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With computer simulations of >100,000 atoms, the mechanism for
the hydrophobic collapse of an idealized hydrated chain was ob-
tained by tiling space with (0.2 nm)3 cubes and projecting the
atomistic water molecule positions onto this grid. With the coarse-
grained field thus defined, the string method in collective variables
was used to compute a minimum free-energy pathway (MFEP) for the
collapsing chain. These calculations provide a proof of principle for a
coarse-grained description of water solvent. Furthermore, the calcu-
lated MFEP characterizes the mechanism for the collapse of the
hydrated chain by providing a path of maximum likelihood for
dynamical trajectories. The reliability of the calculated MFEP was
confirmed with the use of conventional molecular dynamics trajec-
tories. Analysis of the MFEP provides atomistic confirmation for the
mechanism of hydrophobic collapse proposed by ten Wolde and
Chandler. In particular, we show that length-scale-dependent hydro-
phobic dewetting is the rate-limiting step in the hydrophobic collapse
of the considered chain.

rare-event dynamics � water

This paper applies the string method (1–3) to the phenomenon
of hydrophobic collapse. We show that the method can describe

complex dynamics in large atomistic systems, ones for which other
currently available rare-event methods would seem intractable.
Furthermore, we use the string method to demonstrate that ato-
mistic dynamics can be usefully projected onto that of a coarse-
grained field. The specific application of the string method consid-
ered herein finds results that are consistent with the mechanism of
hydrophobic collapse put forward by ten Wolde and Chandler
(tWC) (4).

The hydrophobic effect, or the tendency of oil and water to
separate on mesoscopic length scales, has long been recognized as
an important driving force in molecular assembly (5). Recent
theoretical developments have helped establish a quantitative un-
derstanding of the thermodynamics of hydrophobicity (6, 7), but the
dynamics of hydrophobic collapse remain poorly understood be-
cause it couples a large range of length and time scales. Relevant
processes include the atomic-scale motions of individual water
molecules, collective solvent density f luctuations, and the
nanometer-scale movements of the hydrophobic solutes. Bridging
these dynamical hierarchies and addressing the problem of complex
dynamics in large systems are fundamental challenges for compu-
tational methods.

We address this challenge by using the string method in collective
variables (1–3). We consider the collapse of a chain composed of
12 spherical hydrophobes in an explicit solvent of �34,000 water
molecules. We studied the system by coarse-graining the water
molecule positions onto a set of 129,000 collective variables that
represent the solvent density field and then using the string method
in these variables to compute the minimum free-energy path
(MFEP) for the hydrophobic collapse of the chain. Conventional
molecular dynamics (MD) simulations were subsequently per-
formed to confirm that this coarse-grained description adequately
describes the mechanism of hydrophobic collapse.

tWC have previously reported simulations of an idealized hy-
drophobic chain solvated by a coarse-grained model of liquid water
(4). For this model, they found that the key step in the collapse
dynamics is a collective solvent density fluctuation that is nucleated
at the hydrophobic surface of the chain. However, it was not clear
whether this mechanism was an artifact of their coarse-grained
model of water. Atomistic simulations are needed to resolve the
issue.

Previous efforts to characterize the mechanism of hydrophobic
collapse using atomistic computer simulations neither confirm nor
disprove the mechanism proposed by tWC. In recent work, for
example, MD simulations showed that dewetting accompanies the
collapse of hydrophobes in water (8–11). However, the rate-limiting
step and, thus, the mechanism for hydrophobic collapse were not
characterized. Specifically, in ref. 10, MD trajectories were initiated
at various separation distances for a pair of melettin protein dimers.
Collapse dynamics were observed only when the initial dimer
configuration was on the product side of the free-energy barrier, but
the actual nature of that barrier and the dynamics of crossing it were
not studied. In ref. 11, the thermodynamics and solvation of a
hydrophobic chain were studied as a function of its radius of
gyration, but, again, the dynamics of collapse was not characterized.

Our atomistic simulations explicitly confirm the mechanism of
hydrophobic collapse put forward by tWC (4). In particular, we
show that the rate-limiting step in the collapse of their hydrophobic
chain coincides with a collective solvent motion and that perform-
ing the rate-limiting step involves performing work almost exclu-
sively in the solvent coordinates. We further show that the solvation
free energy along the MFEP can be decomposed into small- and
large-length-scale contributions. This analysis demonstrates that
atomistic solvent energetics can be quantitatively modeled by using
a grid-based solvent density field, and it suggests that the rate-
limiting step for hydrophobic collapse coincides with length-scale-
dependent hydrophobic dewetting.

Atomistic Model, Coarse-Graining, and the String Method
The System. As indicated, we considered the atomistic version of the
hydrated hydrophobic chain studied by tWC (4), a model that
exhibits the length-scale-dependent hydrophobic effect (6). More
complicated models can be considered, but we limited this study to
this particular chain. The chain is composed of 12 spherical
hydrophobes, each with a diameter of 7.2 Å and a mass of 71 atomic
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mass units. These are ideal hydrophobes, because they exert purely
repulsive interactions with water that expel the centers of the
oxygen atoms from the volume within 0.5 nm of the center of the
hydrophobe. The volume and mass are typical of amino acid
residues (12, 13). Consecutive hydrophobes in the unbranched
chain interact via harmonic bonds, and the chain is made semirigid
by a potential energy term that penalizes its curvature. The rigidity
is chosen so that the extended configurations of the chain are
dominant in vacuum. It is only solvent (and thus the hydrophobic
interaction) that stabilizes the collapsed globule configurations.
The chain is hydrated with 33,912 rigid water molecules interacting
with the SPC/E (simple point charges/extended model) potential
(14) in an orthorhombic simulation box with periodic boundary
conditions. Electrostatic interactions were included by using the
smoothed particle mesh Ewald method (15), and all simulations
were performed at 300 K. Full details of the simulation protocol are
provided in supporting information (SI) Text: ‘‘Details of the
System.’’

To describe hydrophobic collapse, it is necessary to choose an
appropriate thermodynamic ensemble for the simulations. Nanom-
eter-scale fluctuations in solvent density are suspected to play a key
role in these dynamics. Use of the NVT ensemble (with a 1-g/cm3

density of water) might suppress these density fluctuations and bias
the calculated mechanism. We avoided this problem with a simple
technique that is based on the fact that, under ambient conditions,
liquid water is close to phase coexistence. Indeed, it is this proximity
that leads to the possibility of large-length-scale hydrophobicity (6,
16). By placing a fixed number of water molecules at 300 K in a
volume that corresponds to an average density of �1 g/cm3, we
obtained a fraction of the system at the density of water vapor and
the majority at a density of bulk water. Because we are not
concerned with solvent fluctuations on macroscopic length scales,
the difference between simulating bulk water at its own vapor
pressure compared with atmospheric pressure is completely negli-
gible. This strategy has been used to study the dewetting transition
between solvophobic surfaces (17, 18). To ensure that the liquid–
vapor interface remains both flat and well distanced from the
location of the chain, we repelled particles from a thin layer at the
top edge of the simulation box, as is discussed in SI Text: ‘‘Details
of the System.’’

Coarse-Graining of Solvent. Throughout this study, we simulated
water and the hydrated chain by using atomistic MD. To apply
the string method to the dynamics of this system, we employed
a choice of collective variables that describe the density field of
water. In particular, a coarse-graining algorithm was developed
to connect the atomistic and collective variable representations
of the solvent. By following tWC (4), the simulation box was
partitioned into a three-dimensional lattice (48 � 48 � 56) of
cubic cells with a side length of l � 2.1 Å. We labeled the cells
with the vector k � (kx, ky, kz), where each k� takes on integer
values bounded as follows: 1 � kx � 48, 1 � ky � 48, and 1 �
kz � 56. On this grid, the molecular density �(r), as determined
by the positions of the water oxygen atoms, is coarse-grained into
the field Pk, where

Pk � � dr ��r� �
��x,y,z

�k�
�r � 1�� . [1]

Here, the integral extends over the volume of the system, and 1�

denotes the unit vector in the �th Cartesian direction. The coarse-
graining function, �k�

(x), is normalized, ensuring that �kPk � N is
the total number of water molecules. The particular function that
we have chosen to use is

�j�x� � �dy��x � y� �hj�x�hj� y� � hj	1�x� �
i�j

hi� y�

� hj
1�x� �
i�j

hi� y��, [2]

where �(x) � (2	
2)
1/2 exp(
x2/2
2), 
 � 1 Å, and hj(x) is unity
when x is in the jth interval and zero otherwise. In effect, this
choice spreads the atomistic density field �(r) over the length
scale 
 and bins it into a grid of length scale l in such a way as
to preserve normalization. While we have found this choice of
coarse-graining function to be convenient, others are possible.

Fig. 1 A and B illustrates the coarse-graining procedure. In Fig.
1A, the solvent is schematically shown before and after coarse-
graining. Fig 1B, the same mapping is shown for the actual system
considered here. Cells are shaded white when their solvent occu-
pation, Pk, is less than half of the bulk average value of �P�bulk  c �
0.3 molecules. Small local density fluctuations are seen throughout
the simulation box, as is expected for an instantaneous solvent
configuration.

In addition to visualizing solvent density, the coarse-graining
algorithm is useful for controlling the solvent density in MD
simulations. For example, if it is desired that a particular cell k
exhibit a solvent occupation P*k, the potential energy term �(Pk 

P*k)2/2 can be used to derive the appropriate forces on the atoms in
the simulation, where � is a force constant. This technique is
illustrated in Fig. 1C. The leftmost image shows a density distribu-
tion that is exceedingly unlikely for a simulation of ambient liquid
water. Images to the right show the average solvent density distri-
bution from MD simulations that are restrained to this unlikely
reference distribution with increasing �. Force constant values of
�2 kBT/c2, in which the simulation incurs an energetic penalty of at
least kBT for placing the average bulk density in a cell that is

Fig. 1. Solvent coarse graining. (A) The coarse-graining procedure is sche-
matically shown to project the atomistic solvent density onto a discrete grid.
(B) The same procedure is shown for an instantaneous solvent configuration
of the actual system. Grid cells containing less solvent density than c/2 are
colored white; the remaining cells are left transparent against the blue
background. The hydrophobic chain is shown in red. (C) Atomistic solvent
density is restrained to the reference distribution at the far left. With larger
restraint force constant � reported numerically in units of 2 kBT/c2, the average
atomic solvent density reproduces the reference distribution in detail (see text
for notation).
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restrained to be empty, ensure that the reference distribution is
recovered in detail. Here, kBT denotes Boltzmann’s constant times
temperature T.

Defining the MFEP. We used the coarse-graining procedure to obtain
collective variables that describe the position of the hydrophobic
chain and the water density field. Specifically, let x � (xc, w) be the
position vector of length n � 3 � 12 	 3 � 3� N for the atomistic
representation of the entire system, where xc is the position vector
for the hydrophobes in the chain and w is the position vector for the
atoms in the water molecules. Then, z(x) � (xc, P) is the vector of
length � � 3 � 12 	 48 � 48 � 56 for the collective variable
representation of the system, where the elements of P are defined
in Eq. 1.

The MFEP is a curve in the space of collective variables. It is
represented by z*(�), where � � 0 corresponds to the collapsed
chain and � � 1 corresponds to the extended chain. For interme-
diate values � � (0, 1), the MFEP obeys the condition

dz*i���

d�
parallel to �

j�1

�

Mij�z*����
F�z*����

zj
, [3]

where F(z) � 
�
1ln���
i�1�(zi 
 zi(x))� is the free-energy

surface defined in the collective variables, and

Mij�z� � exp��F�z��

� � �
k�1

n

mk

1 zi�x�

xk

zj�x�

xk
�
i�1

�

��zi � zi�x��	 . [4]

Here, angle brackets indicate equilibrium expectation values, �
1 �
kBT, and mk is the mass of the atom corresponding to coordinate
xk. The matrix Mij(z), which arises from projecting the dynamics of
the atomistic coordinates onto the collective variables (and, thus, in
general, curving the coordinate space) (3, 19), ensures that the
various collective variables evolve on a consistent time scale. As is
seen in Eq. 10, the matrix scales the relative diffusion coefficients
for the collective variables.

If the used collective variables are adequate to describe the
mechanism of the reaction (here, the hydrophobic collapse),
then it can be shown that the MFEP is the path of maximum
likelihood for reactive MD trajectories that are monitored in the
collective variables (3). For the current application, we checked
the adequacy of the collective variables a posteriori by running
MD trajectories that are initiated from the presumed rate-
limiting step along the MFEP (i.e., the configuration of maxi-
mum free energy) and verified that these trajectories led with
approximately equal probability to either the collapsed or ex-
tended configurations of the chain (see Hydrophobic Collapse of
a Hydrated Chain: ‘‘The Committor Function and a Proof of
Principle for Course-Graining’’).

String Method in Collective Variables. The string method yields the
MFEP by evolving a parameterized curve (i.e., a string) according
to the dynamics (3, 20)

z*i��, t�
t

� � �
j�1

�

Mij�z*�� , t��
F�z*�� , t��

zj

� ��� , t�
z*i�� , t�

�
, [5]

where the term �(�, t)z*i (�, t)/� enforces the constraint that the
string remain parameterized by normalized arc length. The end-

points of the string evolve by steepest descent on the free-energy
surface,

z*i ��, t�
t

� �
F�z*�� , t��

zi
, [6]

for � � 0 and � � 1. These artificial dynamics of the string yield
the MFEP, which satisfies Eq. 3.

In practice, the string is discretized by using Nd configurations
of the system in the collective variable representation. The
dynamics in Eqs. 5 and 6 are then accomplished in a three-step
cycle, where (i) the endpoint configurations of the string are
evolved according to Eq. 6 and the rest of the configurations are
evolved according to the first term in Eq. 5, (ii) the string is
(optionally) smoothed, and (iii) the string is reparameterized to
maintain equidistance of the configurations in the discretization.
This cycle is repeated until the discretized version of Eq. 3 is
satisfied. Step i requires evaluation of the mean force elements
F(z)/zi and the tensor elements Mij(z) at each configuration.
These terms are obtained by using restrained atomistic MD
simulations of the sort illustrated for the solvent degrees of
freedom in Fig. 1C. The details of the string calculation are
provided in SI Text: ‘‘String Method in Collective Variables.’’

Hydrophobic Collapse of a Hydrated Chain
MFEP. Fig. 2 shows the MFEP for the hydrophobic collapse of the
hydrated chain. It was obtained by using the string method in the
collective variables for the chain atom positions and the grid-based
solvent density field. The converged MFEP was discretized by using
Nd � 40 configurations of the system, and we shall hereafter refer
to these configurations by their index number, s � 1, . . ., Nd. The
free-energy profile was obtained by integrating the projection of the
mean force along the MFEP, using

F*��� � �
0

�

�F�z*����� � dz*���� . [7]

The resolution of F*(�) in Fig. 2 could be improved by employing
a larger Nd but at larger computational cost.

Fig. 2. The minimum free-energy path obtained by using the string method.
(Upper) The free-energy profile exhibits a single peak at configuration 22.
(Lower) The configurations of the path in the vicinity of the free-energy peak
are shown with configuration numbers indicated in white text.
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The statistical errors in the free-energy profile between consec-
utive configurations are approximately the size of the plotted
circles, and the small features in the profile at configurations 27 and
31 are due to noise in the convergence of the string calculation.
Further discussion of the statistical error in the string calculation is
provided in SI Text: ‘‘String Method in Collective Variables.’’ Fig.
2 Lower presents configurations along the MFEP in the region of
the free-energy barrier. As in Fig. 1, lattice cells with less than half
of the bulk solvent occupation number fade to white.

The free-energy profile in Fig. 2 is dominated by a single barrier
at configuration 22, where a liquid–vapor interface is formed at a
bend in the hydrophobic chain. The sharply curved chain geometry
presents an extended hydrophobic surface to molecules located in
the crook of the bend, an environment that is analogous to that
experienced by water trapped between hydrophobic plates and
known to stabilize large-length-scale solvent density fluctuations
(16, 21, 22). The barrier in the calculated free-energy profile clearly
coincides with a collective motion in the solvent variables.

The string method characterizes the most likely member among
a local channel of reactive trajectories. A reasonable concern,
however, is the extent to which other channels (such as those that
might correspond to forming bends at other points along the
hydrophobic chain) are accessible and important. However, if other
bends in the chain did correspond to well separated transition
channels, then it seems unlikely, given the arbitrary manner in
which the string was initialized, that we could locate a MFEP that
exhibits a totally symmetric bend in the chain. Furthermore, an
estimate for the energetic cost of translating the bend along the
chain, which is described in SI Text: ‘‘Estimation of the Barrier
Between Reactive Barriers,’’ suggests that trajectories that collapse
by forming asymmetric bends in the chain do not belong to a distinct
reactive channel from those that form a symmetric bend. That said,
the less symmetric transition state configuration illustrated in figure
2 of ref. 4 is but one member of the transition-state ensemble, the
most likely of which is pictured here in Fig. 2.

Solvation Free Energy. A simple theory was constructed to under-
stand the contributions to the free-energy profile in Fig. 2 and to
test the validity of coarse-graining solvent interactions. Noting that
our choice of collective variables for the string calculation neglects
the configurational entropy of the chain, the free-energy profile
F(�) can be decomposed into the configurational potential energy
of the chain Ec(�) and the free energy of hydrating the chain, Fh(�).

F*��� � Ec��� � Fh(�). [8]

The term Ec(�) is easily evaluated from the chain potential energy
term, yielding the components of the free-energy profile shown in
Fig. 3A.

Now we will focus our attention on Fh. The solvation free energy
for hydrophobes of idealized geometry is well understood. For
small-length-scale hydrophobes (�1 nm), this energy scales linearly
with the solute volume, whereas, for large-length-scale hydro-
phobes, it scales linearly with the solute surface area (16, 23).
However, theoretical prediction of the solvation free energy for
more complicated solute geometries is not necessarily trivial. For
example, depending on its configuration, some parts of the chain
considered here might be solvated like a large-length-scale hydro-
phobe, whereas other parts might behave like a small-length-scale
hydrophobe.

Here, we present a technique for separating a general hydro-
phobic solute into components that belong to either the small-
length-scale or large-length-scale regimes. We define the solvent-
depleted volume as the continuous set of lattice cells that are, on
average, occupied by �50% of the average bulk solvent value (this
set includes both the volume that is excluded by the hard-sphere-like
interactions between the solute and solvent interactions and any
additional volume in the vicinity of the solute that is not substan-

tially occupied by the solvent). We also introduce a probe volume
that is a cubic 4 � 4� 4 set of cells, which is approximately the size
at which the water solvation structure changes from the small-
length-scale to the large-length-scale regime.

The probe volume is used to determine whether a given section
of the solvent-depleted volume is in the small- or large-length-scale
regime. This is done by moving the probe volume throughout the
simulation box and determining whether it can be fit into different
portions of the solvent-depleted volume. If at a given position the
vast majority of this probe volume (specifically, 59 of 64 cells) fits
within the solvent-depleted volume, then the cells in that portion of
the solvent-depleted volume are included in the large-length-scale
component, Vcol. Portions of the solvent-depleted volume that do
not meet this criterion for any position of the probe volume are
included in the small-length-scale component, Vext. The volumes
Vcol and Vext, which are plotted in SI Fig. 8A, primarily include
contributions from the collapsed portions and extended portions of
the chain, respectively. The total volume Vtot is obtained by count-
ing the total number of cells in the solvent-depleted volume, such
that Vtot � Vext 	 Vcol.

The total surface area, Atot, and its large-length-scale component,
Acol, were obtained by counting the number of external faces on the
cells that comprise Vtot and Vcol, respectively. The surface area of
the small-length-scale component was obtained by using Aext � Atot

 Acol. To account for the fact that we are calculating the area of
a smooth surface by projecting it onto a cubic lattice, each surface
area term also is multiplied by a 2/3, a correction factor that is exact
for an infinitely large sphere. The surface area components are
plotted in SI Fig. 8A.

We use the separated components of the solute volume and
surface area to estimate the solvation free energy for the chain
along the minimum free-energy path with the relationship.

Fh��� � �Vext��� � �Acol��� . [9]

The coefficients � and � are, respectively, the prefactors for the
linear scaling of the solvation free energy in the small-length-scale

Fig. 3. A simple theory describes the solvation free energy of irregular
hydrophobic solute geometries. (A) The free-energy profile F* from simula-
tion, decomposed into contributions from the chain configurational potential
energy Ec and the free energy of solvation Fh. (B) The free energy of solvation
obtained from Eq. 9 (dotted line) and from simulation (solid line).
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and large-length-scale regimes, as obtained by calculations on a
spherical hydrophobic solute (23). Their values are taken to be � �
8 mJ/(m2Å) and � � 45 mJ/m2.

The results of this calculation are presented in Fig. 3B. The dotted
line indicates our theoretical estimate of the solvation free energy
using Eq. 9, and the solid line indicates the data from the atomistic
simulations (from Fig. 3A). The agreement is very good, and, as is
shown in SI Text: ‘‘Alternate Models for the Solvation Free
Energy,’’ it is better than can be obtained from solvation free-
energy estimates that exclusively consider either the solute volume
or the solute surface area. This result demonstrates that atomistic
solvent energetics can be quantitatively modeled by using a grid-
based solvent density field. Furthermore, note in SI Fig. 8 that the
collapsing chain first develops large-length-scale components in
the vicinity of configuration 22, which suggests that both the peak
in the free energy profile in Fig. 2 and the corresponding collective
solvent density motion coincide with the crossover from small- to
large-length-scale solvation (i.e., dewetting).

The Committor Function and a Proof of Principle for Coarse-Graining.
The various assumptions that are used in our implementation of the
string method, including our choice of collective variables and the
corresponding neglect of the chain configurational entropy, raise
the possibility that the barrier in the free-energy profile in Fig. 2
does not correspond to the dynamical bottleneck for hydrophobic
collapse. This is a general concern in trying to relate free-energy
calculations to dynamical quantities, such as the reaction mecha-
nism and the reaction rate. To confirm that the calculated free-
energy profile is dynamically relevant, we evaluated the committor
function at several configurations along the MFEP. The committor
function reports the relative probability that MD trajectories that
are initialized from a particular collective variable configuration
first proceed to the extended configurations of the chain, as
opposed to the collapsed configurations. For initial collective
variable configurations that coincide with the true dynamical
bottleneck, the committor function assumes a value of exactly 0.5.

We first evaluated the committor function at configuration 22,
which corresponds to the peak in the calculated free energy
profile in Fig. 2. The committor function is obtained by per-
forming straightforward MD trajectories from initial conditions
that are consistent with this collective variable configuration and
then tallying the fraction of those trajectories whose endpoints
are ‘‘extended,’’ as opposed to ‘‘collapsed.’’ The initial condi-
tions for these trajectories are obtained from a 20-ps MD
trajectory that is restrained to the collective variables for con-
figuration 22; the atomistic coordinates of the restrained trajec-
tory are recorded every picosecond. From each set of atomistic
coordinates, an unrestrained trajectory was run for 150 ps
forwards and backwards in time with the initial atomistic velocity
vector drawn from the Maxwell–Boltzmann distribution at 300
K. To decide whether a given unrestrained trajectory terminates
in either an extended or collapsed configuration of the chain, we
employed an order parameter based on the number of chain
atoms that are within d � 1.25 Å of another chain atom to which
it is not directly bonded, where d refers to the separation between
the surfaces of spheres with 3.6-Å radii surrounding the chain
atoms. If the number of nonbonded contacts exceeds three, the
chain is considered to be in a collapsed configuration; otherwise
it is considered extended. This order parameter need only
distinguish between collapsed and extended configurations of
the chain; it need not be (and in fact is not) a good reaction
coordinate. Fig. 4 illustrates representative forward and back-
wards unrestrained MD trajectories. Fig. 4B reminds the reader
of the atomistic basis for the coarse-grained field.

The committor function at configuration 22 is 0.3 � 0.1, sug-
gesting that the calculated free-energy barrier is slightly biased
toward the basin of stability for the collapse chain. However, this
deviation from the ideal value of 0.5 is only marginally statistically

significant, and we emphasize that the committor function is
exponentially sensitive in the region of the dynamical bottleneck. To
illustrate this point, we repeat the evaluation of the committor
function at configuration 20, which is seen in Fig. 2 to be near the
barrier peak but slightly closer to the collapsed configurations of
the chain, as well as at configuration 24, which is slightly closer to
the extended configurations. We found the committor function at
configuration 20 to be 0.00 � 0.05 and the value at configuration
24 to be 0.90 � 0.05. Only very minor shifts along the MFEP
dramatically change the value of the committor function.

Given the extreme sensitivity of the committor function near the
dynamical bottleneck, the fact that configuration 22 gives rise to a
significant fraction of trajectories that proceed to both the collapsed
and extended basins is very significant. Furthermore, the direction
in which the committor function changes as a function of the
configuration number is as is expected in the vicinity of the
dynamical bottleneck. We conclude that the barrier in the calcu-
lated free-energy profile correctly characterizes the true free-
energy barrier, thus identifying the rate-limiting step for the col-
lapse dynamics.

The committor function calculations, which are based on
straightforward MD simulations, indicate that our choice of col-
lective variables provides a reasonable description of the mecha-
nism of hydrophobic collapse. This result yields atomistic support
for the strategy of coarse-graining solvent dynamics. Because it is
straightforward (3) to obtain the stochastic dynamics in the collec-
tive variables for which the most likely reaction pathway is the same

Fig. 4. Snapshots from unrestrained MD trajectories that are initiated from
the calculated free-energy barrier at configuration 22. (A) The instantaneous
configurations are visualized in the collective variable representation by using
the same technique that was introduced in Fig. 1. (B) The boxed area from the
0-ps snapshot in A, with a planar cross-section of water with a thickness of 7.2
Å, is shown in atomistic detail.
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as the mechanism obtained by using the string method, and further,
because the mechanism for hydrophobic collapse obtained in the
used collective variables agrees with the mechanism obtained by
using atomistic dynamics, we obtain a proof of principle that
atomistic solvent dynamics can be usefully projected onto a coarse-
grained field. The Langevin equation for the collective variables in
this description is (3)

��
zi�t�

t
� � �

j�1

� 
Mij�z� t��
F�z� t��

zj
� �
1

Mij�z� t��
zj

�
� �2�� /��1/2 �

j�1

�

Mij
1/2 �z� t��� j� t� , [10]

where �i(t) is a white noise satisfying ��i(t)�j(t�)� � �ij�(t 
 t�) and
t is an artificial time that is scaled by the friction coefficient �� .

The computational feasibility of directly integrating these coarse-
grained dynamics, however, hinges on the cost of calculating the
mean force elements F(z)/zj and the tensor elements Mij(z) and
Mij(z)/zj, because these terms are required at every coarse-
grained time step. It is therefore encouraging that the free-energy
surface in the collective variables can be quantitatively modeled in
lieu of atomistic simulations, by using Eqs. 8 and 9. Similar
approximations for the tensor elements might also be possible.

The Rate-Limiting Step. Using the calculated MFEP and committor
function values, we established that the rate-limiting step for the
hydrophobic collapse of the hydrated chain coincides with a col-
lective solvent motion. Using a simple analysis of the solvation free
energy, we found that this collective solvent motion is consistent
with length-scale-dependent dewetting. However, it remains to be
shown whether the rate-limiting step involves performing work in
the solvent or chain degrees of freedom. This is an important
distinction. If the latter case is true, then dewetting merely accom-
panies hydrophobic collapse as a spectator, but, if the former case
is true, then dewetting is the rate-limiting step to hydrophobic
collapse.

To address this issue, we again decomposed the free-energy
profile, this time into contributions from work performed along the
solvent and the chain collective variables. The definition of the
free-energy profile in Eq. 7 can be written more explicitly as

F*��� � �
0

�

�cF�z*����� � dxc����

� �
k�V

�
0

�

�PkF�z*�����dPk���� [11]

where �cF(z*(��)) is the vector of mean forces acting on the
chain atom positions at configuration s � Nd � � along
the MFEP, and �Pk

F(z*(��)) is the corresponding mean force on
the solvent collective variable Pk. The full free-energy profile is
obtained by setting the volume V equal to the entire simulation

box. To understand the role of solvent in hydrophobic collapse,
however, it is informative to calculate the free-energy profile by
using various smaller solvent volumes.

The bottom curve in Fig. 5 is obtained from Eq. 11 by letting V
be the empty set, thus eliminating the second term. The middle
curve is obtained by letting V be the set of 8 � 8 � 8 lattice cells
at the middle of the simulation box, as is indicated in the corre-
sponding image, and the top curve is obtained by letting V be the
middle set of 20 � 20 � 20 lattice cells. Consideration of larger sets
of lattice cells does not further alter the free-energy profile, as is
shown in SI Text: ‘‘Convergence of the Free-Energy Profile with
Increasing Solvent Box Sizes.’’ The solvent variables for regions of
space that are distant from the collapsing chain remain constant
along the path and do not contribute to the free-energy profile.

The bottom curve in Fig. 5 shows only the work performed on the
chain atom positions during hydrophobic collapse. Remarkably, it
lacks almost any free-energy barrier, indicating that essentially no
work is performed in the chain degrees of freedom in crossing the
dynamical bottleneck. Instead, we see that the barrier emerges only
upon inclusion of the work performed in the solvent collective
variables. Performing the hydrophobic collapse involves traversing
a free-energy barrier that exists only in the solvent coordinates. Fig.
5 shows that the dewetting transition not only accompanies the
rate-limiting step for hydrophobic collapse, but that it is the
rate-limiting step.
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