.438.746.2103.668.353.6>20^b1319125.0NTNTNT31.6>20^b111.048.690.1145.3139.153.862201338NTNTNTNT34.452001338125.0NTNTNT34.452003.8129.8191.5167.587.453.8520224.8129.8192.7652.1311.0147.350^b224.8129.8192.7652.1311.0147.350^b	10 1.0	1.9	34.1	0.34	19.4	1.9	1.5	56.3	243.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 10.6	27.3	26.5	12.9	50.7	31.9	19.0	$>20^{b}$	IN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 10.3	23.2	24.7	19.5	71.8	29.8	17.0	$>20^{b}$	LN
3.8 NTNTNTNT 5.4 308 77.4 38.7 46.2 103.6 68.3 53.6 $>20^b$ 45.6 43.9 22.1 86.3 83.4 31.6 $>20^b$ 1319 125.0 NTNTNT NT 347.2 NA 111.0 48.6 90.1 145.3 139.1 53.8 6220 123.5 68.2 128.5 191.5 167.5 87.4 5200 3.8 NTNTNTNT 224.8 192.7 652.1 311.0 147.3 20^b	3.8 NTNTNTNT 5.4 308 77.4 38.7 46.2 103.6 68.3 53.6 $>20^b$ 45.6 43.9 22.1 86.3 83.4 31.6 $>20^b$ 1319 125.0 NTNTNT 347.2 NA 111.0 125.0 NTNT 31.6 520^b 123.5 68.2 129.5 190.1 145.3 139.1 53.8 5220 123.5 68.2 128.5 191.5 167.5 87.4 5200 3.8 NTNTNT 2.3 308 224.8 129.8 192.7 652.1 311.0 147.3 520^b	13 14.0	28.5	29.2	23.7	70.4	34.4	21.57	$>20^{b}$	ĮN
77.438.746.2103.668.353.6 $>20^b$ 45.643.922.186.383.431.6 $>20^b$ 1319125.0NTNTNTNT 347.2 NA111.048.690.1145.3139.153.86220123.568.2128.5191.5191.5167.587.452003.8NTNTNTNT224.8110147.3 $>20^b$ 224.8129.8192.7652.1311.0147.3 $>20^b$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14 2.3	3.8	LN	LN	LN	NT	5.4	308	TN
45.643.922.186.383.431.6 $>20^b$ 1319125.0NTNTNTNT347.2NA111.048.690.1145.3139.153.86220123.568.2128.5191.5191.5167.587.452003.8NTNTNTNTNT224.8110147.3 $>20^b$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 45.3	77.4	38.7	46.2	103.6	68.3	53.6	$>20^{b}$	IN
		16 20.7	45.6	43.9	22.1	86.3	83.4	31.6	$>20^{b}$	3279
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 104	1319	125.0	LN	LN	NT	347.2	NA	TN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18 60.1	111.0	48.6	90.1	145.3	139.1	53.8	6220	ĮN
3.8 NT NT NT NT 2.3 308 224.8 129.8 192.7 652.1 311.0 147.3 $>20^{b}$	3.8 NT NT NT 2.3 $308224.8 129.8 192.7 652.1 311.0 147.3 >20^{b}$	19 75.7	123.5	68.2	128.5	191.5	167.5	87.4	5200	IN
224.8 129.8 192.7 652.1 311.0 147.3 $>20^{b}$	224.8 129.8 192.7 652.1 311.0 147.3 $>20^{b}$	20 2.3	3.8	LN	LN	LN	NT	2.3	308	IN
		21 154.3	224.8	129.8	192.7	652.1	311.0	147.3	$>20^{b}$	IN
									2	

human epidermoid carcinoma of the nasopharynx (KB), multi-drug resistant expressing P-glycoprotein (KB-VIN) and human embryonic fibroblast (MRC-5).

^aCytotoxicity as ED50 values for each cell line, the concentration of compound that caused 50% reduction in absorbance at 562 nm relative to untreated cells using the sulforhodamine B assay.

 $b_{\rm Test}$ compound (20 $\rm \mu g/mL)$ did not reach 50% inhibition.

	Table 2
Anti-angiogenesis assay data	a of selected compounds in HUVEC cells

Compound	ED ₅₀ (nM)	Compound	ED ₅₀ (nM)
6	4.93	13	15.8
8	0.73	14	43.0
9	2.09	18	230
10	0.98	20	293
11	13.84	21	150
12	9.33		