
Proc. Natl. Acad. Sci. USA
Vol. 94, pp. 777–782, February 1997
Chemistry

Structural correlations in protein folding funnels
(folding kineticsytransition state ensembleyextrathermodynamic free energy relationsyprotein structure)

BENJAMIN A. SHOEMAKER, JIN WANG, AND PETER G. WOLYNES†

School of Chemical Sciences, University of Illinois, Urbana, IL 61801

Contributed by Peter G. Wolynes, November 4, 1996

ABSTRACT While the overall energy landscape of a fold-
able protein can be described by means of a few parameters
characterizing its statistical topography, specific energetic
terms subtly bias the representative structures giving rise to
residue pair correlations as in a liquid. We use a free energy
functional incorporating an inhomogeneous pair contact en-
ergy along with a contact formation entropy and a coopera-
tivity contribution to determine residue-specific contact prob-
abilities in the denatured state and the transition state
ensemble. The predicted ‘‘hot residues’’ for the theoretical
transition state ensemble reasonably agree with experiment
for chymotrypsin inhibitor 2, and generally a strong correla-
tion exists with the measured kinetic effects of mutating
residues not involved in highly solvent-exposed regions.

Protein folding is efficient because the energy landscape
resembles a funnel (1, 2) dominated by interactions in the
native structure that are more favorable than those in alter-
natives—i.e., there is minimal frustration (3). The multiplicity
of folding routes down a funnel implies that discussing folding
thermodynamics and kinetics requires the use of ensembles
which average over many landscape details. A global statistical
characterization of the landscape topography is fundamental,
but protein folding funnels are not structurally featureless: At
various points along the folding reaction coordinate, the
ensembles involve the ordering of different regions of the
protein to various extents. Stronger and short-range in-
sequence contacts aremore likely to form in a partially ordered
protein. These structural correlations can be probed by com-
bining protein engineering with measurements sensitive to
particular ensembles of structures (4). At the folding midpoint,
the rate-limiting step for folding is passage through a transition
state ensemble which acts as a largely entropic bottleneck,
arising from an imbalance between the rate of entropy loss and
free energy decrease as the ensemble descends in the funnel (2,
5). Nonadditivity of forces such as hydrophobicity (6) may also
contribute to barriers (7). The location of the thermodynamic
bottleneck can be inferred by experiments which modify the
funnel topography globally by denaturants or through wide-
spread sequence changes between distantly related proteins (4,
8).
Extrathermodynamic free energy relations (9) between rate

and stability then demonstrate that the bottleneck lies midway
between folded and denatured states, in accordance with the
corresponding states analysis that maps lattice models onto
real proteins (10).
The surgical precision of engineeredmutations at single sites

reveals a wide distribution of residue participation in the
ordering at the transition state ensemble both in the laboratory
(4) and in lattice models (11). It is tempting to call the most

ordered contacts, or ‘‘hot spots,’’ a folding nucleus. The
delocalized nature of the nucleus, its relatively large size
involving many partially ordered residues throughout the
protein (12, 13), requires the term ‘‘nucleus’’ to be used with
care. Although the analogy with a first-order transition holds
(14), crossing the transition state region for a small protein
should be sharply distinguished from classical nucleation in
bulk solids (15), where the nucleation event is distinct from
later growth. Fersht has used the compound term ‘‘nucleation-
condensation mechanism’’ recognizing this (4).
The structural correlations in the transition state ensemble

must depend jointly on the native structure, the sequence, the
intermolecular forces, and the thermodynamic conditions.
These aspects are partially linked through the minimal frus-
tration principle. Using a quantitative form of the minimal
frustration principle to design sequences that stably fit given
structures and then simulating their folding, Shakhnovich and
co-workers (16) have inferred that the most ordered residues
in the transition state ensemble, which they call a specific
nucleus, are the ones most strongly constrained by the design
process for lattice proteins. Extending this idea to real proteins,
they argue that the conservation of residues in evolution
explains the ‘‘hot spots’’ in the folding kinetics of chymotrypsin
inhibitor 2 (CI2). This explanation is incompletely satisfying
because it is teleological and appropriate only for evolved
proteins that completely satisfy the minimal frustration prin-
ciple, folding under physiological conditions. It leaves myste-
rious both mechanistic changes caused by varying thermody-
namic conditions and the physical relation of kinetics to
underlying forces. While by construction, the constrained
residues in designed lattice proteins depend only on the native
contact pattern, experiments (8) have shown that the most
important residues for folding kinetics vary with sequence and
chain connectivity even when the contact pattern is un-
changed. A more satisfying approach to structural inhomoge-
neity in the bottleneck has been explored using fully atomistic
molecular dynamics (17). Sampling several unfolding trajec-
tories, snapshots of the protein near its unfolding transition
state ensemble are generated. The contact probabilities in this
set can be correlated with the protein engineering results. The
molecular dynamics technique, applicable to both natural and
engineered proteins, is, however, computationally intensive
and leaves open the interpretation in terms of the physical
forces involved.
We present here an approach to understanding the struc-

tural and energetic correlations in the transition state ensem-
ble. Our method generalizes the mean field free energy
functions already used to describe the global folding funnel
topography (2). The generalized free energy allows for the
inhomogeneity of the interactions and is based on functionals
introduced earlier by Bohr and Wolynes to discuss the fast
events of folding (18) and used, with Wang, to discuss the
growth of protein structural domains (19). The free energy
functionals resemble ones for random field Ising magnets and
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inhomogeneous fluids. They treat differentially the tradeoff
between the variable energy and entropy loss of contacts. The
entropic terms can be approximated with simple polymer
theory (20) and specific microscopic interaction forces can be
accounted for explicitly. This allows us to dissect the structural
correlations in energetic terms both for equilibrium ensembles
like the denatured state and for the quasi-equilibrium transi-
tion state ensemble.
The free energy function used here is crude, perhaps the

simplest to capture the essentials. As we shall see, also, by
comparing theory and experiment the details of the sequence-
specific forces are incompletely known. Nevertheless, many of
the experimentally determined features of the transition state
ensemble in the folding funnel are reproduced.

The Funnel Picture and Folding Reaction Coordinates

Even for simple chemical reactions, there is controversy as-
sociated with the choice of a reaction coordinate arising from
a necessary ambiguity in its definition. Different choices
ultimately give the same rate when used in a complete theory.
Rate coefficients can be written as the product of an equilib-
rium factor, giving the probability of achieving a set of
‘‘bottleneck’’ configurations and a transmission coefficient
measuring the number of recrossings of the surface defined by
the critical value of the reaction coordinate (21). Transition
state theory neglects the transmission coefficient giving an
upper bound to the rate. Thus when we speak of a reaction
coordinate, wemay simply choose a progress variable for which
the calculation of equilibrium factors is straightforward. Even
if the transmission coefficient is nonnegligible but does not
vary systematically for thermally occupied transition states,
this will be sufficiently good for discussing extrathermody-
namic relations. On the other hand, finding a reaction coor-
dinate for which transition state theory without recrossing
corrections can be applied exactly is hard. One trades the
validity of the nonrecrossing assumption for the complexity of
finding the coordinate and evaluating the equilibrium factor.
We compromise by using a simple reaction coordinate to
determine the ensemble of appropriate structures and then
characterize equilibrium structural correlations within that
ensemble.
Since tertiary contacts are a dominant source of protein

stabilization, a collective coordinate measuring the fraction of
such contacts which are correct, Q, has been used in a number
of off-lattice and lattice simulations (22–25). The motion of
this coordinate for small lattice models is diffusive, and rates
are predicted well using a diffusional rate theory (25), since the
free energy barrier is broad. It has also been shown that at the
folding midpoint of the lattice protein the effects of site
mutations faithfully reflect the structural correlations in the
ensemble at the top of the barrier (11).
Q also lends itself to treatment in approximate mean field

theories of the folding free energy profile (7) which can be
written as a sum of two dominant terms: one depending on the
energy of native contacts, and the other on their formation
entropy cost. There is also a free energy term arising from the
interactions’ inhomogeneity. The quantitative treatment re-
veals that barriers arise subtly, much as in rubber vulcaniza-
tion. The entropy loss on forming a contact is large when the
first few are made but diminishes once many are made, since
the structure is already highly specified. The variation of the
inhomogeneity energy also contributes to barriers. The overall
density of the protein globule couples to the reaction coordi-
nate, requiring the introduction of the so-called ‘‘core–halo’’
model. Residues in their native location are in a high-density
core surrounded by a halo of lower-density material, a struc-
ture enhanced when nonadditive forces are encountered (7).
Structural correlations in the various funnel ensembles

corresponding to values of Q can be computed by using an

inhomogeneous free energy functional dependent on the set of
pair correlations, {Qij}, Qij 5 ^d(rij 2 rijT)&. Q 5 (ij Qijy(native
Qij. {rij} is the set of pair distances for the residues, while
$rij
T% is that for the native structure (here measured at the b
carbons). We suggest in the next section a simple form for the
inhomogeneous free energy functional that captures much but
not all of the physics of the mean field homogeneous model.
It describes an interacting ‘‘gas’’ of contacts. This simplified
form might not locate the transition state value Q with great
accuracy but should suffice if we are willing to use experimen-
tal input about the bottleneck location.

The Free Energy as a Function of the Contact Matrix

A free energy functional for Qij can be constructed along the
lines already used by Bohr et al. (19). The energy, instead of
being linear in the globalQ, is represented as a sum reflecting
the inhomogeneity of different contact energies: E 5
1(ij«ijQij. The entropy can be represented in a variety of ways:
in ref. 19, a complete virial expansion in terms of contacts was
used as done earlier by Chan and Dill (26)

S~$Qij%! 5 1O S0
ij Qij 1 O

ijkl
S0
ijkl QijQkl 1 z z z [1]

The lowest-order term is the Jacobson–Stockmayer (27)
entropy loss on forming specific contacts: S0ij 5 1kBlog[DVy
ui 2 ju3y2]. Assuming the denatured protein can be modeled as
a random flight chain, the quantity DV5(3y2p)3y2Dtyl03, where
Dt is the volume corresponding to the interaction range and l0
is the persistence length of the polymer, can be treated as
adjustable within reasonable limits. The virial expansion con-
verges slowly. In the homogeneous mean field theory (20), a
separate approximation of the type introduced by Flory for
rubber vulcanization is used; namely, contacts nearby in
sequence are treated by means of Jacobson–Stockmayer, but
for sequentially distant contacts the entropy cost saturates to
that of a typical f luctuating segment of the chain, which
depends on Q itself. S0ij 5 1kBlog[DVym3y2], where m is the
number of contacts made. For the resulting inhomogeneous
functional, the probability of forming a contact depends only
on the contact energy, the distance in sequence between the
residues (which determines the entropy), and the Q value of
the ensemble.
Numerically we use an interpolation for entropy loss:

S0
ij~m! 5 kBlog@DV~ui 2 ju23y2 1 ~Nym!23y2!#. [2]

At high Q, the Flory-style resummation breaks down and an
entire atom with all of its contacts should be removed from the
frozen part of the structure to create entropy—i.e., the major
contribution comes from an atomistic gas of contacts clustered
together at a site. This suggests a free energy functional of the
following form:

F~$Qij%! 5 O
i, j

«ijQij 2 TO
i, j
S0
ı̃j~m!Qij 1 atO

i
f~O
j
Qij!

1 O
i, j
T~Qijlog@Qij# 1 ~1 2 Qij!log@1 2 Qij#!,

[3]

where S0
ı̃j is obtained by functionally integrating Eq. 2. The last

term is an entropy of mixing arising from the number of ways
of making contacts in a partially ordered protein. Nonadditive
free energetic effects of contacts can also be described by
adding such a term (f~OjQij) dependent on the local density
around a residue. For our purposes here f is quadratic with at.
Explicit cooperativity for forming a-helices can be introduced:

Fh~Q! 5 ahO
helix

~Qi,i14Qi,i24 1 Qi,i14Qi14,i18!. [4]
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The residue-specific interaction parameters «ij are based on
statistical potentials obtained by the information theoretic
approach (28, 29) or by optimization schemes in the present
calculation (30). The cooperativity parameters (at, ah) are
chosen to give reasonable thermodynamics and are treated
initially as adjustable.
The probability of finding specific residues which are in

contact at any particular value ofQ*, is obtained byminimizing
the inhomogeneous free energy functional subject to the
constraint (ij Qijy(native Qij 5 Q*, giving

Qij 5 1y~1 1 exp@«ijyT 2 lyT 2 S0
ij~m! 1 atO

k
~Qi,k 1 Qk, j!

1 ahO
helix

~Qi,i24 1 Qi14,i18!]), [5]

where l is a Lagrangian multiplier determined by the equation
of constraint.
This equation is explicit when the local cooperativity terms

in the functional are absent. When local cooperativity is
present, it is solved iteratively.
The contact matrices in the denatured state ensembles can

be directly calibrated with NMR structure data. The contact
matrices in the transition state ensemble can be averaged in
various ways to compare with mutagenesis studies of kinetics.
If the «ij were constant, the f values representing the change
in rate kf upon mutation (f5 dlog[kf]ydlog[K] and K is the
equilibrium constant) would be the average of theQij involving
the site. Generally, f is given by fi 5 ((j D«ijQijTST 2 (j
D«ijQijUF)y((j D«ijQijF 2 (jD«ijQijUF) where D«ij is the change of
the contact energy upon mutation (11). The formation also
allows the variation of fi with transition state location to be
studied by varying Q*.

Calculations and Results

Statistical data base potentials generally have both an arbitrary
scale factor and an arbitrary additive term representing the
average hydrophobicity undetermined. To specify the thermo-
dynamic conditions wemust fix a few parameters governing the
temperature scale and overall tendency to collapse. The results
presented assume the protein is at a triple point near both the
collapse and folding midpoints at folding temperature Tf. The
entropic loss for a protein folding from the coil to the folded
state isN log(n), whereN is the number of residues and n is the
number of conformations per residue (n ' 9) which must
match at Tf the total energetic changes in folding. The entropic
loss from coil to folded is N log(n) 5 2«fyTf, while from the
globule it is N log(nye)5 2(«f 2 «mg

˜ )yTf. Here «f is the energy
of the folded structure and («̃mg2 «f) is the difference between
the molten globule and folded energies. «̃mg is computed by
averaging the results of threading the sequence through alter-
nate protein structures. The results reported are for optimized
contact interactions whose range is 6.5 Å. Within this range,
once a contact forms, contacts nearby in sequence form too.
We therefore coarse-grain the sequence and ascribe to an ij
pair the energy of a renormalized block containing three
neighboring residues. When one native contact of the renor-
malized block forms, the rest of the native contacts in that
block also form. With this choice the entropy loss on making
all the native contacts properly scales to N log(n).
The degree of cooperativity in the free energy functional is

hard to determine a priori. Direct structural experiments can
be used for calibration. We use the NMR experiments of
Wüthrich (31, 32) on the phage 434 repressor to determine the
relative magnitude of ah and at. Wüthrich finds in the dena-
tured state a conserved region of native structure in the a-helix
at the C terminus of the protein. There is no clear indication
of tertiary conserved structure in this study. We applied the
free energy functional to the denatured state of phage 434

repressor and varied the magnitude of cooperativity to match
the conserved structure found. We found that at Q# 5 0.2,
which fits the experimental map well, the theoretical contact
map with ah' 0.45 has a high overlap of contacts in the region
of conserved structure as determined by nuclear Overhauser
enhancements. Good agreement can also be reached using at
' 0.05.We note similar data on barnase have become available
recently (33).
The 64-residue protein CI2 has been thoroughly studied

through kinetics (4) and by means of atomistic molecular
dynamics (MD) simulations (17). In our calculations we set the
value of Q at the transition state, Q*, equal to 0.2 and take the
denatured state as having Q 5 0. We choose Q* to match the
average f value of Fersht and co-workers (4), which is an
approximately equivalent quantity. Interestingly, chemical de-
naturants suggest a larger Q* 5 0.6.
The contact map for the transition state ensemble shows the

theoretical contact probabilities, Qij. As a point of reference,
the upper left of Fig. 1a shows the full native contact map at
Q 5 1.0. The lower right of Fig. 1a shows the contact map for
the transition state ensemble at Q* 5 0.2 without either
tertiary or secondary cooperativity. Contact probabilities are
evenly distributed, with the highest values in the core. Without
any cooperativity the a-helix is poorly formed.
As seen in the upper left of Fig. 1b, adding helical cooper-

ativity (ah 5 0.45 and at 5 0), helical i, i14 contact proba-
bilities become well defined hot spots having high average local

FIG. 1. (a)Native contactmap (atQ5 1.0) forCI2 shown in the upper
left and contact map of calculated contact probabilities (at Q*5 0.2) for
the CI2 transition state ensemble without any tertiary or secondary
cooperativity in the lower right. (b) Contact map of calculated contact
probabilities (atQ*5 0.2) with ah5 0.45 and at5 0.0 shown in the upper
left and ah 5 0 and at 5 0.05 shown in the lower right.
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densities at the expense of nonhelical contacts, maintaining
the constraint of a constant sum of all Qij values. There is also
appreciable contact probability between b-strands three and
four, which includes core residues. At very large values of ah
only helical contacts are formed.
Fig. 1b (lower right) shows the Qij using tertiary cooperat-

ivity alone (ah5 0.0 and at5 0.05). With tertiary cooperativity
three localized spots on the map achieve a high average local
density. These spots include contacts in the core between
b-strands three and four and between b-strands four and five.
They also include local interactions in the helix, especially its
N terminus.
Averaging Qij about a given residue, i, gives Stertiary, a

quantity estimated by means of molecular dynamics (17). Fig.
2 shows the correlation between the theoretical Stertiary (for ah
5 0.45 and at 5 0) and simulated Stertiary for each mutated
residue. The residues are distinguished by colors according to
their environment—i.e., core, a-helix, b-sheet, minicore, and

turns and coils, as classified by Fersht and co-workers (4).
These values are computed at Q*5 0.45 matching simulations
to which we compare.
The good comparison for core and sheet suggests that the

purely structural predictions from the functional are fine. The
energies for turns and helices clearly need improvement. The
energy-weighted quantity, f, is on a better theoretical footing
than Stertiary for comparison with kinetics but depends upon the
accuracy with which the pair potential models the real protein.
Fig. 3a shows the correlation of our theoretical fth com-

puted by the energy-weighted formula to the experimentalfexp
of CI2 by Fersht and co-workers (4) for core and b-sheet
mutations. Fig. 3b shows the comparison for helical, minicore,
and turn and coil residues that are largely surface-exposed. In
all cases the theory and experiment have been averaged over
the measured mutants on that site. We see good correlation
between the present theoretical f values and experiment for
core and sheet residues, with parameters ah 5 0.45 (an
appreciable amount of helical cooperativity comparable to the
other free energy terms, but no tertiary cooperativity) and

FIG. 2. Correlation of the energy-unweighted contact density (Sth)
to the molecular dynamics Stertiary (Ster). Q* 5 0.45 is used to match
the simulation’s average value of Stertiary. There is good agreement for
core residues and reasonable agreement for helical and sheet residues.
The diagonal line Ster5 Sth is indicated in black along with the separate
correlation lines for core (red) and sheet (black) in a and a-helical
(green), minicore (black), and turn and coil (red) residues in b.

FIG. 3. Correlation of the energy-weighted fth to the measured
fexp for the core and b-sheet residues (a) and the helical, minicore, and
turn and coil residues (b), using the same color scheme as Fig. 2. Error
bars for a few representative (larger or smaller) experimental values
are indicated from data of Fersht and co-workers (4).
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DV 5 0.1. We see much weaker correlation between fth and
fexp for the mutations in the helix, minicore, and turns and
coils than in their structural aspect, as seen in Fig. 3 b. The slope
of the experimental f versus theoretical f is 1.2, with a
correlation coefficient of 0.8 for core residues and a slope of
1.1 and a correlation coefficient of 0.4 for b-sheet residues. We
have seen that the addition of either helical or tertiary
cooperativity improves the agreement for a-helical and
b-sheet residues outside the core, but clearly our energy
function still must be improved to handle solvent-accessible
mutations. This parallels the earlier finding (34) that pair
potentials successfully calculate stability changes for core
mutations but not for solvent-accessible mutations.
Clearly the quasiequilibrium analysis here yields a rather

delocalized entity, but we can certainly examine which residues
have the most completed contact set. Fersht and co-workers
(4) call residues 16, 49, and 57 the folding nucleus because
residue 16 has a large f value and it interacts with residues 49
and 57. We find f values to be similar to experimental values
for these residues, but we also find residue 20 to have a large
f value. As in experiment, the hot residues are found in the
core between the helix and the b-sheet. Still, our calculation,
as well as experiment, indicates a significant involvement of a
cloud of residues about this group, encompassing a large part
of the small protein CI2. Fig. 4 shows the complete folded
molecules with residues color coded to represent their involve-
ment in the transition state ensemble as measured by Stertiary.

Conclusions

While protein folding dynamically occurs through an ensemble
of partially disordered structures, pair correlations exist just as
they do in a liquid. Experiment and the present quasiequilib-
rium theory based on landscape ideas suggest that in small
fast-folding proteins these correlations involve a delocalized
set of contacts in the protein core. The current calculations
describe these pair correlations through the interplay between
the entropy of forming contacts and their heterogeneous
energies. Cooperativity, which may be largely entropic or
perhaps energetic, involving the many-body hydrophobic
forces, appears to be a modest perturbation on the simple
pair-interaction picture. The theory describes well the buried
residues. Clearly a major deficit of the current work is the
energy function for surface-exposed residues. Further work
refining these terms should help.
At the statistical mechanical level, treating the protein as an

interacting gas of contacts is a severe simplification. Explicit
effects of random nonnative contacts have been neglected and
different degrees of collapse have also not been taken into
account. Both effects play a role in determining the actual
height and location of the thermodynamic bottleneck. Just as
in liquid state theory, higher-order functionals can be devel-
oped (35). We believe the present picture is a good step,
however, in quantifying the structural energy relations once
the bottleneck location is known empirically.
The larger proteins have modular structures, or foldons (36),

each being described by a single transition state ensemble. This
modular structure would be detected by a perfect free energy
functional, but it might be missed by the present one. A more
basic difficulty is that the quasiequilibrium assumption of
diffusive Q motion may have to be modified for very large
proteins. Topological constraints may become important for
real proteins, as some recent lattice simulations indicate (37).
A useful avenue for future investigation will be the com-

parison of the present coarse-grained statistical mechanical
theory with detailed atomistic calculations using importance
sampling, which are appropriate for kinetic prediction when
the quasiequilibrium protein folding funnel picture is adopted
(38).
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