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ABSTRACT It is argued that knowledge representations
formalized through pattern theoretic structures are geometric
in nature in the following sense. The configurations and
resulting patterns appearing in such representations exhibit
invariances with respect to the similarity groups and are
characterized topologically through their connection types.
Starting with a special pattern from microbiology, it is shown
how the basic pattern theoretic concepts are introduced in
general and what their function is in representing knowledge.
Varianceyinvariance of the patterns is discussed in geometric
language. The measures on the configuration spaces are
implemented by differenceydifferential equations which are
used as a basis for computer algorithms.

Information and Knowledge. Fig. 1 Left is a micrograph of a
cardiac cell in a rat. In it several types of structures can be seen,
among them some oblong areas, sometimes oval, sometimes
curved, the mitochondria of the cell. The mitochondria, whose
functions include supplying energy for the cell, can be seen to
vary a good deal between each other. Nevertheless they exhibit
some stability: their size, while variable from one to another,
is of the same order of magnitude, and their texture is
characteristic and different from that of the surrounding
cytoplasm.
These statements could be made more precise and given

quantitative form in terms of lengths, areas, intensities and so
on, as is customary in biologicalymedical research. It is less
obvious how to assert that the shape also has some stability,
how the concept of shape should be formalized in quantitative
form without introducing unrealistic assumptions stipulating a
fixed form for all the mitochondria.
This difficulty is not limited to mitochondria, nor to micro-

biology, since the notion of shape pervades biology in general.
In brain research, for example, the anatomies are described
through basic units like midbrain, ventricles, hippocampus,
. . . , all the way down to the level of cell types as in Brodman’s
classical brainmap. Or, going in the opposite direction, starting
with cells, the anatomist builds larger structures which them-
selves are combined into even larger units until the entire
organism has been accounted for.
During this building process, in which successive levels are

introduced, with units that are measured and located with
respect to each other, it is practical to express the descriptive
anatomical statements in some coordinate system. It is clear
that, the relations should be invariant with respect to the Euclid-
ean group of transformations.
A large collection of such micrographs contains a lot of

information in raw form about mitochondria, but it is only

when information is organized into ordered systems that it
becomes knowledge, say in the form of a textbook, or a theory,
a doctrine. To fix ideas we shall limit ourselves to discussing the
form of mitochondria, but the reasoning is of much greater
generality.
Before entering this discussion it is reasonable to ask why

such representations are needed. Say that a biologist has
accumulated evidence about some organism, for example in
the format of pictures such as the one in Fig. 1. If the number
of pictures is small they can be examined ‘‘manually’’ one by
one, and the raw data can be reduced to quantitative mea-
surements and summarized into meaningful statements. When
the observational techniques become increasingly automated
the researcher will be faced by mountains of data and it is
reasonable to turn to computational methods of analysis. But
to develop computer programs for such a task requires that it
be formulated in exact terms: the computer is unforgiving
when it comes to nebulous or ambiguous instructions. We are
thus forced to formalize our understanding of the research
object in well defined logical categories so that they can be
correctly translated into computer code: we need, indeed, a
formal representation of the knowledge.
To represent knowledge by doctrines, perhaps by mathe-

matical models, has a long history going back to the dawn of
scientific thinking. Sometimes this has resulted in highly
concise theories of great beauty; Newtonian mechanics is the
example par preference. Others are differently expressed, not
using mathematical terminology but nevertheless organizing a
mass of information into knowledge representations; the bo-
tanical taxonomy of Linnaeus could serve as an example. It is
when we are confronted by really complex systems, heteroge-
neous, highly variable, and with complicated interactions
between their parts, that the need arises for formal structures
that has led to the creation of pattern theory. Biologyymedicine
offers many examples of this.
Knowledge as Geometry. To be more concrete, let us return

to the representation of the shape of mitochondria in micro-
graphs. In Fig. 2a we show a polygon whose shape is at least
reminiscent of that of a mitochondrion. Let us denote the
vertices of an arbitrary polygon, not necessarily closed, see Fig.
2b, by x i 5 (x 1i , x 2i ) [ R2; i 5 1, 2, . . . , n 1 1 and think of the
polygon as generated by the n sides

gi 5 ~xi, xi11! .
3

To ensure that the sides are contiguous we introduce bond
values

bin~ gi! 5 xi; bout~ gi! 5 xi11
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with the obvious bond relation

bout~ gi! 5 bin~ gi11!; i 5 1, 2, . . . , n 2 1.

In this illustrative example the choice of bond relation is
obvious but that will not always be the case.

Formally we shall write the representation of the n-gon as a
configuration

c 5 LINEAR~ g1, g2, . . . , gn! ,

with s 5LINEARmeaning a connector graph, here just a linear
graph. These configurations, constrained by the bond relation,
form a configuration space # 5 #(5), where the symbol 5
stands for the regularity expressed by the bond relation. The
constraints are local in the sense that each one involves only a
bounded number, in this case two, of generators as n3 `. The
configuration is interpreted to mean the curve I in the plane
corresponding to the polygon and written formally as R : c °
I; I 5 Rc. R is called an identification rule; see below.
We shall also need a subconfiguration space #(5closed)

consisting of configurations

c 5 CYCLIC~ g1, g2, . . . , gn! ,

where the connector graph CYCLIC means that the bond
relations are also valid for the bond couple (boutn , bin1 ). We also
ask that the polygon not be self-intersecting, which is a global
constraint. If that is assumed to be true, Jordan’s theorem
guarantees that the curve divides the planeR2 into two regions,
the inside I and its complement Ic. We can then interpret the
configuration as ‘‘meaning’’ the image I (see Fig. 2a; we use an
identification rule

R : c ° I.

Note that R is not invertible, since an n-gon encloses a set that
can also be enclosed by an m-gon, m . n, with some colinear
sides. This distinction may at first seem like splitting hairs but
is actually fundamental. The representation through a config-
uration, the deep structure to use Chomsky’s terminology, is not
always uniquely determined by the image, the surface struc-
ture. This is like the relation between a function and a formula
that represents the function: the formula determines the
function but not the opposite.
To handle the permanence of the concept of shape we shall

specify a group of transformations that induces invariance. The
group will in general be called the similarity group, borrowing
and extending the meaning of this term from Euclid, and shall
act on the space G of generators, in this example

FIG. 1. (Left) Micrograph of rat cardiac cell. (320,000.) (Right) Same section, with mitochondria outlined.

FIG. 2. (a) CYCLIC. (b) LINEAR.
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G 5 R2 3 R2 5 R4,

since then a generator is determined by its bondvalues, each of
dimension two. A good choice of similarity group here has
been shown to be the product of the special plane Euclidean
group with that of uniform scale change

S 5 SE~2! 3 US~2! ,

where a generic group element s [ S acts according to

sg 5 s~bin, bout! 5 ~sbin, sbout!

and extend this definition from G to # by

sc 5 sLINEAR~g1, g2, . . . , gn!
5 LINEAR~sg1, sg2, . . . , sgn!.

Note that this transformation acts in the same way on all the
generators in the configuration—it is a rigid (up to scale
change) transformation. But rigid transformations will not
suffice for the representation of flexible shape, since they only
describe a single polygon translated, rotated, and uniformly
scaled, which is clearly insufficient for describing the variability
of mitochondria.
To proceed we introduce local transformations of one or

several templates. Starting with a template configuration

ctemp 5 LINEAR~ g1
0, g2

0, . . . , gn
0! [ #~5!,

introduce the deformed template by

c 5 LINEAR~s1 g1
0, s2 g2

0, . . . , sn gn
0!

with similarities s1, s2, . . . , sn [ S arbitrary except that they
make c [ #(5). Then the polygon can undergo more flexible
changes and we shall see below how to make this a powerful
model of shape.
The image algebra

( 5 $Rc u c [ #~5!%

is indeed an algebraic structure and allows two types of
operations. First, the rigid similarities s : ( 3 ( naturally
defined through s : I° sI and, second, combinations of images
I1 5 Rc1; I2 5 Rc2; c1, c2 [ #(5). Let s be a connector graph
that connects unconnected bonds from c1 to bonds of c2 and
form the configuration

c 5 s~c1, c2! .

If the new connector is regular, c [ #(5), so that the last
outbond of c1 agrees with the first inbond of c2, we can form
the image I5 Rc and write formally I5 s(I1, I2) for the second
type of algebraic operation in (. We also have the sub-image
algebra

(closed 5 $IuI 5 Rc, c [ #~5closed!%

representing sets enclosed by polygons as in Fig. 2a. Then we
have only one type of algebraic operation, namely I 3 sI. In
Fig. 3 we show some instances of both types of algebraic
operations.
The mapping R : sctemp ° Itemp produces a deformed image

template from the deformed configuration template. Further,
we can expose any image I to rigid transformations and form
the set of images

P~I! 5 $sIus [ S%.

We shall call P(I) a pattern and the set

3 5 $P~I!uI [ (%

of all patterns can then be seen to be the quotient space (yS.
The micrograph in Fig. 1a contains several mitochondria

and in general we must take into account the fact that the
number is not known beforehand. We do this by extending the
choice of connectors: we now allow any connector graph s
consisting of a finite number of cyclic graphs, so that we are
dealing with the family of graphs

(mult 5 øk50
` CYCLICk.

This leads to the extended configuration space

#~5mult! ,

which the identification rule R makes into the larger image
algebra

(mult 5 øk50
` (closed

k ,

namely, the union of Cartesian products of the original image
algebra, so that k is the number of mitochondria in the image.
The way in which we represent knowledge relative to groups

of transformations inducing invariances is reminiscent of Felix
Klein’s celebrated Erlangen program (1), in which he sug-
gested that geometries should be viewed as systems in which
certain relations are invariant with respect to some group of
transformations. We can therefore speak of pattern theory as a
geometry of knowledge, and we can view configurations as
geometric objects. Also, the connector graph, which in general
can be quite complicated, describes the neighborhood rela-
tions of the knowledge representation which gives rise to a
topology of the knowledge representation. Hence we are faced by
problems in geometry, albeit of nontraditional type.
Representing Variability in a Flexible Geometry. The image

algebra(closed has enough flexibility to represent mitochondria
shape. Actually, it can represent very complicated shapes quite
different from those of mitochondria: it is too general andmust
be restricted to be useful.
To do this we introduce measures on the configuration space

and image algebra that will describe normal variability of the
shapes. One could define such measures directly on # or ( but
it is more natural to do it for the similarities s1, s2, . . . , sn that
give rise to the deformed templates, since this reduction brings
us closer to the morphogenesis that produces shape. In other
words we shall introduce ameasurem on Sn with the intent that
m will emphasize the shapes that occur most commonly in
nature but give little weight to others.
We shall usually choose m to be bounded so that we can

normalize it to a probability measure

FIG. 3. Algebraic operations. (a) Combination. (b) Similarity.
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P 5
1
Z
m

with the normalization constant Z 5 m(Sn) known as the
partition function to the physicist. The actual construction of
mwill of course depend upon the particular knowledge domain
that is to be represented but should agree with the topology of
that domain in the following sense.
For simplicity, say that S is finite-dimensional Euclidean

space and that m will be given in terms of a density f on Sn with
respect to Lebesgue measure dsn on Sn. We shall ask that the
density, the Radon–Nikodym derivative, have the multiplica-
tive form

m~ds!
dsn

5 f~s1, s2, . . . , sn! 5 P
i51

n

A~si1, si2!

with the convention n1 1[ 1. The functionA(z, z), the acceptor
function, controls the dependence between the similarity trans-
formations applied to the n generators.
In the special case of mitochondrial shapes, the following

specification of the acceptor function has been used success-
fully. Consider a similarity acting upon a generator g 5 (bin,
bout) [ R4 as

s : g ° ~bin 1 a, bout 1 a! 1 ~rObin, rObout!

with the translation parameter a [ R2, the rotation angle f [
[0, 2p), and the scaling factor r . 0, we can read the
scalingyrotation part as polar coordinates as

rO 5 rS cos f
2sin f

sin f
cos fD 5 S u2v v

uD
with u, v [ R. On the four-dimensional similarity group S
parametrized by a1, a2, u, v we define an acceptor function

A~si, si11! 5 exp 2
1
2

@Qlocationys location
2

1 Quys u
2 1 Qvys v

2]

with the quadratic forms

Qlocation 5 ~a1
i11 2 rlocationa1

i !2

1 ~a2
i11 2 rlocationa2

i !2

Qu 5 @ui11 2 1 2 ru~u
i 2 1!#2

Qv 5 @vi11 2 1 2 rv~v
i 2 1!#2.

The rationale behind this choice of A(z, z) is, first, that we want
its maximum to be achieved for a1 5 a2 5 0 and u 5 1, v 5 0
implying r 5 1, f 5 0, in other words at the identity of the
group S 5 SE(2) 3 SU(2). Second, we need to control the
variability of the boundary ­I which we do by means of the
variability parameters slocation, su, sv that express how much
changes in the location, orientation, and scaling will deviate
from the identity. Third, we must also control the smoothness
of ­I through the smoothness parameters rlocation, ru, rv—by
making them small the boundary will be more chaotic and vice
versa.
This defines a density and measure on #(5), and we shall

restrict it to the sub-configuration space #(5closed) by con-
straining the measure to that manifold, in this example of
dimension 2n instead of 4n for the unrestricted configuration
space. Leaving out the technicalities about how to do this, note
only that one has to describe the variability of k, the number
of mitochondria in the image. This is going to result in a total
measure consisting simply of a linear combination

mmulti 5 O
k50

`

ck m 3 m 3 z z z m«
k times

unless we want to exclude the possibility of two mitochondria
overlapping each other, which will not be discussed here.
But how does this actually work, how well does the knowl-

edge representation mirror the shape properties of real mito-
chondria? This question can be answered in two ways, one of
which is pattern synthesis. If we use Monte Carlo simulation of
the representation with appropriate values plugged in for the
variability parameters, how do the images look? Fig. 4 shows
an empirical template in green and some synthesized shapes in
red; they seem to be at least qualitatively like the ones in Fig.
1. But this is not the deciding test for whether to accept or
reject the representation. Instead we will have to study how it
behaves when applied to real micrographs, pattern analysis, and
this will be discussed below in Differential Equations for
Patterns. But first I shall put the previous in a more general
perspective.
Geometry of Patterns in Complex Systems. The previous

discussion was all in a very special case, but the treatment of
patterns in a general system can be based on the same concepts
and reasoning. The abstract formulation, abbreviated by omit-
ting some topics that are important but cannot be treated here,
reads as follows; more precise statements and proofs can be
found in Grenander (ref. 2, chapters 1 and 2 and part IV, and
ref. 3).
Starting from a generator space G of primitive objects

equipped with a number, the arity v(g), of bond values

bj~ g!; j 5 1, 2, . . . , w~ g!

with values in some bond value space B, and a bond relation

r : B 3 B 3 $TRUE, FALSE%

we form configurations

c 5 s~ g1, g2, . . . , gn!

by putting the generator gi at the ith site of the connector graph
s from some family, the connection type, S, of connector
graphs. A group S of transformations s : G3 G acts on G. In
most cases that have been analyzed S is a finite-dimensional
Lie group. The configuration c is said to be5-regular with the
regularity

5 5 ^G, S, r, (&

FIG. 4. (a) Template. (b–d) Synthesized shapes.
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if all pairs of bonds emanating from two sites (i1, i2) connected
by s satisfy the bond relation

r~bj1~ gi1!, bj2~ gi2!! 5 TRUE

and s [ S. See Fig. 5. The regularity5 leads to a configuration
space #(5) and, with some equivalence relation R, the iden-
tification rule, we get the image algebra as the quotient

( 5 #~5!yR 5 #~^G, S, r, (&!yR

and the pattern family

3 5 (yS.

The regularity 5 determines the geometry of the knowledge
represented by the regular structures #(5) and together with
the identification rule R it determines also the algebraic
structure of (.
Returning to the configuration space, we introduce a mea-

sure m as a Radon–Nikodym derivative with respect to a
s-finite measure mn on Sn through the structure formula

m~dsn!
m~dsn!

5 O
s[(
cs 3 P

~~i1, j1, !, ~i2, j2!![s
A~bj1~gi1!, bj2 ~gi2!!

with some acceptor function

A : B 3 B 3 R1

and the product taken over all pairs (i1, j1)7 (i2, j2) connected
by the graph s. When S is a Lie group it is natural to choose
the measure mn as an invariant measure on the group. The
measure m induces measures on the image algebra ( and
patterns in 3 just as in the mitochondria example. If the
measure m is bounded it can be made into a probability
measure by normalizing with the partition function Z 5
m(#(5)). These measures determine the metric structure of
the knowledge representations.
Differential Equations for Patterns.Once we have acquired

some understanding of the geometry of a pattern class it can
be exploited for practical use. It then depends upon what
sensor was used to acquire the picture. Medical sensor tech-
nology has advanced rapidly in recent years and resulted in a
multitude of modalities—for example, magnetic resonance,
ultrasound, positron emission tomography, and visible light
microscopy to mention but a few. The micrographs in the first
section of this paper were obtained by an electron microscope,
and we shall discuss the analysis of them, pointing out that the

mathematical method is essentially the same for all modalities
except, of course, that the physics can differ radically from one
sensor to another.
Call the observed image deformed by biological variability

as well as by sensor imperfections I$. In most cases the
deformed image can be represented by an array so that we can
write

I$ 5 $Iy
D; y [ Y%,

where Y stands for the array and its entries of I$ are real
numbers. One can make this concrete by thinking of Y as
parametrizing the ‘‘photographic plate’’ taking this term in a
wide sense. The biological variability is described by a prior
probability density p(c) as discussed in the previous section,
and we now have to describe the sensor physics by another
probability density L(yuc) conditioned by the statement that
c5 sctemp is the true configuration. The form of L(zuz) will vary
from sensor to sensor, and I only offer a simple example when
Y is a square matrix and I is a subset of the square (0, l)2

Y 5 ~~i , j!; i , j 5 1, 2, . . . , l!

L~I$uc! } exp 2
1

2sobs
2 [ O

inside
(Iij

$ 2 min)2

1 O
outside

(Iij
$ 2 mout)2]

with the sums extended over the subsets of the l 3 l lattice

inside 5 {(i , j)u(i , j) [ sItemp}

5 $~i , j!u~i , j! [ sRctemp}

outside 5 {(i , j)u(i , j) ¸ sItemp}

5 $~i , j!u ~i , j! ¸ sRctemp}.

The typical intensity inside an object is min and outside mout.
The resolution of the sensor is measured by the value of l and
its accuracy by sobs.
Introduce the functions of sn, called energies because of their

role similar to that of real energies in physics,

Eprior(sn) 5 2 log p(c) 5 2 log p(snctemp)

EL~sn! 5 2 log L(I$usnctemp)

E~sn! 5 Eprior(sn) 1 EL(sn).

In this approach all the knowledge about the unknown true
configuration c is contained in the prior knowledge represented by
p(z) and the empirical knowledge represented by I$ and can be
summarized by the posterior densisty

p~snuI$! } p~snc!L~I$usnc!.

This is just Bayes’ theorem when the deformed image I$ is
treated as observed and fixed. The problem of how to make
strong statements about the pattern represented by the un-
known sn, c, or I is therefore reduced to handling p(snuI$).
To do this we shall employ the differential equation

dsn~t! 5 2 ¹E~sn!dt 1 W~dt!

involving the gradient ¹E(sn) and the Wiener process W(z) on
the Lie group S. The variable t denotes algorithmic time.
This differential equation can be motivated in two ways. The

first, simple but superficial, is to point out that the first term
on the right makes the trajectory through Sn move against the
gradient of the energy E(sn) so that it tends toward a local
energy minimum. Many systems in the physical sciences areFIG. 5. Configuration diagram.
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controlled by such a behavior, so it is not unreasonable to
postulate this sort of strategy for interpreting an observed
image.
A deeper motivation is to consider the probability measure

P(t) of sn(t) and to note the well known fact that

P~t!O°
weakly

P

as t 3 `, where P is the measure with density p(snuI$). That
means that if we solve the differential equation from t 5 0 up
to a large value tfinal, then the resulting value

sn~tfinal! '
in measure P,

so that sn(tfinal) is a likely explanation of I$. Doing this a number
of times will give us a sense of what accuracy we can attach to
the explanation. Many variations of this statement can be
made, but the above one will have to suffice here. We shall
bypass a technical difficulty, ergodicity, here and only refer to
Grenander and Miller (4).
Of course the variability of k, the number of mitochondria

in a micrograph, must also be taken into account. Without
entering into a discussion of how this has been done we just
mention that the differential equation will be extended to a
difference-differential equation for which the solution is al-
lowed to jump at discrete time points corresponding to the
decision k 3 k 6 1 and follow the differential equation
between the jumps. Fig. 6 shows schematically how the solution
develops through configuration space.
In the mitochondria study the output of the differential-

difference equation can look like Fig. 1 Right, which shows the
boundaries of the recognized mitochondria.
Let us now turn to a more challenging task, to represent

variability in images obtained by magnetic resonance, positron
emission tomography, or single photon emission computed
tomography. Here too the formulations should start in the
Euclidean continuum, not on the lattice of the observed
picture as has often been done in traditional pattern recogni-
tion, which is one of the reasons for its difficulties. We are now
in R3. Configurations are then built from generators consisting
of the components of the brain, hierarchically organized, and
with bondvalues made up from surface patches. Further, the
generators may carry parameters—for example, indicating
tissue type or the name of the component. The connectors, the
ss, that represent the topology of anatomical atlases, say for
normal anatomies, express contiguity of surface patches.

For (normal) anatomical patterns the similarity transforma-
tions will be made up of a cascade of groups. On each group in
the cascade a measure is introduced to represent that part of
the variability that is due to the transformations in the group.
This leads to a density p(cuI$) by an argument that is in
principle the same as the one above, although more compli-
cated, and also to differential equations over the respective
groups.
Given a template brain represented by a configuration

ctemp 5 s~g1, g2, . . . , gn! [ #~5!

we acquire for a patient an observed image I$ and then solve
the differential equations to find a reasonable diffeomorphism
d* : Itemp 3 ( that will serve as an explanation of the
observation. We then let d* operate on the generators in the
image template

d*Itemp 5 d*Rctemp

5 R*s~g*1, g*2, . . . , g*n!; g*i 5 d*gi.

This makes it possible to achieve automatic recognition of the
components of the patient brain as Rd*gi. Fig. 7 indicates the
nature of such automatically obtained mappings, or brain
warps. Once the components have been identified it is a simple
matter to let the computer calculate their volumes, areas, and
curvatures, as well as other geometric characteristics that may
be of help to correlate with the symptoms and signs observed
for the patient.
Of course this procedure is justified only for a patient

population with brains topologically equivalent to Itemp. With
conscious abuse of medical terminology we name a brain
normal only if it is topologically equivalent to the template in
the given sub-population; this we consider a necessary (but not
sufficient) condition for normality. How to deal with images of
abnormal brains requires an extension of the methodology
described above, but we cannot go into this challenging topic
here.
Geometric Understanding of Patterns.We have argued that

pattern theoretic representations of knowledge are inherently
geometric in nature. Their geometry is described metrically by
transformations from Lie groups, the similarities S. They are
described topologically by graph structures S and jump trans-
formations acting upon these connection types. With the aid of
such variability transformations questions of inference from
observed images reduce to the geometric understanding of the
pattern. The two examples discussed above happened to be
pictorial; this was completely incidental, however, and the
statement is not limited to understanding of observed pictures.
Such understanding is possible for patterns of general nature

by solving the differential equation that governs the system and
is derived from a pattern theoretic representation. The aim of
these knowledge representations is fundamentally different
from that in artificial intelligence, AI, in which the same term
occurs. In AI the overall objective is to imitate human intel-

FIG. 6. Solution development. FIG. 7. Deformable brain mapping.
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ligence in general by computer algorithms. The goal of pattern
theory, on the other hand, is at the same time more limited and
more ambitious. It is limited in that it does not pretend to be
able to imitate general intelligence, only narrow segments of
human mental activities such as recognition of mitochondria
or anatomical components. It is ambitious in that it tries to
automate such activities so that the task can be carried out
faster and perhaps better than by humans.
But this approach is also limited to really complex systems,

where it is important to realize that ‘‘complex’’ does not just
mean big but has a more restricted meaning. A system with lots
of components, such as an ideal, monatomic gas, is certainly
complicated, and its study has raised challenging mathematical
questions. Nevertheless the rules that are assumed to govern its
behavior are straightforward and no pattern formalism is
needed—it would help little if at all. In contrast, systems in
biologyymedicine often exhibit behavior characterized by a

high degree of heterogeneity, complicated interactions, and
awesome variability. Then a formal representation helps to
separate the essential from the incidental and sets the math-
ematical stage for a rational approach to automated image
understanding in the limited sense above. The last decade has
witnessed the successful application of this methodology to
microbiology, digital anatomy, language theory, and automatic
target recognition, and some attempts are being made at
present to use these ideas in nonnumerical situations.
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