
Is Transcriptional Regulation of Metabolic Pathways an
Optimal Strategy for Fitness?
Carl Troein1*, Dag Ahrén2, Morten Krogh1, Carsten Peterson1

1 Computational Biology and Biological Physics, Department of Theoretical Physics, Lund University, Lund, Sweden, 2 Microbial Ecology, Department
of Ecology, Lund University, Lund, Sweden

Background. Transcriptional regulation of the genes in metabolic pathways is a highly successful strategy, which is virtually
universal in microorganisms. The lac operon of E. coli is but one example of how enzyme and transporter production can be
made conditional on the presence of a nutrient to catabolize. Methodology. With a minimalist model of metabolism, cell
growth and transcriptional regulation in a microorganism, we explore how the interaction between environmental conditions
and gene regulation set the growth rate of cells in the phase of exponential growth. This in silico model, which is based on
biochemical rate equations, does not describe a specific organism, but the magnitudes of its parameters are chosen to match
realistic values. Optimizing the parameters of the regulatory system allows us to quantify the fitness benefit of regulation.
When a second nutrient and its metabolic pathway are introduced, the system must further decide whether and how to
activate both pathways. Conclusions. Even the crudest transcriptional network is shown to substantially increase the fitness
of the organism, and this effect persists even when the range of nutrient levels is kept very narrow. We show that maximal
growth is achieved when pathway activation is a more or less steeply graded function of the nutrient concentration.
Furthermore, we predict that bistability of the system is a rare phenomenon in this context, but outline a situation where it
may be selected for.

Citation: Troein C, Ahrén D, Krogh M, Peterson C (2007) Is Transcriptional Regulation of Metabolic Pathways an Optimal Strategy for Fitness? PLoS
ONE 2(9): e855. doi:10.1371/journal.pone.0000855

INTRODUCTION
Transcriptional regulation of effector genes is a highly successful

strategy, as evidenced by our tendency to ask how rather than

whether a gene is regulated. A very natural place to study gene

regulation is in the metabolism of the cell, and then specifically in

the regulation of genes that code for enzymes and transporter

proteins. Here, the function of regulation is quite clear: expressing

the right genes at the right time will enable the cell to make the

most of the resources within its reach, by maximizing the uptake

and use of rate-limiting resources such as carbon and energy.

In unicellular organisms like E. coli and yeast, the benefits of

a well-adapted regulatory system are readily quantified, as the

fitness of an individual can be estimated by its growth rate in

culture. A number of studies have explored how regulation of

metabolic pathways affects the growth rate of microorganisms,

both in the steady state and in response to changes in the local

environment. In a typical experimental setup, E. coli is grown in

a chemostat for some period of time, with one or two carbon

sources present at levels that are perturbed at some point in time

(see, e.g., [1–3]).

Over evolutionary time scales, regulation must provide a fitness

benefit that offsets the costs of maintaining the regulatory system.

Most immediately, precious resources will be spent on synthesizing

transcription factors and replicating extra DNA, rather than going

directly into growth of the cell. However, this cost can easily be

dwarfed by the cost of a failure to regulate gene expression

optimally, as enzymes are typically produced at far higher rates

than transcription factors.

There is also an entropic cost involved in maintaining

a regulatory system, stemming from random mutations that tend

to destroy transcription factors and binding sites. As elucidated by

Savageau [4], for functioning regulation to be present in the wild

type, the population of that genotype must offset losses due to

mutations by having a higher grow rate than the mutants with

broken regulation. The design of the regulatory system affects the

growth rate not only when the system is intact but also when it is

broken, which in realistic situations can severly constrain the

regulatory options. This is ‘‘survival of the flattest’’ [5] at work.

In the case of the lac operon of E. coli, a well-studied system for

detecting and metabolizing lactose, it is known that the overall

effect of expressing the lac genes in vain is a drop in the growth rate

of as much as 5% [1,6]. It has been argued, based on the cost in

energy and carbon, that a number around 0.2% would be

expected, and that the difference is more or less specific to the lac

operon [7]. Utilization of lactose, when present, has a positive

effect on the order of 10–15% [1]. With a such an asymmetry

between potential cost and benefit, regulation can make the most

difference to the long-term growth rate if the resource in question

is only available a similarly small fraction of the time. More

generally, and at least to a first approximation, it is obvious that

gene regulation only is useful if the environmental conditions vary

with time. Experimental data show that a repressive mode, where

the presence of a resource disables the binding of a repressor to the

DNA, is preferred when demand for expression is rare, whereas an

activating mode is preferred in the opposite situation [8]. For the
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lac system and realistic time variations, the entropic effects appear

to be so large that only a repressive regulatory mode is possible [9].

To concretize the question of how to regulate metabolic

processes, we consider the simplified view presented in figure 1(A).

Here, an organism grows in a medium with one relevant rate-

limiting resource, presumably a combination of carbon and

energy, and several nutrients may be available to provide this

resource. Nutrients present in the medium can be absorbed by the

cell and converted into a useful form by the actions of different

enzymes and other proteins. The proteins are replenished at the

cost of slower growth, and evolution will optimize the growth rate

over a set of environmental conditions by tuning the regulation of

the protein production rates.

In this paper we study how the levels of one or two nutrients

interact with the transcriptional regulation of their respective

metabolic pathways to determine the growth rate of an organism

under steady state conditions. Transient responses are an

important aspect of metabolic regulation (see, e.g., [1,3,10]), but

it is also hypothesized, and in some cases known, that

microorganisms excel at optimizing their growth rate in the steady

state [2,11]. Because of this, we may approximate the fitness of an

organism from its growth rate in a set of static environments. From

such a treatment we can hope to gain further insights into how

evolution chooses a mode of regulation, if any, depending on the

environments that a species is exposed to.

RESULTS AND DISCUSSION

The model
We have implemented a minimalist model of an organism that

grows by metabolizing one or more compounds found in its

environment. These compounds could represent different sugars,

alcohols, or other nutrients, and although the model is not tied to

any one particular example, we have glanced at the lac operon of

Escherichia coli and the carbon metabolism of yeast. The model as

such is rather similar both in spirit and form to that of Shoemaker

et al. [12]. We have, as far as possible, derived equations and

constants from first principles, in order to maximize the generality

of the results. Some assumptions and approximations greatly

simplify the model:

N Chemistry can be dealt with in terms of rate equations.

N Michaelis–Menten kinetics [13] are always appropriate.

N The cell contents are homogeneous, and transport processes

are purely diffusional.

N Cell growth and division are one continuous process, resulting

only in the dilution of the contents of the cell.

N Molecular concentrations have no hard upper limit.

Furthermore, when the environment is held constant, it is

natural to seek steady state solutions to the equations. If only one

stable solution exists, we use the corresponding growth rate as

a fitness measure for the organism.

The differential equations that define the model can be found in

Materials and Methods. Their parameters are largely given by

basic physics and rudimentary knowledge about living cells,

although in some cases only to within a few orders of magnitude. It

should be pointed out that no attempt has been made to fit the

model to experimental data, so although predictions made from

the model may be qualitatively sound, they cannot be expected to

agree quantitatively with any particular organism.

Figure 1(B) summarizes the interactions of the model, of which

we will first consider a reduced version. A compound to be

catabolized, call it A, exists outside the cell at concentration Aext,

and can diffuse into and out of the cell. Inside the cell, A is

converted into metabolite C with the help of an enzyme, EA. The

metabolite C is what the cell needs in order to grow and make

more EA. If A represents glucose, then C might represent pyruvate

and ATP, and EA is a whole set of enzymes, transporters, and

other proteins. The generality of Michaelis–Menten kinetics as an

approximation for one-way reactions (see, e.g., [14]) is what keeps

this vagueness acceptable. In particular, note that even though we

speak of EA as an enzyme, the same rate equations arise if the

main rate limiting step involves transport across the plasma

membrane. Hence our minimalist model is not at odds with the

more detailed model of Barford et al. for sugar uptake by yeast

[15], given a sensible choice of parameters for the kinetics.

Let A denote the level of A, and so on. The production of C

follows Michaelis–Menten kinetics, depending linearly on each of

EA and A but leveling off at high A. The rates of protein synthesis

Figure 1. A) A general view of an organism with one or more metabolic pathways. Solid lines represent the flow of biomass, while dotted lines
show regulatory interactions, with arrows for positive regulation and circles where the sign of the regulation can be varied. Nutrients are transported
into the cell, processed by enzymes, and spent on cell growth and on replenishing the enzymes. Optionally, transcription factors may detect the
presence of nutrients and regulate the enzyme production accordingly. B) A sketch of the most complete model considered here, where two
nutrients, A and B, are turned into C by their respective enzymes, EX. Nutrients inside the cell activate the transcription factors, TXRT*

X, which in turn
activate or repress the production of enzymes and each other. For parts of this paper, pieces of the model are removed, including the entire B side.
When the transcription factors are excluded, the rate constants pEA

and pEB
control the production of enzymes.

doi:10.1371/journal.pone.0000855.g001
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and cell growth are limited by C at low nutrient levels, but by

translation and DNA replication, respectively, at higher C. Just

how great the production of EA, pEA
, is depends on the rate

constant pEA
, which captures both transcriptional regulation and

the amount of protein synthesized per mRNA. Degradation of EA

is assumed to occur in the form of exponential decay with a half-

life on the order of an hour.

Optimal enzyme production rate
Even with a single nutrient, before attempting to regulate the

enzyme production rate, we need to look at how much difference

this can make to the growth rate over the whole range of

environments. Only then can we know if and when there can be

any point in employing transcriptional regulation.

All model parameters except the rate constant for enzyme

production, pEA
, are fixed, and regulation amounts to adapting pEA

to the nutrient concentration, Aext. Hence, we have explored how

the steady state growth rate depends on pEA
for many fixed values

of Aext, by integrating the equations of the system from some initial

state until reaching a fixed point. The growth rate thus found is

normalized such that a value of 1 corresponds to the best possible

growth rate for a given Aext. This quantity, which is shown in

figure 2, is a fitness score that reflects how well an organism can

compete with others that are perfectly adapted to a single

environment. A tiny difference in growth rate becomes significant

over many generations. Therefore, the gray scale in figure 2 was

chosen to resolve small deviations from the maximum growth rate.

Interpreting figure 2 is easier if we also consider figure 3, which

shows the optimal pEA
and the resulting protein production rate,

pEA
(determined by pEA

and C), as functions of Aext, along with the

growth rate and the fraction of resources (C) spent on enzyme

production as opposed to growth. At very low concentrations, the

cell barely has enough of the nutrient to survive, and it must focus

almost all its energy on building enzyme. Because of the

degradation of EA, there is a point (near Aext = 20 mM) where

each molecule of EA costs more molecules of C to synthesize than

it can bring about during its lifetime, and starvation is inevitable.

When the nutrient is more abundant, the resulting rise in C will

lead to greater enzyme production. Our model assumes a linear

relationship between C and the protein synthesis rate for low-to-

moderate C, but the dash-dotted line in figure 3 indicates that with

our model the enzyme production should approximately follow

C0.6 to maximize the growth rate. The exact relationship is hardly

significant, but in any case it seems unlikely that the overall rate of

protein synthesis would be adjusted to meet the needs of a single

protein, and it is up to pEA
to bridge this gap.

With higher enzyme concentrations it is primarily the diffusion

of A into the cell that limits growth. There is a range of

intermediate Aext for which the optimal value of pEA
varies

relatively little, but with even higher Aext and faster growth comes

greater dilution of the enzyme, and this forces pEA
to rise. If Aext is

higher still, the cell divides as fast as it possibly can and yet has

much C to spare. As we do not take into account that protein

synthesis may tie up machinery also needed for rapid growth and

cell division, there is no incentive to keep pEA
down in this limit.

Thus, for very high Aext the optimal value of pEA
is the maximum

allowed by the model. At the same time, the growth rate is

insensitive to the value of pEA
; when resources are plentiful, how

they are spent is less important.

We see that the fitness conferred by the metabolic pathway

depends strongly on the enzyme production rate constant pEA
,

except if the nutrient level is always kept within a limited range.

Such static conditions may apply to some obligate symbionts,

which can indeed lack the ability to regulate genes involved in

important metabolic processes. For example, bacterial symbionts

in aphids have lost most of their transcriptional regulation of

amino acid synthesis [16], in a situation analogous to the one

studied here in that the fitness gain from regulation must be

weighed against the cost over a range of external conditions. For

the vast majority of single-celled organisms, the environment can

not be expected to be so constant. Selection pressure necessitates

regulation of metabolic pathways.
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Figure 2. Growth rate as a function of the enzyme production rate
constant, pEA

, over a range of nutrient concentrations. Dark areas
mark where the growth rate is maximized for the respective Aext, and
the solid and dashed white lines indicate 90% and 99% of the
maximum, respectively. Values of pEA

w106V{1
cell s{1 are not physically

realizable, but are included to show the insensitivity to pEA
at high Aext.

Note the nonlinear brightness scale, which accentuates small deviations
from the maximum.
doi:10.1371/journal.pone.0000855.g002
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Figure 3. The transcriptional regulation, pEA
, that maximizes the

growth rate of figure 2 (solid) and the corresponding actual enzyme
production rate, pEA

(dot-dashed), in units of molecules per cell and
second. Also shown are the growth rate as fraction per hour (dashed,
right scale) and the cost of producing the enzyme EA, expressed in
terms of the total resource expenditure (dotted line, right scale).
doi:10.1371/journal.pone.0000855.g003
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Transcriptional regulation
To incorporate transcriptional regulation into the model, we add

a transcription factor, TA, which like EA is produced from C. TA

can act as an enhancer or repressor for the production of EA, with

the sign and strength of the regulation as two independent

parameters (see Materials and Methods). However, TA can only

function when activated by the presence of A. The fraction in the

active form is directly determined by the level of A as compared to

a half-maximum parameter. Now pEA
is no longer a constant, but

a function of the levels of TA and A. In addition to the dilution

caused by growth, TA is degraded, albeit at a much lower rate

than EA. It would be quite natural to add autoregulation to TA, to

allow it to stabilize its level over a wider range of growth rates or

possibly be more sensitive to Aext, but doing so would make the

results less transparent.

By wiring and tuning a transcriptional network, evolution will

tend to maximize the average growth rate over a succession of

environmental conditions. In the limit where the environment very

rarely changes, and the organism spends long time intervals in

each setting, only the distribution of conditions matters, not the

transitions between them. To keep things simple, we have defined

the fitness of an organism as the mean of the normalized growth

rate across an arbitrary selection of nutrient levels, as shown in

figure 4. This fitness corresponds to the average growth rate when

a similar number of generations is spent in each of these

environments. In other words, the amount of time spent at each

Aext is inversely proportional to the dashed line in figure 3; not an

entirely unreasonable first assumption.

In our equations, the transcriptional network is defined by five

parameters, and taking the view that evolution will have had

ample time to globally optimize a system with so few parameters,

we have used simulated annealing to pinpoint the parameter

values that maximize the fitness measure. The thick line in figure 4

shows the effect that transcriptional regulation has on pEA
, and

thereby on enzyme production, for the network of optimal fitness.

The points mark the Aext through which the fitness measure is

defined, and the color filling the points indicates that the achieved

fitness is almost indistinguishable from the maximal one, for those

Aext that we have optimized for. A brief explanation of how the

evolved transcriptional network operates is in order.

The transcription factor has become a repressor for the enzyme,

and the downward slope for low-to-moderate Aext is caused by the

steadily more produced and activated TA repressing the expression

of EA. Some transcriptional leakage occurs, and there is never that

much TA present, so pEA
is kept from falling too low. This explains

how an increase in Aext can result in a well-adjusted decrease in

pEA
. Perhaps more surprising, then, is the increase that pEA

shows

for high Aext. The explanation: the time scale for decay and

regeneration of TA is roughly one day, and when the generation

length is shorter than that, the level of TA drops because of

dilution.

In all, the transcriptional network is extremely good at

maximizing the fitness. Without regulation, the best possible

fitness is 0.81 (with pEA
<1.8?105), but with regulation the fitness

rises above 0.99. Adding autoregulation to the transcription factor

will further increase the fitness. We have also examined the effect

of limiting the range of nutrient concentrations to between

100 mM and 1 mM. Then, the fitness scores of the best

unregulated and regulated systems are 0.997 and 0.9996,

respectively. Finally, forcing the regulatory mode to be activating

was seen to substantially reduce the fitness score. Even with Aext

limited to values above 1 mM, the regulatory system was then

incapable of giving a strong positive response to counter the

dilution effect. We interpret this as a sign that the activating mode

of regulation requires the transcription factor TA to be positively

autoregulating, or its activation by A to be nonlinear, or both. In

either case, there are added requirements on TA, which may make

activators more difficult to evolve. In addition, it could them more

sensitive to random mutations, which would quantitatively affect

the results of [9].

The difference in average growth rate due to regulation should

be compared to the effect of adding the gene for the transcription

factor to the genome of the organism, an effect not included in our

model. Adding one gene should slow the growth rate by no more

than one part in 1 000, and often far less (see Materials and

Methods). This slowdown is far outweighed by the boost that

regulation brings, as long as the nutrient level is not too constant.

We conclude that when the nutrient level varies, transcriptional

regulation of the metabolic pathway carries great benefits for the

organism.

An additional nutrient
Gene duplication plays a major role in the evolution of new

functions. A duplicated enzyme or transcription factor will, if not

lost, likely be subject to subfunctionalization [17,18], a process that

may in turn lead to neofunctionalization [19,20]. To extend the

model to the case where a second nutrient is present in the

environment, we mimic a gene duplication event by adding a set of

variables where ‘‘A’’ is replaced with ‘‘B’’. Thus B is the alternative

nutrient, turned into C by enzyme EB, whose production is

governed by the rate constant pEB
. Clearly C should then be seen

as the first common point along the metabolic pathways of A and

B. Generally, A and B need not be equally useful for producing C,

and the parameters that describe EA and EB may be quite

different. Such a state of affairs may, e.g., apply to the preference

for glucose over fructose in yeast. Still, we will assume that all the

relevant parameters are equal between A and B, because a small

difference between them should only distort our conclusions

slightly, for instance by shifting the point of preference for one

nutrient over the other.
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Figure 4. The behavior of a cell with well-tuned transcriptional
regulation of the enzyme production. The normalized growth rate
(see figure 2) was optimized for those Aext indicated by points, with an
equal number of generations spent in each environment. The resulting
system responds to Aext as indicated by the thick curve. For comparison,
the straight white line shows the best pEA

in absence of regulation.
doi:10.1371/journal.pone.0000855.g004
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With the introduction of the second nutrient comes an increase

in the dimensionality of the state space that makes it impossible to

visualize the full gamut of the system. However, we have observed

that for any given environment the growth rate behaves nicely,

with a single, rounded peak around some optimal pEA
and pEB

(data

not shown). The optimum with respect to one parameter depends

very weakly on the value of the other. It is therefore meaningful to

keep Aext and pEA
fixed while studying the behavior as a function of

Bext and pEB
. Under the assumptions of our model, it is not

necessarily optimal for the organism to metabolize the most

abundant nutrient only, in contrast to the optimal strategy in [3].

The difference here is that when a nutrient is metabolized, its level

is inside the cell drops due to the finite diffusion rate.

Figure 5 shows how the growth rate depends on pEB
for different

Bext, with Aext fixed at 0, 50 mM, or 1 mM and pEA
optimized at

pEB
= 0 (to pEA

= 0, pEA
<1.5?105, or pEA

<9?104, respectively, as per

figure 3). As expected, the figure reveals that when little B is

available, it is best for the cell not to bother with B at all. However,

when Bext comes within a factor of about ten of Aext, the optimal

pEB
rises quickly, from zero to a value near where the optimum

would be in the absence of A. That is, when Bext>Aext, the

dependence of pEB
on Bext is described by figure 5(A) (which is

identical to figure 2). For other values of Aext than those shown in

figure 5, the only notable trend is that the transition region is

narrower and closer to Aext at low Aext. An organism that is well

adapted to a slowly changing environment will show a strong,

often nonlinear response to the level of B in the region where

3=Aext/Bext=30.

Bistability
After a change in the environmental conditions, and after

transients have died down, the internal state of a cell may depend

on the history of the cell, rather than on the new environmental

conditions alone. Bistability, the coexistence of two stable fixed

points in the dynamics, implies such hysteresis, because the initial

state of the system generally determines which fixed point it goes

to. In principle, stochastic effects always make the two states

metastable, but the time scale for spontaneous switching may vary

greatly. See [21] for a review.

Evolution does not indiscriminately optimize the steady state

growth rate. The environment changes from time to time, and if

moving to a different operating region transiently carries a cost in

the form of slowed growth, that cost must eventually be

recuperated. Depending on the typical pattern of changes in the

environment, the best solution for the individual cell may involve

hysteresis. In clonal populations, phenotypic heterogeneity caused

by bistability can be advantageous to the genome if it allows at

least part of the population to survive a disaster [22]. Genes can

thus hedge their bets by making individuals take risks, but only if

a timely response is impossible is this a better strategy than for the

cells to individually adapt to new conditions [23].
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Figure 5. Growth rate as a function of the activation of a second
metabolic pathway, presented as in figure 2. In each plot, the level of

r

metabolite B is varied, while metabolite A is present at a constant level,
and pEA

is pegged at its optimal value in absence of B. The sharp
transition of the optimal pEB

in (B) signals a need for nonlinearity when
pEB

is actively regulated. The thick lines indicate what the simple
transcriptional network of figure 1(B) can accomplish, when optimized
over a wide range of environments, either emphasizing high (solid) or
low (dashed) nutrient levels. Comparison with figure 4 shows that it is
far more difficult to achieve near-optimal regulation when the second
metabolic pathway is added.
doi:10.1371/journal.pone.0000855.g005
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The lac operon of E. coli is a well-known example of a regulatory

module tasked with deciding whether to make use of a specific

metabolite. This system, in short, contains a positive feedback loop

that activates lactose transport and metabolism when a metabolite

of lactose is detected, but only if the glucose level in the

environment is comparatively low. Experiments have shown that

the lac system has the potential for bistable behavior when

subjected to artificial inducers [24]. This property of the system is

appealing, and we can picture how it could fit into our results in

figure 5. Although the optimal pEB
does not follow an S-shaped

curve, the steepness and width of the region where pEB
switches

are, at low Aext, great enough to allow for bistability at a relatively

low fitness cost in the steady state.

However, it appears that the response of the lac operon to

lactose itself, as opposed to an artificial inducer, is only a steeply

graded monostable function, not a bistable one. A convincing

explanation is that with time-varying lactose levels, a graded

response provides significantly faster switching between operating

modes [10]. Based on figure 5, we posit that a graded response is

advantageous also when the lactose level varies very slowly,

because unless the lac system is dissimilar to our model in some

unforeseen way, the optimal lac expression is ever a smooth

function. Consequently, we expect bistability in this context to be

a rare phenomenon.

Transcriptional regulation revisited
Regulation of the production of the two enzymes, EA and EB,

requires signaling from both A and B, and we have seen that some

degree of mutual exclusivity is desirable. If a new transcription

factor, TB, were to be created by duplication of an autoregulating

TA, it might be prudent to retain a full set of regulations, with TA

and TB regulating each other, themselves, and both enzymes.

However, this would introduce an excessive number of parameters

and obscure the issue of how easy it is to achieve beneficial

transcriptional regulation. Therefore, we again use a stripped-

down network, this time one that only includes regulation of EA by

TA, of EB by TB, and mutually between TA and TB.

In the same spirit as for the one-nutrient system, we have

optimized the fitness of the regulatory network over two different

sets of Aext and Bext, differing in their emphasis on high-nutrient or

low-nutrient environments. The thick lines in figure 5 illustrate

how the resulting networks perform, which in either case certainly

is better than with any constant value for pEB
.

When emphasis is placed on high-nutrient emphasis, the two

transcription factors become mutual repressors, as one may have

expected. This makes bistability possible even without autoregula-

tion, but only when we add autoregulation to the model or modify

the parameters do we see bistable behavior (data not shown). The

way we assess the growth rate in each environment implicitly

assumes monostability by denying the system a history (see

Materials and Methods), which is an extreme case of the idea

outlined earlier: changes to the environment are infinitely rare,

and bistability can evolve only because it never gets a chance to do

any harm. Nevertheless, this emergence of bistability demonstrates

a point: nontrivial behavior may appear even when not selected

for, because of the constraints that evolution has to work with.

DISCUSSION
We have developed a model for how the steady state growth rate

depends on the activity of metabolic pathways, including their

transcriptional control, in an idealized organism. This represents

an implicit way to model the evolution of transcriptional networks

subject to simple metabolic tasks.

A key finding is that even when no alternative pathways exist,

transcriptional regulation confers a substantial fitness advantage in

all but the most static environments. In other words, transcrip-

tional control is required for an organism to be competitive, even

for a very simple metabolism. Furthermore, we have shown that

this fitness advantage can be well exploited by a remarkably crude

regulatory system, which relies on transcriptional repression. The

observation that the mode of regulation correlates with the

demand for expression for many metabolic genes [8] is explained

by Savageau from the perspective of resilience to mutations [9],

but we believe that our results point to a complementary

explanation, namely that negative regulation is easier to

accomplish. For genes that are rarely used, it is relatively

important to minimize the resources spent on the regulatory

system, as opposed to fine-tuning the expression level and

dynamical behavior, and this would tend to favor repression over

activation.

When two pathways are available, as would be the case when

two catabolizable sugars are present, the highest growth rate is

achieved by sharply activating the pathway of one nutrient, when

the level of that nutrient nears the level of the other. At low

nutrient concentrations this optimal response is distinctly non-

linear.

In line with previous work [10], we have demonstrated that

bistability is not a desirable feature of metabolic pathway

regulation, at least not in a steady state limit. Nevertheless,

optimizing the fitness of a regulatory system can cause bistability at

some nutrient levels, suggesting that such complex behavior can

emerge even when it in itself is unfavorable, merely because the

underlying mutations have a positive net effect on fitness. This is

reminiscent of, yet different from, how pathway complexity can be

increased by the actions of the evolutionary mechanisms per se

[25].

We can also picture conditions that would promote bistable

switching of metabolic pathways. From figure 5, one can imagine

the existence of two distinct overall environmental states, whose

respective ranges for the nutrient concentration overlap. If

transitions between the two states are rare, and intra-state

fluctuations of the nutrient level are too rapid for regulation to

follow suit, bistability in the overlapping range can be expected to

increase fitness, as it prevents needless state changes. Such

a scheme could perhaps be applied to the lactose level in

a chemostat with E. coli over many generations. As demonstrated

in [1], the expression level of the lac genes can be significantly

altered by fitness-raising mutations in a few hundred generations

of growth in a constant lactose/glycerol medium. Thus it may well

be possible to achieve bistability in the lactose response of E. coli

through evolution in a laboratory setting.

Our model predicts that cells growing in a very low nutrient

medium will have their nutrient uptake and catabolism up-

regulated as compared to when the nutrient is more abundant.

Such behavior has indeed been seen in yeast under glucose limited

conditions [26], where the hexose transporter HXT6 and the

glycolysis enzymes HXK1 and GLK1, along with several other

glycolysis proteins, were found to be significantly up-regulated.

Our results predict that this effect only comes into play at sustained

growth close to the long-term starvation limit, and only when there

is no appreciable level of alternative substrates present.

Our predictions are primarily qualitative, not quantitative. For

example, the exact location of the point where the model breaks

down in figure 2 should not be considered as realistic, as the

degradation rate of the enzyme is higher than it would be in an

organism adapted to very low nutrient levels. Still, a real

microorganism may survive periods of starvation through
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sporulation and other mechanisms outside our model, but will

eventually die if the nutrient levels are too low.

MATERIAL AND METHODS
We here give the equations and parameters of the full model with

two nutrients and transcriptional regulation. For the smaller

models discussed in the text, parameters are set to zero as

appropriate. C is the universal currency of our cell, and takes on

the roles of energy carrier and building block. Being small

molecules, A, B, and C have a mass of about mA = 100 Da. The

proteins E and T weigh in at 103mA, and synthesis of one E or T

consumes sprotein = 104 molecules of C. Let C, A, EA, TA, etc. denote

the number of molecules in a cell of fixed volume Vcell = 1 mm3.

Brownian motion sets a limit of about one collision per molecule

pair per second, and this affects many parameters. For brevity we

let X represent A or B where their equations are identical.

Transcription factor activation:

T�X ~TX
X

XzKX

,

where KXM[102,106]V 21
cell (or 1.7?1027,1023M), so activation can be

made very sensitive to A or B.

Transcriptional regulation of enzyme production:

pEX
~p̂pEX

wEX rEX T�X z1

rEX T�X z1
� �

max wEX ,1ð Þ
,

where the maximum rates p̂EX
[ 0,106
� �

s{1 are limited by

ribosome count and speed. The parameters wEX
[ 10{6,106
� �

determine the type of regulation, ranging from strong repression to

linear activation via leakiness and indifference. The strength of T*
X

as a regulator is rEX
[ 10{4,10{2
� �

V{1
cell , meaning that hundreds to

thousands of TF molecules are needed for regulation. Similarly for

the regulation of pTA
by pTB

and vice versa, mutatis mutandis.

Enzyme activity:

RX?C~EX vX

X

XzKE
,

where vX = 103 s21 and KE = 108V 21
cell<1.7mM, which loosely

means that one in 1 000 collisions between X and EX leads to

a reaction that takes 1ns.

Protein production, cell growth, and dilution:

rEX
~pEX

C

CzKprot

, rcell~pcell
C

CzKcell

, and g~
rcell

scell

,

where Kcell = 108V21
cell and Kprot = 106V21

cell reflect bottlenecks in cell

replication and protein synthesis, scell = 1010V 21
cell because a cell

takes that many molecules of C to build, and pcell = 107V21
cells

21

should give a maximum growth rate of about 20 minutes per

generation.

The rate equations:

dX

dt
~DX Xext{Xð Þ{RX?C{gX

dEX

dt
~rEX

=sprotein{dEEX {gEX

dTX

dt
~rTX

=sprotein{dTTX {gTX

dC

dt
~RA?CzRB?C{rEA

{rEB
{rTA

{rTB
{rcell{gC ,

where DX = 1 s21 lies between an upper limit set by diffusion and

a lower limit set by the maximum growth rate, dE = 1023 s21

makes EX rather short-lived but keeps its level reasonable even at

the maximum production rate, and dT = 1025 s21 is a realistic

decay rate far slower than dE.

For an upper bound to the reproductive cost of adding an extra

gene, consider a prokaryote for which the DNA replication rate is

limiting. If this rate is proportional to the genome size, and there

are 1 000 genes, the fitness cost is on the order of 1023. By

comparison, the cost of synthesizing the extra DNA is closer to

1025scell .

To find the growth rate in the equations’ steady state, we

performed a numeric integration from the state with all variables

zero except C = 108V21
cell, using the bsimp stepper from GSL

(http://www.gnu.org/software/gsl/). For figure 5 we probed for

bistability by gradually going from low to high Bext, and vice versa.
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