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ABSTRACT We compare mean velocity profiles mea-
sured in turbulent pipe f lows (and also in boundary layer
f lows) with the predictions of a recently proposed scaling law;
in particular, we examine the results of the Princeton ‘‘super-
pipe’’ experiment and assess their range of validity.

1. Introduction

For a number of years, it has been widely believed that the
mean velocity profile in the intermediate region of turbulent
pipe flow is adequately described by the von Kármán-Prandtl
universal logarithmic law of the wall (1, 2):
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where up 5 =t/r is the ‘‘friction’’ or ‘‘dynamical’’ velocity that
determines the velocity scale, t is the shear stress at the wall,
y is the distance from the wall, r is the fluid’s density, and n is
its kinematic viscosity. The Reynolds number Re is defined in
the case of a pipe as Re 5 u#d/n, where u# is the mean velocity
(discharge rate divided by the cross-section’s area), and d is the
pipe’s diameter. The parameters k and A are assumed to be
universal, Re-independent constants. In a previous paper (ref.
3, in which the references to our previous work can also be
found), it was argued that the von Kármán-Prandtl law is not
appropriate and that a correct description is given by the
scaling (power) law:
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A key point in Eq. 1.2 is that the exponent is inversely
proportional to the logarithm of Re.
By the very logic of the derivations of Eqs. 1.1 and 1.2, the

parameters k (‘‘von Kármán’s constant’’), A, B0, B1, and b1 are
universal constants, i.e., the same for all developed turbulent
flows in circular smooth pipes. Nevertheless, when it comes to
k and A in Eq. 1.1, there is a definite, non-negligible scatter in
the values found in the literature; depending on the source, k
ranges between 0.40 and 0.44, and A ranges between 5.0 and
6.3. For the parameters B0, B1, and b1 in Eq. 1.2, we have
obtained earlier, from a comparison with the data of Ni-
kuradze (4), the values B0 5 0.577 z z z > 1/=3, B1 5 5/2, and
b15 3/2 so that the scaling law (Eq. 1.2) takes the definite form
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The difference between the laws in Eq. 1.1 and the laws in Eqs.
1.2 and 1.3 is essential; if the universal logarithmic law (Eq. 1.1)
were valid, the experimental data in the (ln h, f) plane, where
h 5 upy/n, would concentrate on a single, universal, Reynolds-
number-independent straight line. On the contrary, if Eqs. 1.2
and 1.3 hold, the experimental points in the (ln h, f) plane
should cover an area, bounded by the envelope of the family
of scaling law curves, having Re as parameter. Concomitantly,
if one defines the variable
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then, in the (ln h, c) plane, the roles of the two laws are
reversed; the experimental points that correspond to Eqs. 1.2
and 1.3 for various values of Re lie on a single line, the bisectrix
of the first quadrant c 5 ln h, whereas the data points that
correspond to Eq. 1.1 would appear as a family of curves
parametrized by Re.
The goal of this paper is to examine what the experimental

data, in particular recent experimental data, tell us about the
validity of one or the other of the contrasting laws 1.1 and 1.3.

2. Chevron Profiles and the Scaling Law

In a previous paper (3), we found a dramatic new feature of the
velocity profile in the (ln h, f) plane at large Reynolds
numbers. By considering the asymptotin as n3 0 in the power
law, we discovered that as that limit was approached, each
individual curve approached a chevron (broken line), one of
whose legs was approximated by the envelope of the family of
scaling law curves, while the other rose above that envelope;
the difference in the slopes of the two segments was substan-
tial, more than=e> 1.65. The kink in the profiles is a property
of the power law and is not a consequence of an external
forcing. In ref. 3, we cited a paper (5) in which the Princeton
group of Zagarola et al. presented data that exhibit this kink.
The results of the Princeton group will be discussed in greater
detail below.
We note that the chevron-like behavior of the type we

predicted for velocity profiles in pipes was noticed repeatedly
(but never properly interpreted) in experimental data for the
related (but not identical) problem of boundary layers with a
zero pressure gradient. A few examples should suffice: the
experimental data of Schubauer and Klebanoff (see ref. 6, p.
273, figure 25), of Wieghardt and Tilliman (see ref. 7), and,
particularly instructive, of Fernholz and Finley (ref. 8; see
especially figures 28–30). Here we will display the remarkable
new results by Nagib and Hites (9, 10) for a zero pressure
gradient boundary layer (Fig. 1). The chevron-like form of the
velocity profiles in the (ln h, f) plane and splitting of the
profile for different Reynolds numbers is clearly seen in this
figure. These curves are of special importance for the adequate
understanding and modeling of zero pressure gradient bound-
ary layers. Indeed, they show that the scaling law holds all the
way to the edge of the external homogeneous flow, in the
(ln h, f) plane, until its intersection with the horizontal line f
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5 U/up, where U is the external velocity. Of course, there is a
matching with the external flow, but the transition region is
very small. It can be concluded that the logarithmic straight
line applies after the departure of the curve from the envelope
up to the intersection with the external flow; the straight line
is an approximation of the upper part of the power law at large
Reynolds numbers.

3. Discussion of the Princeton ‘‘Superpipe’’ Experiments

Now we come to a more detailed quantitative comparison of
the proposed scaling law (Eq. 1.3) with the recent, widely
publicized results of the Princeton group (5, 11, 12), which
include many new data for pipe flow obtained in a high-
pressure pipe (‘‘superpipe’’) proposed by G. Brown (13). High
pressure increases the density r and also increases the dynamic
viscosity m, although at a much smaller rate, decreasing the
kinematic viscosity n 5 m/r substantially and thus increasing
the Reynolds number Re. The Princeton group claims that in
this way they increased the range of the Reynolds numbers for
which they obtained reliable data (up to Re 5 3.53 z 107) by an
order of magnitude over the range of Re achieved in the
classical benchmark experiments of Nikuradze (4) with water
flow (up to Re 5 3.24 z 106). The appearance of a chevron
structure and the splitting of the velocity curves according to
their Reynolds number discussed in ref. 3 are very plain in the
Princeton data.
The advantage of the data set of the Princeton group for

comparisons with theory is that, like the data of Nikuradze,
they are presented in tabular form. In ref. 11, one can find
results of 26 runs (series of experiments), each run containing
data from the measurements of the velocity distribution over
the cross-section of the pipe, as well as measured drag coef-
ficients. The pressure varied from '1 to '190 atm (1 atm 5
101.3 kPa). The kinematic viscosity of air under normal
conditions is '0.15 cm2/s, and that of water is '0.01 cm2/s;
therefore, the Princeton investigators had to compress air to
roughly 15 atm to reach the kinematic viscosity of water.
Another important advantage of the Princeton work is that

the data contain many experimental points far from the
envelope. In the experiments reported by Nikuradze (4), there
were no such data. Therefore, the most interesting step is the
comparison of the Princeton data with the scaling law (Eq 1.3)
by the same procedure as the one previously used for com-
parison with the Nikuradze data. All the data of the Princeton
group were plotted in the (ln h, c) plane, where
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For the first 10 runs listed in ref. 11 (Re5 3.16 z 104, 4.17 z 104,
5.67 z 104, 7.43 z 104, 9.88 z 104, 1.46 z 105, 1.85 z 105, 2.30 z 105,
3.09 z 105, and 4.09 z 105), the data are presented in Fig. 2. It
is seen that, as in the case of Nikuradze’s data (4), the
experimental points after h 5 25 concentrate near the bisectrix
of the first quadrant. The points close to the pipe axis should
be removed because the scaling law should be invalid for them.
It was enough to remove only the points where 2y/d was more
than 0.95.
The situation is different, however, for the last six runs in ref.

11 (Re 5 1.02 z 107, 1.36 z 107, 1.82 z 107, 2.40 z 107, 2.99 z 107,
and 3.52 z 107). The experimental points for all these runs are
concentrated (for 2y/d , 0.95) along straight lines, parallel to
the bisectrix, but not on the bisectrix itself (Fig. 3). In fact,
these straight lines are close to each other (because the
corresponding values of log Re are close). The noticeable
deviation from the bisectrix started from run 13 (Re 5 1.02 z
106).
Some hint as to what happens was given by a comparison of

the experiments of Nikuradze and the Princeton group per-
formed at roughly equal Reynolds numbers. There are six such
experiments, and for five of them, at moderate Reynolds
numbers, a satisfactory coincidence was found. This coinci-
dence means that our scaling law (Eq. 1.3) is also confirmed
by the Princeton experiments. However, for run 16 by the
Princeton group (ref. 11; Re 5 2.345 z 106), a noticeable
disagreement was found with the Nikuradze run at Re 5 2.35
z 106 (4), which, like the other Nikuradze runs, verifies quite
satisfactorily the scaling law (Eq. 1.3). In the main part of the
graph in the (ln h, f) plane, there is a uniform shift along the
ln h axis between the Nikuradze and Princeton data. What can
be the meaning of such a shift? If both up and y were measured
correctly, the most likely source of the discrepancy is in the
values of the viscosity. It is of importance that the pressure
gradients in these experiments are small enough not to create
a variation of the viscosity along the pipe, and thus in each run
the viscosity can be viewed as constant.
We conjectured therefore that something happened in the

high Reynolds number (high pressure) experiments of the
Princeton group which shifted the viscosity that determines the
velocity profile from its actual value n to a ‘‘shifted’’ effective
value n9, so that
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FIG. 1. Experimental velocity profiles in a turbulent boundary
layer [reproduced with permission from ref. 9 (Copyright 1995, H.
Nagib & M. Hites)].

FIG. 2. The experimental data from the first 10 runs of the
Princeton group (11) in the (ln h, c) coordinates lie close to the
bisectrix of the first quadrant, confirming the scaling law (Eq. 1.3).
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and the shift ln (n9/n) is constant for each run.
To check this assumption, the following procedure was used

for the last six runs. For every experimental point of each run,
the values of the difference

x 5 ln h 2 c [3.3]

(the shift from the bisectrix) and x, themean value of x per run,
were calculated. The dispersion of this quantity was also
calculated and found to be small. Then every experimental
point was shifted by x inward along the ln h axis. The results
are presented in Fig. 3 (unshifted points) and Fig. 4 (after the
shift). We see that there exists a single factor per run by which
the viscosity is altered and which shifts the velocity profiles at
high Reynolds numbers; this does not happen at moderate
Reynolds numbers.
Three possible reasons for this shift were investigated.
(i) Incorrect Pressure and Temperature Measurement. The

density and viscosity were not measured directly, but were
calculated by the Princeton group on the basis of measured
pressures and temperatures. Therefore, an incorrect pressure

and temperature measurement could be the reason for the
shift. It was clear from the beginning that the measurement of
the temperature was not in doubt. After an inspection of the
information presented in refs. 5 and 11, we came to the
conclusion that errors in the pressure measurement were
unlikely.
(ii) Incorrect Density and Viscosity Calculations. Indeed,

the Princeton group used rather old pressure–temperature/
density–viscosity relations for their calculations. D. G. Friend
(National Institute of Standards and Technology, Boulder,
CO, personal communication) supplied us with the values of
density and viscosity of air at pressures and temperatures
recorded in the Princeton measurements (11). These data
confirmed the Princeton calculations accurately. This confir-
mation has left only one possible explanation for the observed
shift in the viscosity.
(iii) The Roughness of the Pipe Walls Is Revealed at Large

Reynolds Numbers. As is well known, if the walls of the pipe
are not sufficiently smooth, the roughness protrudes from the
viscous sublayer, and a shift in the velocity profile is observed
in the intermediate region, exactly as if the viscosity of the fluid
were changed. There is a well known formula for the ‘‘equiv-
alent’’ viscosity (see ref. 6, p. 286, formula 5.25b).
To check the third possibility, we turn to the data concerning

the Reynolds number dependence of the drag coefficient for
flows in rough pipes (see Fig. 5, available in ref. 6, p. 308). The
general situation is as follows. For a given mean height of the
roughness, the data for rough and smooth pipes coincide up to

FIG. 3. The experimental data from the last six runs of the
Princeton group (11) concentrate along lines parallel to the bisectrix,
not on the bisectrix itself. The points with 2y/d . 0.95 are excluded;
they are in the near-axis region.

FIG. 4. After the viscosity correction (constant for each run), the
large Reynolds numbers Princeton data (11) agree with the prediction
of the scaling law in the (ln h, c) plane; the points are close to the
bisectrix (except for the near-axis points).

FIG. 5. The drag coefficient for pipes of various roughness [re-
drawn after Monin and Yaglom (6)]. 1, Laminar flow; 2, law for
smooth pipes.

FIG. 6. The drag coefficient l as a function of theReynolds number
for the Princeton (11) data. p, Princeton data; solid line, the law for
smooth pipes.
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a critical Reynolds number.When this is reached, the Reynolds
number dependence of the drag coefficient for rough pipes
deviates from that for smooth pipes. Clearly the critical
Reynolds number depends on the mean height of the rough-
ness: the lesser the height, the later the deviation begins.
The analog of Fig. 5 for the Princeton experiments is

presented in our Fig. 6; the solid line corresponds to the
theoretical relation for the drag coefficient corresponding to
the scaling law (Eq. 1.3). The graph shows that the deviation
starts at approximately Re 5 106. This is a sensitive indicator
of the smoothness of pipes; it shows that starting from run 13
(Re 5 1.02 z 106), the velocity profiles presented by the
Princeton group correspond to rough pipes rather than to
smooth pipes. Re 5 106 is where the deviation from the
bisectrix in the (ln h, c) plane began. It is possible that the
problem of roughness can be healed by following the large-pipe
suggestion of Hussain in ref. 14.

4. Conclusions

(i) The analysis of the new experimental data adduces addi-
tional arguments against the von Kármán-Prandtl universal
logarithmic law and in favor of a specific power law (Eqs. 1.2
and 1.3).
(ii) The Princeton group apparently did not surpass the

range of Reynolds numbers for smooth pipes achieved by
Nikuradze, and indeed, as far as we can see, did not reach its
upper bound. The kinematic viscosity of air in the last run
which corresponds to a smooth pipe according to the data in
ref. 11 can be estimated as 1022 cm2/s—equal to the kinematic
viscosity of water used in the Nikuradze experiments, but not
less.

(iii) The (ln h, c) procedure for processing the velocity
profile used here was sensitive enough to detect the influence
of roughness independently of the drag coefficient data.
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