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Abstract
Background: Many studies conducted in health and social sciences collect individual level data as
outcome measures. Usually, such data have a hierarchical structure, with patients clustered within
physicians, and physicians clustered within practices. Large survey data, including national surveys,
have a hierarchical or clustered structure; respondents are naturally clustered in geographical units
(e.g., health regions) and may be grouped into smaller units. Outcomes of interest in many fields
not only reflect continuous measures, but also binary outcomes such as depression, presence or
absence of a disease, and self-reported general health. In the framework of multilevel studies an
important problem is calculating an adequate sample size that generates unbiased and accurate
estimates.

Methods: In this paper simulation studies are used to assess the effect of varying sample size at
both the individual and group level on the accuracy of the estimates of the parameters and variance
components of multilevel logistic regression models. In addition, the influence of prevalence of the
outcome and the intra-class correlation coefficient (ICC) is examined.

Results: The results show that the estimates of the fixed effect parameters are unbiased for 100
groups with group size of 50 or higher. The estimates of the variance covariance components are
slightly biased even with 100 groups and group size of 50. The biases for both fixed and random
effects are severe for group size of 5. The standard errors for fixed effect parameters are unbiased
while for variance covariance components are underestimated. Results suggest that low prevalent
events require larger sample sizes with at least a minimum of 100 groups and 50 individuals per
group.

Conclusion: We recommend using a minimum group size of 50 with at least 50 groups to produce
valid estimates for multi-level logistic regression models. Group size should be adjusted under
conditions where the prevalence of events is low such that the expected number of events in each
group should be greater than one.
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Background
The idea that individual action is shaped by macro-level
forces was evident in sociological theories of psychiatric
illness and delinquency arising out of the Chicago School
[1,2]. These theories suggest that while individual risk fac-
tors can affect individual health and delinquent behavior,
so also can the structure of the social environment in
which we live. It is only in the last 20 years that these the-
ories could be truly tested, when statistical models were
developed that allowed researchers to examine the addi-
tive and interactive effects of individual-level and contex-
tual features that affect sociological outcomes at the
individual level. In the last ten years the use of multilevel
models has burgeoned in epidemiology. These models are
highly appropriate in assessing how context affects indi-
vidual-level health risks and outcomes [3].

Many kinds of data, including national surveys, have a
hierarchical or clustered structure. For example, respond-
ents in a complex large survey are naturally clustered in
geographical units (e.g., health regions) and may be
grouped into smaller units (e.g. census tracts). Over the
last two decades, researchers have developed a class of sta-
tistical models designed for data with hierarchical struc-
ture. These models are variously known as mixed,
hierarchical linear, random coefficient, and multilevel
models. Hierarchical data routinely arise in many fields
where multilevel models can be used as an extended ver-
sion of the more traditional statistical techniques either to
adjust for the dependency of the observations within clus-
ters by using variables at higher levels or assessing the
impact of higher level characteristics on the outcome after
controlling for individual characteristics at the base level.
An important feature of this class of models is the ability
to estimate the cross-level interaction which provides a
measure of the joint effect of a variable at the individual
level in conjunction with a variable at the group level.

The robustness issue and the choice of sample size and
power in multilevel modeling for continuous dependent
variables has been studied by several authors [4-13]. Aus-
tin [14] used Monte Carlo simulation to assess the impact
of misspecification of the distribution of random effects
on estimation of and inference about both the fixed
effects and the random effects in multilevel logistic regres-
sion models. He concluded that estimation and inference
concerning the fixed effects were insensitive to misspecifi-
cation of the distribution of the random effects, but esti-
mation and inferences concerning the random effects
were affected by model misspecification. Simulation stud-
ies indicate that a larger number of groups is more impor-
tant than a larger number of individuals per group [4,5].
The overall conclusion from these studies is that the esti-
mates of the regression coefficients are unbiased, but the
standard errors and the variance components tend to be

biased downward (underestimated) when the number of
level 2 units is small (e.g. less than 30) [4,11].

Outcomes of interest in many fields do not only reflect
continuous measures. Binary outcomes such as depres-
sion, presence or absence of a disease, and poor versus
good self-reported general health are also of interest. Few
studies have examined the accuracy of estimates, sample
size or power analysis in binary multilevel regression
[5,15]. Although Sastry et al. [15] calculate power and
sample size in multilevel logistic regression models for
their survey of children, families and communities in Los
Angeles, they used a test of proportions between two com-
parison groups to calculate preliminary total sample size
for a given baseline proportion and minimum detectable
differences. After adjusting the calculated preliminary
sample size for design effect, a total sample size of 3,250
was adopted. Finally based on simulation studies with
total sample size of 3,250 and group sizes of 51, 66, 75,
and 81 they decided to sample 65 groups (tracts) each of
size 50.

We are unaware of any studies to date that have focused
on these issues in multilevel logistic regression in a more
comprehensive manner. In this paper simulation studies
based on multilevel logistic regression models are used to
assess the impact of varying sample size at both the indi-
vidual and group level on the accuracy of the estimates of
the parameters and their corresponding variance compo-
nents.

Methods
Simulation models
We focus on the following multilevel logistic model with
one explanatory variable at level 1 (individual level) and
one explanatory variable at level 2 (group level):

where .

Here Pij is the probability that individual i in group j will
experience the outcome, xij is an explanatory variable on
the respondent level, and zj is a group level explanatory
variable. Model (1) can be written in the following single
equation:

logit(pij) = γ00 + γ10xij + γ01z j + γ11xijz j + u0j + u1jxij
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In equation (2) the segment γ00 + γ10xij + γ01zj + γ11xij z j is
the fixed effect part and the segment u0j + u1jx ij is the ran-
dom part of the model. An important feature of equation
(2) is the presence of a cross-level interaction term repre-
sented by γ11zjxij in which the coefficient γ11 shows how
π1j, the slope of equation (1), varies with zj, the group
level variable.

The size of the intra-class correlation coefficient (ICC)
may also affect the accuracy of the estimates [16]. The ICC

for the logistic model is defined as  where

 and  is the variance of the random intercept

in a fully unconditional multilevel logistic model logit(pij)

= γ00 + u0j where u0j ~ N(0, ) [17].

The accuracy of the parameter estimates is quantified by

the percentage relative bias [11]. Let  stand for the esti-

mate of the population parameter θ, then 

indicates the percentage relative bias for parameter θ. The
accuracy of the standard error of the parameter estimate is
assessed by analyzing the observed coverage of the 95%
confidence interval created by using the asymptotic stand-
ard normal distribution [11].

Following the simulation conditions used by Maas and
Hox [11] we set the following conditions for our simula-
tion studies: (i) the number of individuals per group, j, nj,

was set at 5, 30, and 50, (ii) the number of groups was set
at 30, 50, and 100, and (iii) the variances of the random
intercept were set at 0.13, 0.67, and 2.0, corresponding to
intra-class correlation coefficients (ICC) of 0.04, 0.17, and
0.38, respectively. The individual and group explanatory
variables xij and zj are generated from the standard normal

distribution. The group random components u0j and u1j

are independent normal variables with mean zero and

standard deviations σ0 and σ1where σ1 = 1 in all simula-

tions and σ0 follows from the ICC and is set to 0.36, 0.82,

and 1.42. We set the fixed effect parameters for all simu-

lated models as: γ00 = -1.0, γ01 = 0.3, γ10 = 0.3, and γ11 = 0.3.

To generate the outcome, a Bernoulli distribution with

probability  is used. The overall

prevalence of the outcome is close to 30 percent.

For practical purposes we generated 1000 data sets for
each combination since a larger number of replications
would have substantially increased processing time. The
software SAS 9.1 (SAS Institute, North Carolina, US) was
used for simulating observations and estimating the
parameters. The SAS procedure NLMIXED with default
options was used for estimation. This procedure only
allows full maximum likelihood estimation. If conver-
gence was not achieved the estimated parameters were not
included in calculating summary statistics. We set initial
values as the "true" values of each parameter. Distribu-
tions for random effects were normal, the optimization
technique was Dual Quasi-Newton, and the integration
method was Adaptive Gaussian Quadrature (AGQ). The
number of quadrature points in AGQ was selected auto-
matically. The absolute value for parameter convergence
criterion was 10-8 and the maximum number of iterations
was 200.

Results
Convergence
The overall rate of model convergence varied from 56% to
100%. There were no negative variance estimates in con-
verged models. Logistic regression was used to investigate
the impact of ICC, number of groups and group size on
the convergence. The rate of convergence (percent con-
verged) significantly improved with either an increase in
the number of groups or an increase in the group size. The
overall rate of convergence for groups of sizes 5, 30, and
50 was 80.4%, 99.3, and 99.9%, respectively. For group of
sizes 30, 50, and 100, the rate of convergence was 87.7%,
93.8%, and 98.1%. For the three ICC conditions of 0.04,
0.17, and 0.38 the rate of convergence was 89.2%, 94.5%
and 95.9%. When we compared the samples that did and
did not converge findings indicate no significant differ-
ences in prevalence (30.4% vs. 30.0%), mean and stand-
ard deviation of zj (0.01 and 1.01 versus 0.02 and 1.00),
or mean and standard deviation of xij (0.00 and 1.00 vs.
0.00 and 1.00). To further explore the non-convergent
samples we examined 168 non-convergent simulated data
sets with 30 groups and group size of 5. We first fitted a
logistic model with random intercept only and then a
logistic model with random slope only to each of these
data sets. The estimated random intercepts and random
slopes were classified as significant if the corresponding p-
value was less that 0.05; otherwise each was classified as
non-significant. Both the random intercept and random
slope were statistically significant in only a small propor-
tion of these data sets (2.4%). A closer investigation
showed that when both random intercept and random
slope were statistically significant either the random slope
or the random intercept was severely underestimated. This
suggests that non-convergence result from lack of suffi-
cient variation in both the intercept and slope and further
suggests that simplifying the model is appropriate; for

ρ σ
σ σ

=
+
u

u e

2

2 2

σ π
e
2

2

3
= σu

2

σu
2

θ̂

θ̂ θ
θ
− ×100

p
x

xij
j j ij

j j ij
=

+
+ +
exp( )

exp( )

π π
π π
0 1

0 11
Page 3 of 10
(page number not for citation purposes)



BMC Medical Research Methodology 2007, 7:34 http://www.biomedcentral.com/1471-2288/7/34
example either a random intercept or a random slope is
estimated, but not both.

Distribution of parameter estimates
P-values and confidence intervals given by the NLMIXED
procedure are based on asymptotic normality which may
not be accurate for small sample sizes. The Shapiro-Wilk
test calculates a W statistic that tests whether a random
sample of size n comes from a normal distribution. The
Shapiro-Wilk test for normality was used to test the nor-
mality of the distribution of fixed effect estimates for dif-
ferent combinations. Logistic regression was used to
assess the effects of each factor on normality. The ICC was
not associated with normality of the parameter estimates.
The number of groups was associated with normality of
the estimates for γ10 and γ01 group size was associated with
normality of the estimates for γ00, γ10, and γ11. The major-
ity of estimates from simulations with a group size of 5
were non-normal even with 100 groups. For simulations
with a group size of 30 a few estimates were non-normal
even with 50 groups. All estimates were normally distrib-
uted with 100 groups and group size of 50.

Parameter estimates
In simulation studies of multilevel regression with contin-
uous outcomes, Maas and Hox [11] found negligible bias
for the fixed effect parameter estimates. They reported an
average bias less than 0.05% for the fixed parameter esti-
mates, intercept and the regression slopes. Our simula-
tions show that the overall biases for the fixed effect
parameters γ00, γ01, γ10, and γ11 were 0.6%, 2.6%, 1.4%,
and 3.7% respectively (data not shown). The cross-level
interaction parameter (γ11) had the largest overall bias.

Table 1 shows the percent relative bias and rate of conver-
gence (percent converged) for different simulation condi-
tions. For the fixed effect parameters, the largest biases
(8.8%, 11.1%, 15.8%, and 13.3% for γ00, γ01, γ10, and γ11)
were found under conditions where of the smallest vari-
ance for the random intercept (0.13), the smallest group
size (5), and the lowest number of groups (30). When the
size of the group was increased to 30 with 30 groups, the
bias was reduced to less than 6%. These biases were
reduced to less than 4% when the size of the group was 30
and the number of groups was 50. Even further reductions

Table 1: The effect of number of groups, group size, and ICC on the relative bias ( ) of estimates.

Number of groups Group size ICC % converged γ00 γ01 γ10 γ11 σ0 σ1

30 5 0.04 56 8.77 11.12 15.85 13.26 174.04 55.49
0.17 68 4.75 11.56 10.70 14.93 24.25 54.55
0.38 76 3.94 12.22 5.91 14.89 15.82 54.02

30 0.04 94 0.07 1.09 -1.93 3.57 -7.07 -6.81
0.17 100 -0.08 3.70 -1.60 3.44 -5.89 -7.02
0.38 100 -0.18 5.74 -1.72 5.31 -3.55 -6.92

50 0.04 99 -0.39 0.69 -0.18 5.32 -8.47 -7.71
0.17 100 -0.43 2.65 -1.70 5.74 -6.25 -7.16
0.38 100 -0.39 4.62 -2.85 4.49 -5.05 -7.30

50 5 0.04 71 3.82 9.32 4.93 5.88 110.80 35.84
0.17 86 1.44 8.40 2.34 4.73 11.95 25.55
0.38 90 1.00 5.96 3.50 6.68 6.80 28.11

30 0.04 99 0.09 0.21 2.01 2.72 -5.16 -2.60
0.17 100 -0.32 0.28 2.06 3.69 -2.90 -2.55
0.38 100 -0.37 -0.56 1.89 3.46 -3.24 -2.81

50 0.04 100 -0.23 0.08 1.25 2.31 -6.18 -3.54
0.17 100 -0.33 0.51 1.39 2.56 -3.76 -3.59
0.38 100 -0.53 0.83 1.29 1.73 -3.19 -3.23

100 5 0.04 87 1.64 0.14 2.42 1.55 47.87 7.64
0.17 98 0.47 -0.50 1.11 0.89 1.84 3.46
0.38 98 0.95 0.25 2.25 0.41 2.23 8.82

30 0.04 100 -0.02 -0.12 0.31 0.41 -5.13 -1.25
0.17 100 -0.11 0.36 -0.06 0.96 -2.14 -1.17
0.38 100 -0.21 1.04 -0.96 1.07 -2.06 -1.30

50 0.04 100 0.03 0.35 -0.09 0.48 -3.28 -2.01
0.17 100 -0.06 0.71 0.05 0.63 -2.12 -1.34
0.38 100 -0.14 0.62 0.50 1.18 -1.73 -1.52

θ̂ θ
θ
− ×100
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occurred (bias of 1% or less) when the size of the group
was 30 and there were 100 groups.

The estimates of the random intercept and random slope
have larger biases compared to the fixed effect parameters.
The overall biases (data not shown) for σ0 and σ1 were
6.9% and 5.0%. The bias for σ1 remained at the level of
5% for different values of σ0, however the estimates for σ0
had the largest bias (21.2%) for σ0 = 0.36.

The relative bias for the variance components was less
than 4% when the size of the group was 50 and there were
100 groups. The variance-covariance parameter estimates
are positively biased in all cases when the group size was
5 regardless of the number of groups (some exceeded
100%). The variance components were consistently
underestimated when with a group size of 30 or more
regardless of the number of groups. This problem of
underestimation has been noted previously in simulation
studies of multilevel models for continuous outcomes
[11].

The overall relative bias for the random intercept was
21%, 0.5%, 0.1% for ICC 0.04, 0.17, 0.38, respectively.
For the random slope, the overall relative biases for the
three ICC conditions were not statistically different, rang-
ing from 4% to 6%. There were no statistically significant
differences in bias for the fixed effect parameters for any
of the ICC conditions.

Standard errors
We adopted the method used by Maas and Hox [11] to
assess the accuracy of the standard errors. For each param-
eter in each simulated data set the 95% Wald confidence
interval is established. For each parameter a non-coverage
indicator variable is set to zero if the confidence interval
contains the true value, otherwise if the true value lies out-
side the 95% confidence interval it is set to 1. The effect of
number of groups, group size, and ICC on the non-cover-
age is presented in Tables 2 and 3, respectively. Logistic
regression was used to assess the effect of the different
simulated conditions on non-coverage.

As shown in Table 2 the effect of number of groups on the
standard errors of the fixed effect parameters is small with
non-coverage rates ranging from 5% and 6%. The nomi-
nal non-coverage rate is 5%. The effect of number of
groups on the standard errors of the variance component
was larger than the nominal 5%, with non-coverage rang-
ing from 7% to 11%. With 30 groups the non-coverage
rate was 11% for the random intercept and 10% for the
random slope. These non-coverage rates were reduced to
9% and 7% percent, respectively, for 100 groups. The
extent of non-coverage implies that the standard error for
the variance components is underestimated, a phenome-
non reported by Maas and Hox [11] in their simulation
studies of two-level linear regression models. The rate of
non-coverage decreased as number of groups increased
however, the non-convergence cannot be ignored.

The rates of non-coverage for the fixed effect parameters
varied between 4 to 6% which is close to 5% nominal
(Table 2). The effect of group size on the standard error of
the estimates of the random intercept (close to 10%) was
not significant; however the rate of non-coverage for the
random slope increased as the group size increased. Table
2 shows that ICC had no effect on the non-coverage rates
for the fixed effects or the random slope. Similar to find-
ings for the number of groups and group size, the rate of
non-coverage is close to 5% for the fixed effect parameters
and over 5% for the random effect parameters. The rate of
non-coverage for the random intercept decreased as ICC
increased.

Table 3 shows the rates of non-coverage for each simula-
tion condition. The minimum and maximum rates of
non-coverage for the fixed effect parameters, γ00, γ01, γ10,
and γ11, range from 3% and 7%. The rates of non-coverage
for the variance-covariance components range from 7%
and 17%. These findings indicate that the estimates of the
standard errors are acceptable for the fixed effect parame-
ters but not acceptable for the variance covariance compo-
nents.

Table 2: Non-coverage of the asymptotic 95% confidence interval by number of groups, group size, and ICC.

Number of groups p-value Group size p-value ICC p-value
Parameter 30 50 100 5 30 50 0.04 0.17 0.38

γ00 0.053 0.058 0.049 0.036 0.046 0.053 0.059 0.0012 0.050 0.055 0.055 0.3507
γ01 0.057 0.056 0.055 0.865 0.047 0.059 0.060 0.0005 0.053 0.058 0.056 0.3760
γ10 0.059 0.055 0.051 0.058 0.043 0.060 0.059 0.0000 0.055 0.055 0.055 0.9948
γ11 0.060 0.058 0.049 0.004 0.044 0.059 0.061 0.0000 0.056 0.055 0.056 0.8946
σ0 0.106 0.090 0.089 0.000 0.097 0.094 0.093 0.7173 0.106 0.090 0.089 0.0003
σ1 0.095 0.077 0.070 0.000 0.057 0.085 0.094 0.0000 0.080 0.080 0.080 0.9820
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Prevalence
The accuracy of the estimates of the parameters at the indi-
vidual level depends on the prevalence of the outcome. To
assess the relationship between the prevalence of the out-
come and the sample size we repeated our simulations
with prevalence rates of 0.10, 0.34, and 0.45. We set the
parameters, γ00, γ01, γ10, and γ11,  at -3.0, 0.3, 0.3, and 0.3
for prevalence of 10%, at -1.0, 0.3, 0.3, and 0.3 for preva-
lence of 34% and -0.3, -0.3, -0.3, and -0.3 for prevalence
of 45%. The variances of the random intercepts and ran-
dom slopes were 1 for all simulations. Table 4 shows that
for both fixed and random effect parameters the simu-
lated data with 10% prevalence had the largest bias.

The overall effect of prevalence on the non-coverage rates
was not significant (data not shown). As shown in Table
4 the rate of non-coverage for all fixed effect parameter
estimates ranged from 5 to 6%. The rate of non-coverage
for the random intercept and random slope variance esti-
mates ranged from 8 to 11%. This suggests that a larger
sample size is necessary to minimize bias for low-preva-
lent outcomes. The largest bias was observed under condi-
tions when the size of the group was 5 and the prevalence
of the outcome was 10% (12% for fixed effect and 50%
for random effect). Similarly, with 30 groups and a 10%
prevalence the largest bias was 9% for the fixed effect
parameters and 15% for the random slope. The rate of
convergence was lowest with 10% prevalence.

Table 4: Percent bias, non-coverage, and convergence rate for different prevalence of 0.10, 0.34, and 0.45.

Bias Non-coverage % Converged
Parameter 0.10 0.34 0.45 0.10 0.34 0.45 0.10 0.34 0.45

γ00 1.41 0.29 -0.37 0.055 0.056 0.054 77 86 87
γ01 3.78 2.94 0.20 0.054 0.057 0.062 77 86 87
γ10 1.12 0.44 0.61 0.053 0.054 0.052 77 86 87
γ11 4.35 3.63 -0.29 0.058 0.054 0.055 77 86 87
σ0 2.93 0.16 -0.18 0.107 0.088 0.085 76 86 86
σ1 8.40 4.41 3.35 0.091 0.081 0.084 76 86 86

Table 3: Effect of number of groups, group size, and ICC on the non-coverage of the asymptotic Wald 95% confidence interval.

Number of Groups Group size ICC γ00 γ01 λ10 γ11 σ0 σ1

30 5 0.04 0.029 0.048 0.032 0.032 0.142 0.045
0.17 0.049 0.046 0.040 0.028 0.090 0.041
0.38 0.042 0.046 0.041 0.055 0.081 0.030

30 0.04 0.061 0.051 0.070 0.068 0.095 0.111
0.17 0.060 0.067 0.066 0.064 0.117 0.104
0.38 0.053 0.061 0.066 0.062 0.107 0.111

50 0.04 0.053 0.061 0.064 0.071 0.104 0.127
0.17 0.062 0.063 0.063 0.063 0.108 0.116
0.38 0.054 0.059 0.071 0.071 0.113 0.114

50 5 0.04 0.031 0.045 0.050 0.048 0.117 0.038
0.17 0.051 0.041 0.040 0.044 0.070 0.056
0.38 0.062 0.049 0.040 0.046 0.076 0.064

30 0.04 0.050 0.067 0.059 0.064 0.091 0.092
0.17 0.060 0.055 0.064 0.060 0.088 0.083
0.38 0.062 0.060 0.059 0.057 0.094 0.076

50 0.04 0.065 0.058 0.056 0.069 0.091 0.091
0.17 0.065 0.060 0.053 0.070 0.102 0.091
0.38 0.067 0.064 0.066 0.062 0.087 0.088

100 5 0.04 0.042 0.037 0.038 0.043 0.172 0.052
0.17 0.046 0.058 0.055 0.047 0.070 0.078
0.38 0.056 0.052 0.048 0.048 0.082 0.084

30 0.04 0.045 0.046 0.057 0.055 0.085 0.061
0.17 0.046 0.064 0.053 0.055 0.086 0.064
0.38 0.039 0.058 0.049 0.050 0.087 0.066

50 0.04 0.063 0.059 0.055 0.042 0.086 0.075
0.17 0.053 0.063 0.052 0.050 0.079 0.067
0.38 0.053 0.056 0.051 0.051 0.069 0.076
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Discussion and conclusion
In this paper we investigated the impact of varying sample
size at both the group and individual level on the accuracy
of the parameter estimates and variance components
using multilevel modeling for logistic regression. We also
examined the effect of prevalence of the outcome on the
accuracy of the estimates. The number of replications was
restricted to 1000 due to extensive computer processing
time.

Previous research has indicated that a sample of 50 groups
and 30 units per group is sufficient to produce reliable
parameter estimates for linear multilevel regression mod-
els [11]. Our findings suggest this may not be the case for
logistic regression. Simulations presented in this paper
suggest that the number of level two groups and the
number of individuals in each group should be adjusted
for prevalence of the outcome. Low prevalent events
require a larger number of individuals per group.

We did not study the effect of different estimation proce-
dures on the accuracy of the parameter estimates. How-
ever Rodriguez and Goldman [18,19] showed that the
marginal quasi likelihood with first order Taylor expan-
sion underestimates both the fixed effect and the variance-
covariance components. The data set that formed the
basis for these conclusions was extreme in the sense that
the variance components were large and the sample size at
the lowest level was quite small. In less extreme cases it
appears that predictive quasi likelihood with second order
Taylor expansion usually provides accurate estimates for
both fixed and random parameters [5]. Simulations by
Callens and Croux [20] compared penalized quasi-likeli-
hood (PQL) with adaptive Gaussian quadrature (AGQ)
and non-adaptive Gaussian quadrature (NGQ) and
showed that PQL suffers from large bias but performs bet-
ter in terms of mean-squared error (MSE) than standard
versions of quadrature methods. They also showed that
automatic selection of the number of quadrature points in
AGQ (the default of the NLMIXED procedure) might be
inadequate and lead to a loss in MSE. Thus, numerical
results may change slightly depending on the statistical
package, number of iterations, or algorithm used to esti-
mate the parameters.

In multilevel analysis non-convergence can occur when
estimating too many random components that are close
to zero. Hox [5] suggests a solution to this problem which
is to remove some random components, thereby simplify-
ing the model. In our case non-convergence was a signifi-
cant problem when group size was 5 and the number of
groups was 30. There were no significant differences in the
prevalence of the outcome or in the distribution of the
explanatory variables among the converged versus non-
converged samples. When the sample size is small there

may not be sufficient variation to estimate a random
effect, thus leading to non-convergence.

Simulation studies come with their own set of limitations.
This said, our results are comparable with simulation
results for multilevel regression models as reported by
other researchers [11]. We focused on the impact of sam-
ple size at the individual and group level on the bias and
accuracy of parameter estimates. We did not consider the
impact of varying the distribution and variance of the
individual and group level explanatory variables for prac-
tical reasons, specifically due to the large number of con-
ditions that would have to be considered and which
would result in extensive computer processing time. For a
discussion of the impact of misspecification of the distri-
bution of random effects on estimation of and inference
about both the fixed effects and the random effects in
multilevel logistic regression models see Austin [14].

Our results and recommendations are based on extensive
simulation studies from data which are generated from
normal distributions. Since the normal distribution
assumption may be violated in real study applications we
conducted further simulations with 100 replications for
each model and relaxed the normal distribution assump-
tion. This allowed us to compare convergence, coverage,
and bias of the simulated non-normal models with the
simulated normal model. Comparisons were done by
each parameter, number of groups, and group size. The
distributions for generating zj, u0j, u1j, and xij for 8 simu-
lated models are as follows: Model 1: N(0,1), N(0,1),
N(0,1), N(0,1); Model 2: N(0,1), N(0,1), N(0,4), N(0,4);
Model 3: N(0,4), N(0,4), N(0,4), N(0,4); Model 4: U(-
0.5,0.5), N(0,1), N(0,1), U(-0.5,0.5); Model 5: U(-
0.5,0.5), U(-2,2), U(-2,2), U(-0.5,0.5); Model 6: N(0,1),
t(df = 3), t(df = 3), N(0,1); Model 7: t(df = 3), t(df = 3),
t(df = 3), t(df = 3); Model 8: t(df = 5), t(df = 5), t(df = 5),
t(df = 5) where N(a, b) stands for a normal distribution
with mean a and variance b, U(a, b) represents uniform
distribution over the interval (a, b), and t(df = k) stands
for t-student distribution with k degrees of freedom. Table
5 shows the convergence, coverage and relative bias for
above 8 models.

Logistic regression was used to compare the rate of conver-
gence of models 2 to 8 with model 1 (the model with 4
normal standard distributions). Models 3, 6, 7, and 8 were
more likely to converge while models 4 and 5 were less
likely to converge (p-value < 0.01) when group size was 5.
When group size was greater than 5 there was no signifi-
cant difference between the rates of convergence for all
models.

The comparisons (Ttest) between the fixed effect parame-
ter estimates of models 2–8 with model 1 did not show
Page 7 of 10
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Table 5: Percent models converged, percent relative bias, and percent non-coverage (in brackets).

Group Size = 5 Group Size = 30 Group Size = 50
Model Number 

of Groups
% 

converged
γ00 γ01 γ10 γ11 σ0 σ1 % 

converged
γ00 γ01 γ10 γ11 σ0 σ1 % 

converged
γ00 γ01 γ10 γ11 σ0 σ1

1 30 80 -3.9 
(25)

12.3 
(22)

-0.6 
(23)

2.2 
(22)

14.2 
(29)

44.9 
(25)

100 -1.9 
(4)

-4.6 (6) 7.0 (5) -5.4 (8) -3.4 
(11)

-9.7 
(14)

100 -2.8 (5) 2.7 (6) 5.9 (2) -9.0 (4) -7.1 (15) -9.8 (9)

2 84 0.3 
(18)

18.0 
(20)

8.0 
(19)

-16.0 
(20)

41.1 
(31)

4.8 
(25)

100 -1.0 
(7)

1.4 (8) 9.7 (2) -21.6 
(6)

-1.7 
(13)

-5.3 (9) 100 -1.8 (5) 0.9 (4) 6.0 (3) -25.0 (7) -5.6 (11) -6.4 (11)

3 99 -2.3 
(6)

0.7 
(4)

-12.5 
(2)

-11.0 
(8)

5.8 
(19)

0.8 
(18)

100 -3.9 
(6)

0.4 (5) 15.5 
(1)

-7.7 (3) -4.5 
(17)

-5.9 (9) 100 -3.2 (7) 3.5 (3) 15.1 (4) -8.4 (7) -4.1 (12) -4.3 (12)

4 41 12.9 
(60)

8.3 
(62)

70.9 
(60)

-215 
(61)

33.8 
(64)

469 
(64)

76 -0.2 
(31)

-11.2 
(30)

4.0 
(26)

-29.0 
(27)

0.3 
(30)

9.7 
(24)

94 0.61 (11) -9.2 (10) -1.4 (12) 35.1 (16) 0.3 (16) -4.7 (14)

5 53 16.5 
(50)

54.1 
(49)

-7.6 
(50)

-103 
(47)

58.9 
(50)

507 
(52)

93 -0.9 
(12)

28.3 
(8)

7.1 (7) 43.0 
(13)

3.2 
(13)

0.2 
(12)

97 0.7 (12) -4.3 (6) -9.0 (6) 23.4 (13) -1.5 (9) 2.2 (10)

6 93 2.1 
(9)

-9.6 
(11)

23.9 
(8)

15.3 
(11)

-13.3 
(27)

1.9 
(20)

100 -3.2 
(5)

-1.2 (5) -4.1 
(4)

-3.3 (8) -15.3 
(30)

-7.3 
(24)

100 -3.3 (4) -4.3 (4) -5.0 (6) -14.0 (6) -15.0 (29) -3.9 (28)

7 76 2.5 
(5)

-4.8 
(3)

27.1 
(3)

12.9 
(4)

-0.6 
(19)

-11.5 
(23)

99 -4.4 
(13)

-10.7 
(7)

0.0 (8) -3.6 (7) -18.9 
(33)

-26.6 
(39)

97 -4.6 (18) -15.0 (7) -0.7 (7) -2.7 (10) -15.5 (28) -20.3 (35)

8 80 -1.0 
(23)

-4.9 
(25)

17.2 
(23)

18.6 
(24)

-1.5 
(28)

-2.5 
(27)

100 1.2 
(7)

-2.4 
(11)

-8.2 
(11)

5.9 
(12)

-15.1 
(25)

-19.3 
(26)

100 2.6 (6) -0.7 (12) -5.5 (10) 3.6 (10) -7.1 (18) -20.7 (32)

1 50 88 5.4 
(14)

-4.3 
(16)

-6.1 
(13)

-4.3 
(17)

19.2 
(15)

23.5 
(15)

100 3.0 
(7)

4.7 (5) -0.5 
(9)

-4.2 (4) 2.1 
(14)

-1.8 
(10)

100 3.4 (9) 2.0 (8) -0.3 (5) -4.18 (7) -3.9 (11) -4.1 (6)

2 94 10.5 
(10)

-0.8 
(7)

-2.5 
(10)

-5.9 
(10)

22.4 
(17)

15.3 
(15)

100 5.0 
(7)

6.5 (7) -6.4 
(8)

-7.8 (6) -0.4 (8) -0.2 
(10)

100 3.3 (6) 4.8 (8) -7.8 (8) -10.0 (4) -3.8 (10) -3.6 (7)

3 99 11.9 
(4)

14.7 
(4)

-1.7 
(8)

5.6 (5) 20.1 
(10)

13.8 
(14)

100 7.1 
(6)

4.2 (7) -6.5 
(7)

-5.2 (7) -2.9 
(13)

-3.4 (5) 100 6.0 (7) 3.7 (6) -8.4 (8) -3.3 (4) -2.8 (12) -2.9 (9)

4 55 11.7 
(54)

17.6 
(50)

52.1 
(52)

129 
(53)

17.9 
(54)

162 
(58)

92 0.9 
(14)

21.1 
(11)

7.3 
(17)

-36.1 
(11)

-5.4 
(18)

-6.3 
(14)

100 0.9 (4) 32.0 (7) -6.3 (8) -14.6 (7) -5.3 (9) -3.5 (9)

5 58 5.2 
(46)

-30.3 
(49)

49.9 
(46)

4.0 
(47)

25.9 
(53)

224 
(52)

98 3.3 
(8)

5.6 (7) 9.1 (9) -34.3 
(11)

7.1 (2) -2.6 (7) 100 2.1 (5) 10.2 (7) 5.9 (9) -48.3 (7) 4.3 (4) -6.8 (9)

6 100 1.5 
(3)

-4.0 
(7)

-0.5 
(4)

2.12 
(3)

-15.0 
(20)

-11.4 
(22)

100 -4.1 
(4)

-0.3 (8) 3.4 (4) -4.7 (5) -12.9 
(35)

-16.9 
(32)

100 -3.0 (6) -1.1 (10) 1.1 (5) -10.7 (6) -6.2 (28) -10.4 (30)

7 80 2.4 
(4)

8.3 
(6)

27.6 
(2)

8.2 (2) -3.7 
(9)

-6.3 
(20)

98 -1.4 
(7)

-2.6 (9) 7.0 (6) -2.4 (8) -11.0 
(22)

-22.5 
(38)

95 -5.7 (7) -4.0 (8) 8.1 (3) 0.0 (5) -9.3 (25) -20.8 (36)

8 98 -3.1 
(4)

3.2 
(4)

-11.1 
(4)

5.4 (8) -3.5 
(11)

-3.5 
(19)

100 -2.6 
(8)

-0.8 
(10)

-13.4 
(6)

1.2 (3) -9.0 
(13)

-9.0 
(17)

100 -3.3 (9) 0.7 (7) -10.4 (7) 0.8 (3) -10.1 (18) -5.6 (18)

1 100 100 -0.5 
(2)

-8.2 
(7)

5.4 
(3)

2.3 (4) 0.9 (4) 2.3 
(10)

100 -2.4 
(6)

0.8 (7) 2.6 (4) -6.9 (4) -2.6 
(10)

-1.7 (4) 100 -2.4 (6) -0.3 (13) 3.1 (3) -6.0 (3) -4.0 (11) -2.8 (4)

2 100 -2.5 
(6)

-1.8 
(2)

1.4 
(5)

-11.0 
(5)

11.8 
(6)

1.9 (9) 100 -1.9 
(5)

-0.4 
(12)

6.5 (2) -11.9 
(4)

-6.3 (9) -1.6 (5) 100 -2.2 (7) 0.0 (15) 3.7 (0) -8.4 (4) -4.8 (8) -3.6 (3)

3 100 -3.4 
(4)

-0.9 
(6)

-0.7 
(1)

0.6 (5) 4.6 
(12)

2.4 (9) 100 -5.6 
(3)

-0.3 (9) 6.4 (4) -5.9 (3) -3.0 (8) -2.4 (8) 100 -5.1 (7) -2.1 (10) 6.5 (2) -4.7 (5) -3.7 (7) -3.7 (6)

4 66 3.4 
(39)

22.5 
(38)

32.2 
(38)

-8.4 
(36)

1.7 
(41)

137 
(38)

100 -0.4 
(4)

12.2 
(7)

3.9 (3) 7.3 (5) -0.7 (7) -3.7 
(10)

100 0.1 (7) 17.0 (9) -7.9 (3) -29.5 (8) -1.3 (10) -1.5 (10)

5 69 7.7 
(40)

5.7 
(34)

-12.6 
(33)

-57.5 
(34)

19.4 
(38)

169 
(36)

99 0.8 
(7)

-11.5 
(6)

-0.5 
(8)

-20.1 
(11)

6.2 (2) 0.4 (5) 100 0.9 (6) -10.9 (3) -4.6 (6) -16.5 (9) 5.0 (1) 1.3 (4)

6 100 -4.0 
(4)

4.1 
(4)

2.7 
(2)

17.2 
(7)

-13.8 
(16)

-20.9 
(22)

100 -6.0 
(11)

1.1 (5) 3.7 (3) 10.7 
(10)

-14.6 
(29)

-18.2 
(34)

100 -5.8 (10) -3.8 (4) 1.3 (4) 10.4 (7) -9.7 (28) -10.8 (32)

7 94 -3.0 
(7)

1.6 
(7)

16.1 
(2)

6.2 (5) -16.6 
(22)

-26.0 
(26)

98 -2.6 
(10)

-1.6 (7) 12.2 
(3)

0.4 (4) -13.9 
(33)

-22.5 
(46)

94 -3.2 (11) -0.6 (8) 8.8 (5) -3.2 (7) -13.6 (35) -17.8 (37)

8 100 0.6 
(7)

9.2 
(4)

-10.4 
(5)

6.4 (7) -2.2 
(9)

-10.2 
(10)

100 1.9 
(8)

4.0 (3) 0.3 (6) -0.3 (4) -4.5 
(16)

-8.1 
(17)

100 1.1 (4) 3.1 (5) -2.0 (3) 2.3 (7) -5.8 (20) -6.4 (11)
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any significant differences. For models 6, 7, and 8 the ran-
dom intercept and random slope were underestimated
compare to model 1 (p < 0.01). This phenomenon was
also observed and reported by Austin [14] for a logistic
model with random intercept.

Fisher exact test was used to test the rate of coverage of
models 2–8 with model 1 for each parameter, number of
groups, and group size. There was no significant differ-
ence between the rates of coverage for the fixed effect
parameters when group size was greater than 5 using
groups of 50 or more. The rates of coverage for the ran-
dom components of models 6 and 7 were significantly
lower than the coverage rates of model 1 (p < 0.01). Aus-
tin [14] reported similar conclusions for a logistic model
with random intercept.

Although the misspecification of random components
significantly affected the estimates and standard errors of
the random intercepts and random slopes when either
group size or number of groups was small, the estimates
and standard errors of all models were statistically the
same as those estimates and standard errors for model 1
when the number of groups and group size was 50 or
more; the exception being for a t-distribution with 3
degrees of freedom.

Despite the limitations of simulation studies [see for
example 21] our findings can offer some suggestions for
sample size selection in multilevel logistic regression. In
practice a group size of 30 is often recommended in edu-
cational research and a group size of 5 is recommended in
family and longitudinal research studies [11]. Based on
our findings we recommend a minimum group size of at
least 50 and a minimum of 50 groups to produce valid
estimates for multilevel logistic regression models. We
offer a caveat here such that the group size must be
adjusted properly for low-prevalent outcomes; specifically
the expected number of outcomes in each group should
be greater than one. This caveat is offered as a caution to
researchers using multilevel logistic regression in conjunc-
tion with small data sets; under these conditions research-
ers can expect to encounter convergence problems, large
biases in their model estimates and inadequate statistical
inference procedures. Our findings suggest that when
choosing a sample size, researchers should base their deci-
sion on the level of bias that they consider acceptable for
that particular study.

The main findings from this research can be summarized
as follows: (i) convergence problems arise when preva-
lence is low, the number of groups is small, or the group
size is small; (ii) the estimates of the fixed effect parame-
ters are unbiased when the number of groups is relatively
large (more than 50) and with moderate group size; (iii)

when group size is small (e.g. 5) the estimates of the ran-
dom slope and random intercept are severely overesti-
mated, and; (iv) the standard errors of the variance
component estimates are underestimated even with 100
groups and group size of 50.
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