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We present a series of results we obtained recently about the
intersection numbers of tautological classes on moduli spaces of
curves, including a simple formula of the n-point functions for
Witten’s � classes, an effective recursion formula to compute
higher Weil–Petersson volumes, several new recursion formulae of
intersection numbers and our proof of a conjecture of Itzykson and
Zuber concerning denominators of intersection numbers. We also
present Virasoro and KdV properties of generating functions of
general mixed � and � intersections.

recursion formulae

Let �g,n denote the Deligne–Mumford moduli stack of stable
curves of genus g with n marked points. Let �i be the first

Chern class of the line bundle whose fiber over each pointed
stable curve is the cotangent line at the ith marked point. Let �i
be the ith Chern class of the Hodge bundle �, whose fiber over
each pointed stable curves is H0 (C, �c).

We also have the � classes originally defined by Mumford (1),
Morita (2), and Miller (3). A more natural variation was later
given by Arbarello–Cornalba (4). It is known that the � and �
classes generate the tautological cohomology ring of the moduli
spaces, and most of the known cohomology classes are tauto-
logical.

The following intersection numbers

��d1
. . .�dn �

j�1

�j
bj� g: � �

�g,n

�1
d1. . .�n

dn �
j�1

�j
bj

are called the higher Weil–Petersson volumes (5). These are
important invariants of moduli spaces of curves.

In 1990, Witten (6) made the remarkable conjecture that the
generating function of intersection numbers of � classes on
moduli spaces are governed by KdV hierarchy. Witten’s conjec-
ture (first proved by Kontsevich; ref. 7) is among the deepest
known properties of moduli spaces of curves and motivated a
surge of subsequent developments.

The intersection theory of tautological classes on the moduli
space of curves is a very important subject and has close
connections to string theory, quantum gravity and many
branches of mathematics.

The n-Point Functions for Intersection Numbers
Definition 1: We call the following generating function
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the n-point function.
Consider the following ‘‘normalized’’ n-point function

G�x1, . . . , xn� � exp��� j�1
n xj
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Starting from 1-point function G(x) � 1/x2, we can obtain any
n-point function recursively by the following theorem.

Theorem 1 (8). For n � 2,
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where Pr and 
 are homogeneous symmetric polynomials defined
by
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where I, J � 
, n
�

� {1, 2, . . . , n}, and Gg (xI) denotes the degree
3g � �I� � 3 homogeneous component of the normalized �I�-point
function G(xk1

, . . . , xk�I�), where kj � I.
Thus, we have an elementary and more efficient algorithm to

calculate all intersection numbers of � classes other than the
celebrated Witten–Kontsevich theorem.

Because P0 �x , y� �
1
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, Pr�x , y� � 0 for r  0 and
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we recover Dijkgraaf’s 2-point function and Zagier’s 3-point
function obtained years ago.

There is another slightly different formula of the n-point
functions. When n � 3, this has also been obtained by Zagier.

Theorem 2 (8). For n � 2,
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where Pr and 
 are the same polynomials as defined in Theorem 2.
Okounkov (9) obtained an analytic expression of the n-point

functions using n-dimensional error-function-type integrals.
Brézin and Hikami (10) use correlation functions of GUE
ensemble to find explicit formulae of n-point functions.

Higher Weil–Petersson Volumes
We have discovered a general recursion formula of higher Weil–
Petersson volumes (11), which is a vast generalization of the
Mirzakhani’s recursion formula (12).

First we fix notations as in ref. 5. Consider the semigroup N�

of sequences m � (m1, m2, . . .), where mi are nonnegative
integers and mi � 0 for sufficiently large i.

Let m, t, a1, . . . , an � N� and s :� (s1, s2, . . .) be a family of
independent formal variables.
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Let b � N�, we denote a formal monomial of � classes by
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Theorem 3 (11). Let b � N� and dj � 0.
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where the tautological constants �L can be determined recursively
from the following formula

�
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with the initial value �0 � 1.
The proof of the above theorem is to use Witten–Kontsevich

theorem, a combinatorial formula in ref. 5 expressing � classes
by � classes and the following elementary but crucial lemma (11).

Lemma 1. Let F (L, n) and G (L, n) be two functions defined on
N� � �, where � � {0, 1, 2,. . .} is the set of nonnegative integers.
Let �L and �L be real numbers depending only on L � N� that
satisfy �0�0 � 1 and

�
L�L��b

�L�L� � 0, b  0.

Then the following two identities are equivalent.
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When b � (l, 0, 0, . . .), Theorem 3 recovers Mirzakhani’s
recursion formula of Weil–Petersson volumes for moduli spaces
of bordered Riemann surfaces (12–17).

Theorem 3 also provides an effective algorithm to compute
higher Weil–Petersson volumes recursively.

In fact, we can use the main formula in ref. 5 to generalize
almost all pure � intersections to identities of higher Weil–
Petersson volumes that share similar structures as Theorem 3.
For example, the identities in the following theorem are gener-
alizations of the string and dilation equations.

Theorem 4 (11). For b � N� and dj � 0,
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Note that Theorem 4 generalizes the results in ref. 18.

New Identities of Intersection Numbers
The next two theorems follow from a detailed study of coeffi-
cients of the n-point functions in Theorem 1.

Liu and Xu PNAS � August 28, 2007 � vol. 104 � no. 35 � 13897

M
A

TH
EM

A
TI

CS



Theorem 5 (8). We have
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Theorem 6 (8, 19). We have
1. Let k  2g, dj � 0 and ¥j�1
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In fact, it’s easy to see that Theorems 5 and 6 imply each other
through the following proposition.

Proposition 7 (8). Let dj � 0 and ¥j�1
n dj � g � n.
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Because chk (�) � 0 for k  2g, �g�g�1 � (�1)g�1 (2g �
1)!ch2g�1 (�), by Mumford’s formula (1) of the Chern character
of Hodge bundles, it’s not difficult to see that Theorem 6 implies
the following theorem.

Theorem 8 (8, 19). Let k be an even number and k � 2g, dj � 0, ¥j�1
n
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Note that, when k � 2g, the above theorem is equivalent to the
following Hodge integral identity (20) (also known as Faber’s
intersection number conjecture; ref. 21)
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where ¥j�1
n (dj�1) � g � 2 and dj � 1.

The above �g�g�1 integral follows from degree 0 Virasoro
constraints for �2 announced by Givental (22). However it is very
desirable to have a direct proof of Theorem 8 when k � 2g,
possibly using our explicit formulae of the n-point functions (see
also ref. 23).

As pointed out in the last section, we can generalize all of the
above new recursion formulae of � classes to identities of higher
Weil–Petersson volumes. For example, we may generalize Prop-
osition 7 and Theorem 8 to the following.

Proposition 9 (11). Let b � N�, dj � 0.
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Theorem 10 (11). Let b � N�, M � 2g be an even number and dj � 0.
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We also found the following conjectural identity experimen-
tally, which is amazing if compared with Theorems 6 and 8.

Conjecture 11 (19). Let g � 2, dj � 1, ¥j�1
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�2g 	 3 � n�!

22g�1�2g 	 3�! �j�1
n �2dj 	 1�!!

� � �
j�1

n

�dj
�2g�2� g

	 �
j�1

n ��dj�2g�3 �
i�j

�di � g

�
1
2 �

n
�
�I ê J

�
j�0

2g�4

��1� j� � j �
i�I

�di� g�� �2g�4�j �
i�J

�di� g�g�.

13898 � www.pnas.org	cgi	doi	10.1073	pnas.0705910104 Liu and Xu



Because (2g � 3)!ch2g�3(�) � (�1)g�1 (3�g�3�g � �g�1�g�2),
it’s easy to see that the above identity is equivalent to the
following identity of Hodge integrals.

Conjecture 12. Let g � 2, dj � 1, ¥j�1
n (dj � 1) � g.
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Virasoro Constraints and KdV Hierarchy
From Theorem 3, we found new Virasoro constraints and KdV
hierarchy for generating functions of higher Weil–Petersson
volumes that vastly generalize the Witten conjecture and the
results of Mulase and Safnuk (15).

Let s :� (s1, s2, . . .) and t :� (t0, t1, t2, . . .), we introduce the
following generating function
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where sm � � i�1 si
mi.

We introduce the following family of differential operators for
k � �1,
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where �L are defined by
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Theorem 13 (11, 15). We have Vk exp(G) � 0 for k � � 1 and the
operators Vk satisfy the Virasoro relations

�Vn, Vm� � �n 	 m�Vn�m.

The Witten–Kontsevich theorem states that the generating
function for � class intersections
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is a �-function for the KdV hierarchy.
Because Virasoro constraints uniquely determine the gener-

ating functions G(s, t0, t1, . . .) and F(t0, t1, . . .), we have the
following theorem.

Theorem 14 (11, 15).

G�s, t0, t1, . . .� � F� t0, t1, t2 � p2, t3 � p3, . . .� ,

where pk are polynomials in s given by
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�L��k�1

��1� 
L
�1

L!
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In particular, for any fixed values of s, G(s, t) is a �-function for
the KdV hierarchy.

Theorem 14 also generalized results in ref. 24.

Denominators of Intersection Numbers
Let denom(r) denote the denominator of a rational number r in
reduced from (coprime numerator and denominator, positive
denominator). We define

Dg,n � lcm�denom���
j�1

n

�dj� g���
j�1

n

dj � 3g 	 3 � n
and for g � 2,

Dg � lcm�denom��
Mg

��b�� � �b� � 3g 	 3
where lcm denotes least common multiple.

Because denominators of intersection numbers on M� g,n all
come from orbifold quotient singularities, the divisibility prop-
erties of Dg,n and Dg should reflect overall behavior of singularities.

We have the following properties of Dg,n and Dg.

Proposition 15 (25). We have Dg,n � Dg,n�1, Dg,n � Dg and Dg �
Dg,3g�3.

Theorem 16 (25). For 1 � g� � g, the order of any automorphism
group of a Riemann surface of genus g� divides Dg,3.

The following corollary of Theorem 16 is a conjecture raised
by Itzykson and Zuber (26) in 1992.

Corollary 17. For 1 � g� � g, the order of any automorphism group
of an algebraic curve of genus g� divides Dg.

The proof of Theorem 16 needs the following two lemmas (see
ref. 25).

Lemma 2. If p � g � 1 is a prime number, then ord(p, Dg,3) � 2.

Lemma 3 (27). Let X be a Riemann Surface of genus g � 2, then for
any prime number p,

ord�p , �Aut�X� �� � � logp

2pg
p 	 1� � ord�p ,2�g 	 1�� .

We have also obtained conjectural exact values of Dg in ref. 19.
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