Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1992 Jul;58(7):2266–2270. doi: 10.1128/aem.58.7.2266-2270.1992

Determination of plasmid DNA concentration maintained by nonculturable Escherichia coli in marine microcosms.

J J Byrd 1, J G Leahy 1, R R Colwell 1
PMCID: PMC195766  PMID: 1637164

Abstract

The concentration of plasmid pBR322 DNA in nonculturable Escherichia coli JM83 was measured to determine whether the plasmid concentration changed during survival of E. coli in marine and estuarine water. E. coli JM83 containing the plasmid pBR322 was placed in both sterile seawater and sterile estuarine water and analyzed for survival (i.e., culturability) and plasmid maintenance. The concentration of pBR322 DNA remained stable in E. coli JM83 for 28 days in an artificial seawater microcosm, even though nonculturability was achieved within 7 days. E. coli JM83 incubated in sterile natural seawater or sterile estuarine water did not reach nonculturability within 30 days. Under all three conditions, plasmid pBR322 DNA was maintained at approximately the initial concentration. Cloning of DNA into the plasmid pUC8 did not alter the ability of E. coli to maintain vector plasmid DNA, even when the culture was in the nonculturable state, but the concentration of plasmid DNA decreased with time in the microcosm. We conclude that E. coli is able to maintain plasmid DNA while in the nonculturable state and that the concentration at which the plasmid is maintained appears to be dependent upon the copy number of the plasmid and/or the presence of foreign DNA.

Full text

PDF
2266

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amy P. S., Hiatt H. D. Survival and detection of bacteria in an aquatic environment. Appl Environ Microbiol. 1989 Apr;55(4):788–793. doi: 10.1128/aem.55.4.788-793.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Byrd J. J., Colwell R. R. Maintenance of plasmids pBR322 and pUC8 in nonculturable Escherichia coli in the marine environment. Appl Environ Microbiol. 1990 Jul;56(7):2104–2107. doi: 10.1128/aem.56.7.2104-2107.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caldwell B. A., Ye C., Griffiths R. P., Moyer C. L., Morita R. Y. Plasmid expression and maintenance during long-term starvation-survival of bacteria in well water. Appl Environ Microbiol. 1989 Aug;55(8):1860–1864. doi: 10.1128/aem.55.8.1860-1864.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fuqua W. C., Coyne V. E., Stein D. C., Lin C. M., Weiner R. M. Characterization of melA: a gene encoding melanin biosynthesis from the marine bacterium Shewanella colwelliana. Gene. 1991 Dec 20;109(1):131–136. doi: 10.1016/0378-1119(91)90598-6. [DOI] [PubMed] [Google Scholar]
  5. Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hood M. A., Guckert J. B., White D. C., Deck F. Effect of nutrient deprivation on lipid, carbohydrate, DNA, RNA, and protein levels in Vibrio cholerae. Appl Environ Microbiol. 1986 Oct;52(4):788–793. doi: 10.1128/aem.52.4.788-793.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jain R. K., Sayler G. S., Wilson J. T., Houston L., Pacia D. Maintenance and stability of introduced genotypes in groundwater aquifer material. Appl Environ Microbiol. 1987 May;53(5):996–1002. doi: 10.1128/aem.53.5.996-1002.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lin-Chao S., Bremer H. Effect of the bacterial growth rate on replication control of plasmid pBR322 in Escherichia coli. Mol Gen Genet. 1986 Apr;203(1):143–149. doi: 10.1007/BF00330395. [DOI] [PubMed] [Google Scholar]
  9. Trevors J. T., van Elsas J. D., Starodub M. E., Van Overbeek L. S. Survival of and plasmid stability in Pseudomonas and Klebsiella spp. introduced into agricultural drainage water. Can J Microbiol. 1989 Jul;35(7):675–680. doi: 10.1139/m89-110. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES