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The first reported Far East scarlet-like fever (FESLF) epidemic swept the Pacific coastal region of Russia in the late
1950s. Symptoms of the severe infection included erythematous skin rash and desquamation, exanthema, hyperhemic
tongue, and a toxic shock syndrome. The term FESLF was coined for the infection because it shares clinical
presentations with scarlet fever caused by group A streptococci. The causative agent was later identified as Yersinia
pseudotuberculosis, although the range of morbidities was vastly different from classical pseudotuberculosis
symptoms. To understand the origin and emergence of the peculiar clinical features of FESLF, we have sequenced
the genome of the FESLF-causing strain Y. pseudotuberculosis IP31758 and compared it with that of another Y.
pseudotuberculosis strain, 1P32953, which causes classical gastrointestinal symptoms. The unique gene pool of Y
pseudotuberculosis IP31758 accounts for more than 260 strain-specific genes and introduces individual physiological
capabilities and virulence determinants, with a significant proportion horizontally acquired that likely originated from
Enterobacteriaceae and other soil-dwelling bacteria that persist in the same ecological niche. The mobile genome pool
includes two novel plasmids phylogenetically unrelated to all currently reported Yersinia plasmids. An icm/dot type IVB
secretion system, shared only with the intracellular persisting pathogens of the order Legionellales, was found on the
larger plasmid and could contribute to scarlatinoid fever symptoms in patients due to the introduction of
immunomodulatory and immunosuppressive capabilities. We determined the common and unique traits resulting
from genome evolution and speciation within the genus Yersinia and drew a more accurate species border between Y.
pseudotuberculosis and Y. pestis. In contrast to the lack of genetic diversity observed in the evolutionary young
descending Y. pestis lineage, the population genetics of Y. pseudotuberculosis is more heterogenous. Both Y.
pseudotuberculosis strains IP31758 and the previously sequenced Y. pseudotuberculosis strain IP32953 have evolved by
the acquisition of specific plasmids and by the horizontal acquisition and incorporation of different genetic
information into the chromosome, which all together or independently seems to potentially impact the phenotypic
adaptation of these two strains.
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Pacific coast of Russia was called Far East scarlet-like fever
(FESLF), or scarlatinoid fever [10-17] for its clinical similar-

Introduction

Yersinia pseudotuberculosis is a bacterial pathogen that, with Y. ities to scarlet fever caused by group A streptococci [18,19].

pestis and Y. enterocolitica, causes worldwide infections in L . . .

. . Such atypical infections in Far East Asia are severe, and the
humans [1-4]. Y. pseudotuberculosis serotype O:1b is thought to o ] ) ) )
be the direct evolutionary ancestor of Y. pestis, the causative clinical presentation includes erythematous skin rash, skin

agent of plague [4,5]. While these two species diverged from

one another within the last 20,000 y, the Y. pseudotuberculosis
and Y. enterocolitica lineages separated between 0.4 and 1.9
million y ago [6]. Y. pseudotuberculosis infections in humans are
acquired through the gastrointestinal tract by the ingestion of
contaminated food products and result in abdominal pain,
fever, and occasionally diarrhea. Pathogenicity has been
attributed to several key virulence factors, including the
plasmid-borne Yersinia outer proteins that are delivered by a
type III secretion system, the invasion adhesion molecule
(Inv), and the high pathogenicity island (HPI) [1]. Often, Y.
pseudotuberculosis isolates from environmental and clinical
sources harbor various plasmids ranging in size from 3-125
kb [7], some of which have been linked to pathogenicity [8,9].
In 1959, an epidemic of Y. pseudotuberculosis infections on the
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Author Summary

We have analyzed the genome sequence of a Y. pseudotuberculosis
isolate responsible for Far East scarlet-like fever (FESLF). FESLF leads
to severe clinical manifestations, including scarlet-like skin rash, from
which this illness gets its name, and, most importantly, a toxic shock
syndrome not seen in common pseudotuberculosis infections. The
aim of this study was to catalogue the genomic inventory and get
insights in the origin and emergence of this disease. The genus
Yersinia comprises two other pathogens that cause worldwide
infections in humans and animals: Y. enterocolitica, like Y.
pseudotuberculosis, causes gastrointestinal disorders, while Yersinia
pestis is the causative agent of plague, also known as the “Black
Death.” By comparing the genome of these three Yersinia species,
we could identify several unique virulence determinants, many of
which are known to trigger and modulate the host immune system
response and may be intimately associated with the severe and
atypical FESLF clinical presentations. We have shown that the
reductive gene loss process that Y. pestis has undergone since
emerging from the enteric pathogen Y. pseudotuberculosis is not as
extensive as originally thought. On the other hand, our analysis
indicates that gene acquisition is a major factor that influenced Y.
pseudotuberculosis genome evolution.

desquamation, exanthema, hyperhemic tongue, and toxic
shock syndrome [10,11,18,19]. Y. pseudotuberculosis FESLF
symptoms have been linked to the systemic expression of
the superantigenic exotoxin Y. pseudotuberculosis—derived
mitogen (YPM) [20], as well as the presence of two
uncharacterized plasmids, pVM82 and pIB [7,8]. Although
no plasmid sequence was available, a 37.5-kb region of pVM82
was experimentally linked to increased immunosuppressive
and antiphagocytic capabilities [21]. Here, we report the
whole genome sequence analysis of serotype O:1b Y.
pseudotuberculosis IP31758 that was isolated in 1966 from the
stools of a patient presenting with FESLF in the Primorski
region of the former Soviet Union. Intra- and interspecies
comparisons with the genomes of the previously sequenced
typical non-FESLF-causing Y. pseudotuberculosis strain IP32953
[22], all published Y. pestis genomes [23-26], and the more
distantly related Y. enterocolitica strain 8081 [27] were
performed in order to identify strain-specific genome
characteristics of Y. pseudotuberculosis 1P31758 intimately
related to the atypical clinical FESLF manifestation. In
addition, we tested for their distribution in a panel of
geographically and phenotypically diverse Y. pseudotuberculosis
and Y. pestis isolates. These analyses resulted in the identi-
fication of genetic traits potentially associated with the
particular FESLF symptoms and led to a redefined model
for the evolutionary history of the group.

Results/Discussion

General Genome Features

The genome of Y. pseudotuberculosis IP31758 consists of a
circular chromosome of 4,723,306 bp (Figure 1A) and two
novel plasmids called pYpsIP31758.1 (153,140 bp; Figure 1B)
and pYpsIP31758.2 (58,679 bp; Figure 1C). Noteworthy, the
highly conserved low-calcium response plasmid (lcr) pYV
encoding the type IIl secretion apparatus, which can be found
in many but not all Y. pseudotuberculosis and Y. enterocolitica
isolates [28-30], was not detected in Y. pseudotuberculosis
IP31758. The general genomic features of Y. pseudotuberculosis
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IP31758 are summarized and compared with those of Y.
pseudotuberculosis 1P32953 in Table 1. Based on the level of
sequence-read coverage in each assembly, it is estimated that
the chromosome and the two plasmids are present in equal
copy numbers. The combination of these two plasmids has
not been reported in any other Yersinia strain, and no
significant similarity has been found with the known Yersinia
plasmid sequences from the public databases (Table 1) [22-
26,31]. However, the plasmid replication protein RepA
(YpsIP31758__B0136) of pYpsIP31758.1 displays 42% amino
acid identity to the corresponding gene of the cryptic
conjugative plasmid pYptb32953 (pYptb0001) of the pre-
viously sequenced Y. pseudotuberculosis strain 1IP32953 [22]. Y.
pseudotuberculosis IP31758 large plasmid, pYpsIP31758.1, was
identified as virulence plasmid pVM82, named for its
estimated molecular weight (82 kDa) and previously reported
in Y. pseudotuberculosis FESLF strains isolated from different
areas of the former Soviet Union [7]. The prevalence of this
plasmid in FESLF-causing Y. pseudotuberculosis strains and its
association to virulence has been experimentally demonstra-
ted [32]. Although no sequence data were available, a HindIII
restriction map of pVM82 has been previously published [33].
A thorough comparison of pVM82 HindlIII restriction map
with that generated in silico from the sequence of pYp-
sIP31758.1 (153,140 bp) revealed a few discrepancies in the
number of restriction fragments and the order in which those
were originally assembled (Table S1 and Figure 1B), both of
which could be explained by the insufficient resolution of the
initial restriction fragment analysis by gel electrophoresis
[33]: (1) the in silico HindIII digest of pYpsIP31758.1 resulted
in two additional fragments (I [1,678 bp] and II [7,188 bp]),
the sizes of which were almost identical to other large
fragments and hence would have been impossible to
distinguish by gel electrophoresis (fragment P [1,651 bp],
fragment I [7,057 bp], and fragment J [7,098 bp]; Figure 1B
and Table S1); (2) a small 44-bp fragment (III) was not
previously reported; and (3) the size of the largest restriction
fragment, measured at 25 kb, was underestimated and is
31,313 bp. Importantly, overall the sequenced plasmid
restriction map is in agreement with the published restriction
map (Table S1), including the presence of a 37.5-kb region of
pVM82 (fragment F), which was experimentally linked to
increased immunosuppressive and antiphagocytic capabil-
ities [21]. The updated HindIII restriction map based on the
pYpsIP31758.1 plasmid sequence is shown as additional
information in the outer circle of Figure 1B.

Comparative genome sequence analyses between Y. pseudo-
tuberculosis 1P32953 and several Y. pestis isolates have shown
that Y. pestis has an expanded number of insertion sequence
(IS) elements [22]. These IS expansions observed in the Y.
pestis lineage had a major impacts on the evolutionary process
and speciation by introducing multiple recombinatorial
hotspots [22]. Such recombinatorial hotspots account for
the intrachromosomal rearrangements (lack of synteny) as
well as the reductive evolution (deletion of fragments flanked
by IS elements and gene loss due to IS interruption) in the Y.
pestis lineage [3,25]. While Y. pseudotuberculosis IP31758 con-
tains a greater number of IS elements than Y. pseudotuberculosis
1P32953 (Table 1), both genomes contain far fewer IS
elements than Y. pestis. A total of six IS families are present
in both Y. pseudotuberculosis genomes, although strain-specific
IS element distribution patterns and copy numbers are
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Figure 1. Circular Representation of the Y. pseudotuberculosis IP31758 Genome

Chromosome (A), pYpsIP31758.1 (B), and pYpsIP31758.2 (C).

(A) Chromosome. Circles from outer to inner circle. (Circle 1-2) Predicted CDSs encoded on the plus (circle 1) and minus strands (circle 2), colored
according to the respective TIGR role IDs (http://cmr.tigr.org/tigr-scripts/CMR/Rolelds.cgi). (Circle 3) Noncoding RNAs. Brown, tRNA genes; black,
ribosomal rRNAs. (Circle 4) GC skew. (Circle 5) Genomic islands, including the YAPIp31755 pathogenicity island, the Enterobacteriaceae PAI, strain-specific
prophage insertions and phage remnants, plasmid-borne regions, and the superantigenic ypmA locus. Shared IP31758- and IP32953-specific R/M
system with adjacent integrase. (Circle 6) IS elements, transposases, and phage integrases. (Circles 7-13) Comparative analysis of the genomic inventory.
Intraspecies comparison of Y. pseudotuberculosis strains IP31758 and 1P32953 (circle 7), interspecies comparison of Y. pseudotuberculosis IP31758 with Y.
pestis strains CO92 (circle 8), KIM (circle 9), 91001 (circle 10), Nepal516 (circle 11), Antiqua (circle 12), and Pestoides F (circle 13). (Circle 14) Chi square.
(B) Plasmid pYpsIP31758.1. (Circle 1) Hindlll restriction map. (Circles 2-3) Predicted CDSs encoded on the plus (circle 2) and minus (circle 3) strands,
colored according to the respective TIGR role IDs (http://cmr.tigr.org/tigr-scripts/CMR/Rolelds.cgi). (Circle 4) GC skew. (Circle 5) Plasmid regions of
interest. (Circle 6) Chi square.

(C) Plasmid pYpsIP31758.2. (Circles 1-2) Predicted CDSs encoded on the plus (circle 1) and minus (circle 2) strands, colored according to the respective

TIGR role IDs. (Circle 3) GC skew. (Circle 4) Plasmid regions of interest. (Circle 5) Chi square.

doi:10.1371/journal.pgen.0030142.g001

observed (Table 1 and Figures 1A and S1), probably resulting
from the process of microevolution (gene loss and acquis-
ition) as well as intrachromosomal IS duplications and
translocations, as shown in Y. pestis [34]. The IS elements
IS100 and IS1661, both found in all sequenced Y. pestis strains
and Y. pseudotuberculosis IP32953 [22,23], were not detected in
Y. pseudotuberculosis IP31758 (Table 1). The absence of IS100
has been previously linked in Y. pseudotuberculosis to sensitivity
to pesticin and might indicate a more distant evolutionary
and ecological relationship to Y. pestis [35].

Genome Architecture and Gene Content

Unlike the Y. pestis genome sequences, which display
fragmented synteny patterns [25], the two Y. pseudotuberculosis
genomes are almost perfectly syntenic and have undergone
very little rearrangement (Figure 2A and 2B). A 665-kb
inversion encompassing the origin of replication is the only
major recombinatorial event that differentiates the two Y.
pseudotuberculosis genome sequences as evidenced by the
BLAST score ratio analysis (Figure 2) [36]. On the other
hand, the synteny at the interspecies level to the genomes of
Y. pestis CO92 (Figure 2C) and Y. enterocolitica 8081 (Figure 2D)
is partly resolved [26,27]. Similar results were obtained from
comparison to all other published Y. pestis genomes. Minor

synteny breakpoints are linked to horizontally acquired
genomic regions, mainly due to the insertion of prophages,
IS elements, and integrons that are specific to each individual
Y. pseudotuberculosis strain (Figure 1, circle 5 and Figure S1,
circle 5). Sequenced species belonging to the genus Yersinia
harbor different types and numbers of restriction/modifica-
tion (R/M) enzyme systems [37]. Noteworthy, our analysis
shows that both enteropathogenic Y. pseudotuberculosis strains
IP31758 and IP32953 harbor a unique type I R/M system,
which is not present in all studied Y. pestis strains, and is
composed of three genes, hsdRSM (YpsIP31758__3536 to
YpsIP31758__3538; Table S6). The implications of this RIM
system to Y. pseudotuberculosis genome evolution are still
unresolved. Genomic rearrangements do not appear to have
been facilitated by intrachromosomal recombination, as they
are often flanked by undisrupted housekeeping or hypo-
thetical genes and not by mobile elements or paralogous gene
families. Our analysis did not reveal an obvious mechanistic
basis for these rearrangements. Compared to the lack of
genome-wide synteny found within Y. pestis, both sequenced
Y. pseudotuberculosis strains IP31758 and IP32953 display a high
level of genome conservation, which is emphasized by a high
degree of nucleotide (nt) sequence identity of more than 95%
over 94.8% of the length of the two chromosomes. Such level

Table 1. Genomic Features of Y. pseudotuberculosis IP31758 and Comparison with Y. pseudotuberculosis 1P32953

Strain Y. pseudotuberculosis 1P31758

Y. pseudotuberculosis 1P32953

Clinical Manifestation FESLF Disease

Pseudotuberculosis

Molecule pYpsIP31758.1 pYpsIP31758.2 Chromosome pYV32953 pYptb32953 Chromosome
Genome size, bp 153.140 58.679 4.723.306 68.526 27.702 4.744.671
GC-content, % 40.3 40.2 47.6 44.5 44.6 47.6
Number of CDSs 136 66 4.164 929 43 3.974
Coding area, % 775 84.7 83.7 80.7 86.5 83.6
Average length, bp 872 752 948 305 341 945
rRNAs 0 0 21 0 0 21

tRNAs 0 0 86 0 0 85
Genomic islands NA NA 2 (ypmA locus, YAPlip31758) NA NA 1 (HPI)
Phages and remnants 0 0 7 0 0 5

IS1541 0 0 15 0 0 5

15285 0 0 5 Q) 0 7

IS1661 0 0 0 0 0 3

IS700 0 0 0 0 0 5

IS1 0 0 2(1) 0 0 2(1)
15630 0 0 4 0 0 1

1S1400 0 0 15 0 0 5

NA, not applicable. Partial IS element copies in parentheses.
doi:10.1371/journal.pgen.0030142.t001
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Figure 2. Genome Structure and Synteny

(A) Y. pseudotuberculosis IP31758 compared to 1P32953.

(B) Y. pseudotuberculosis IP32953 compared to IP31758.

(Q) Y. pseudotuberculosis IP31758 compared to Y. pestis CO92.

(D) Y. pseudotuberculosis 1P31758 compared to Y. enterocolitica 8081.

Genome of FESLF Y. pseudotuberculosis

Each protein from the x-axis reference genome was queried using BLASTP for its presence in the y-axis query genome. For a match, the N-terminal
coordinates of both proteins were plotted as x and y. The color represents the level of similarity of the match expressed by the BLAST score ratio [36].
Prophage insertions are highlighted in orange; the pathogenicity island YAPljp317ss is highlighted in red; and HPljp359s3 is highlighted in purple.

doi:10.1371/journal.pgen.0030142.g002

of nt identity, but conversely with poor synteny, is also
observed between Y. pestis and Y. pseudotuberculosis [22], as well
as among Y. pestis genome sequences. For the Y. pestis lineage,
other than the low degree of synteny, differences on the nt
level were attributed to less than 100 single nucleotide
polymorphisms [6,23,38].

A three-way comparison between both Y. pseudotuberculosis
strains IP32953 and IP31758 and Y. pestis CO92 [26] using the
BLAST score ratio analysis revealed a high level of protein
similarity among all three predicted proteomes with 3,642
conserved gene products and also a more distant phyloge-
netic relationship of Y. pseudotuberculosis and Y. pestis to Y.
enterocolitica (Figure 3 and Table S2) [6]. The availability of a
second Y. pseudotuberculosis genome sequence provides the
opportunity to refine the set of species-specific genes for Y.
pseudotuberculosis from 341 to 67 genes (Table S3), a number
that is in agreement with the finding of a subtractive genomic
hybridization approach, which discovered 112 Y. pseudotuber-
culosis species-specific small subtractive genomic hybridiza-
tion fragments with reported insert sizes between 100 to 900
bp [39]. In addition, a total of 265 genes are unique to Y.

pseudotuberculosis IP31758 (Table S4) and 289 genes are unique
to the previously sequenced Y. pseudotuberculosis 1P32953
(Table S5). Examples of such genes include those on the 36-
kb Yersinia HPI (Figure SI), which is not present in Y.
pseudotuberculosis IP31758. The HPI encodes the biosynthetic
pathway for the siderophore yersiniabactin and has been
shown to play a key role in the systemic spread of the Yersinia
isolates that harbor this island (all Y. pestis strains and subsets
of Y. pseudotuberculosis and Y. enterocolitica) [40].

Genomic Islands and Pathogenic Potential

Multiple regions potentially relevant to pathogenicity
appear to have been horizontally acquired and are scattered
throughout the Y. pseudotuberculosis IP31758 genome. These
regions, comprising prophages, plasmid-like integrons, and
genomic islands, are often characterized by a deviating GC
content and are often inserted into tRNA genes (Figure 1A).
Mobile genetic elements such as those encoding phage-
related integrases and IS elements frequently flank these
unique regions and result from the specific mode of
incorporation. A number of small insertions were most likely
horizontally acquired by Y. pseudotuberculosis IP31758 but do

Y. pseudotuberculosis 1P31758 vs 1P32953 and Y. pestis CO92

0 0.2 0.4
1P32953

Quadrants [ 1o IV
1P31758

1P31758 n 1P32953

1P31758 0 CO92

1P31758 n IP32953 n CO92

0.8 1

Figure 3. BLAST Score Ratio Analysis of Y. pseudotuberculosis Strains IP31758 and 1P32953 and Y. pestis CO92

BLAST score ratios were plotted as x,y coordinates. Each protein in the reference genome (Y. pseudotuberculosis IP31758) was grouped into four
quadrants according to its scores in each of Y. pseudotuberculosis IP32953 and Y. pestis CO92 genomes and colored as follows: yellow (I), unique to
IP31758; red (IV), common to all three; blue (Il), common between IP31758 and 1P32953 but absent in CO92; green (), common between IP31758 and
CO92 but absent in 1P32953.

doi:10.1371/journal.pgen.0030142.g003
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(pilin) gene cluster highlighted in magenta, strain-specific CDSs are colored in yellow and orange, and the YAPI-specific phage integrase is colored in
blue. The coordinates of the Y. pseudotuberculosis IP32777 are according to [44].

doi:10.1371/journal.pgen.0030142.g004

not show or have lost their colocalization to mobile elements
(Table S6). One example of a horizontally acquired virulence
determinant is the Yersinia adhesion pathogenicity island
(YAPI) that has always been found inserted into one of the
two tRNAFP® genes and carries several mobility determinants,
such as a phage integrase gene and IS elements (Figure 1A).
The YAPI was originally described in Y. pseudotuberculosis
serotype 1 strain IP32777 [41] and is also present in Y.
enterocolitica strain 8081 [27,42]. YAPIps 755 is shorter than
those previously described. Two large deletions in YAPIip31758
correspond to api84—-api56 and api52-api40 [41], which code
for unrelated metabolic functions and a R/M system,
respectively (Figure 4). These deletions account for the
difference in size between YAPIips;755 (64 kb) and YAPIipge777
(98 kb). YAPIips 758 contains several unique genes with no
assigned function. All known Yersinia YAPIs harbor a
polycistronic pilin gene cluster pil WVUSRQPONML. BLAST
analysis of this gene cluster revealed that the best protein

4,157,039

alP31758

3,771 9,644 50,435

b pYpsIP31758 2 ¢ (=@ EammEm- ¢
v S N4 N

¢ pYpsIP31758.1

d P. luminescens TTO1

similarities outside this yersinial pathogenicity island are
found to the respective genes of Photorhabdus luminescens
TTO1 (Figure 5D) [43]. The YAPIps9777 cluster has been
experimentally shown to be critical for the virulence of Y.
pseudotuberculosis 1P32777 by mediating adhesion to the
respiratory epithelium in a mouse model [41,44]. A compar-
ison of the known YAPI revealed that, while genomic diversity
exists in this island, the structure and composition of the pil
gene clusters are conserved, strengthening its role in
pathogenicity (Figure 5). YAPI-encoded surface exposed
elements such as pilin might be associated with the severe
host immune response observed in patients with FESLF.
Supporting the role of pilin components in pathogenicity of
Y. pseudotuberculosis IP31758 is the presence of two additional
pilin gene clusters on each of the two plasmids. The
pYpsIP31758.1-encoded pilin cluster is located in the
pVMS82 region previously thought to replace the pVM57 F
fragment (shown in yellow in Figure 1B; Table S1) and

4,221,773

Figure 5. Genomic Architecture and Comparison of the Chromosomal and Plasmid-Borne Type IV pil Gene Clusters of Y. pseudotuberculosis 1P31758

Y. pseudotuberculosis 1P31758 harbors three pil (pilin) loci encoded by YAPIjp31755 on the core chromosome (A) and on both plasmids pYpsIP31758.2 (B)
and pYpsIP31758.1 (C). The chromosomal pilWVUSRQPONML locus found within the YAPI p31755 is more similar to that found on the chromosome of P.
luminescens TTO1 (D). Corresponding pil genes are colored accordingly. Y. pseudotuberculosis IP31758 strain-specific YAPI CDSs are colored orange. Olive
CDSs are shared by YAP||p3-|758 and YAPl|p32777.

doi:10.1371/journal.pgen.0030142.g005
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Figure 6. Genomic Architecture of the Superantigenic ypm Locus in Y.
pseudotuberculosis

(A) The scale in bp indicates the genomic location of the Y.
pseudotuberculosis IP31758 ypmA locus from YpsIP31758_1855 to
YpsIP31758_1868 integrated downstream of the Yersinia recombination
site (yrs; red arrow).

The Y. pseudotuberculosis IP31758 ypmA locus is composed of 12 genes
and is compared to the ypmA, B, and C loci of three superantigenic Y.
pseudotuberculosis strains AH (B), 487/90 (C), and YPT1 (D), and to the
corresponding region of the non-superantigenic strain Y. pseudotuber-
culosis 1P32953 (E). CDSs shared between these loci are colored
accordingly with the ypm superantigen highlighted in red. The CDS
between orf9 and orf10 is not predicted in strains AH, 487/90, and YPT1.
doi:10.1371/journal.pgen.0030142.g006

reported to be critical for pathogenicity [8]. The observed
altered clinical manifestations as well as the conjugal transfer
of pVMB82 were attributed to the presence of this pVM82-
specific region [21]. Unlike the entire YAPIps;755 pil cluster,
which is phylogenetically related to that of P. luminescens,
different parts of the plasmid-borne pil clusters are most
similar to several other bacterial species, including Escherichia,
Salmonella, and Pseudomonas species, indicating a different
phylogenetic origin than those of YAPI;p3;758. In contrast, Y.
pseudotuberculosis 1P32953 is YAPI negative and does not
produce pilins.

Superantigenic Toxins in Y. pseudotuberculosis

Another important virulence-associated factor identified
in Y. pseudotuberculosis IP31758 is YPM [45,46]. YPM is a
superantigenic toxin that belongs to a class of highly potent
immune stimulatory proteins produced by a variety of Gram-
positive bacteria and retroviruses [47]. Currently the Y.
pseudotuberculosis mitogen is the only known superantigenic
toxin identified in Gram-negative bacteria [20,48,49]. The
YPM superantigen has been experimentally shown to
interfere with the host immune system and is thought to be
critical to the pathogenicity of FESLF-causing Y. pseudotuber-
culosis strains [41,50-53]. YPM may be associated with the
particular scarlatinoid fever syndromes because it mediates
an uncontrolled host immune system activation [20,54]. This
is analogous to the role of superantigens in staphylococcal
and streptococcal toxic shock syndromes [18,19]. The
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similarities in the clinical presentation of scarlet and
scarlet-like fever suggest a direct role of YPM in the
pathogenesis and the distinct clinical manifestation of Y.
pseudotuberculosis isolates causing FESLF. Both superantigenic
toxins, YPM and staphylococcal enterotoxin A, are implicated
in scarlet-like and scarlet fever and have been shown to
interact with multiple eukaryotic signaling pathways in a
mouse model [51,52,55]. The ypm gene is found in a Y.
pseudotuberculosis subgroup isolated predominantly in Far East
Asia, and its presence or absence correlates with the different
clinical manifestations observed between Far East Asia and
Europe [56,57]. Furthermore, high anti-YPM antibody titers
reported in patients with FESLF who have systemic infections
suggest a direct role of YPM in pathogenicity [50]. In Y.
pseudotuberculosis, three YPM variants encoded by ypmA, ypmB,
and ypmC have been described [54,58] and shown to be
integrated downstream of a conserved 26-bp motif known as
Yersinia recombination site (yrs) (Figure 6). This motif is also
present in the corresponding locus of the non-superantigenic
strain Y. pseudotuberculosis IP32953, which lacks the ypm gene
and does not produce a superantigen. Comparison of these
chromosomal loci showed a strong syntenic organization. In
Y. pseudotuberculosis IP31758, this locus is most similar to that
of the ypmA-containing Y. pseudotuberculosis strain AH, with
ypmA showing 100% identity at the nt level. The ypmA gene is
predominantly found in clinical isolates of Y. pseudotuberculosis
from Far East Asia, while the ypmB and ypmC loci are
associated with environmental and animal isolates [54].

The HPI is present only in a subset of Y. pseudotuberculosis
strains and may be lost by spontaneous excision from the
chromosome [59,60]. Based on the presence or absence of
HPI and ypmA, two subgroups can be established that reflect
the geographical distribution of Y. pseudotuberculosis: The
YPMA* HPT subgroup predominantly comprises far eastern
pathogenic types, including those causing FESLF, while the
YPMs  HPI" subgroup contains European gastroenteric
pathogenic types [57]. The absence of the HPI in Y.
pseudotuberculosis TP31758 therefore most likely reflects its
divergent phylogenetic branch rather than the secondary loss
of this pathogenicity island.

Similar to the staphylococcal enterotoxin A, which is
thought to have been acquired through phage infection [61],
it has been speculated that the presence of the YAPIips;75s-
encoded pilus might have favored the acquisition of the ypmA
locus through phage infection by functioning as an attach-
ment site [44,62]. In support of this hypothesis, a correlation
exists between YAPI' strains and YPM' strains in Far East
Asian Y. pseudotuberculosis isolates responsible for FESLF [53].

Relatedness to Enterobacteriaceae Pathogenicity Islands
A 24-kb region (YpsIP31758__0743 to YpsIP31758__0777)
characterized by an unusual nt composition exhibits sim-
ilarity and partial synteny to several reported Enterobacter-
iaceae pathogenicity-associated islands (PAls) and is flanked
by another copy of the YAPI;p3;758 phage integrase gene
(YpsIP31758__0743, 100% nt identity to YpsIP31758__3686;
Figure 1A). This genomic island was reported to be a PAI and
is predominantly found in uropathogenic E. coli strains and in
several Shigella species [63-67]. The presence of the Enter-
obacteriaceae-related ISI and IS630 elements further sup-
ports the phylogenetic origin of this genomic island. This
region displays a mosaic composition of phage-like genes
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Figure 7. Genomic Architecture of the pYpsIP31758.1-Borne Type IVB Locus and Comparative Analyses to That of C. burnetti RSA493 and L. pneumophila

Philadelphia 1

The plasmid pYpsIP31758.1 type IVB locus (A) encodes 28 genes and is compared to that of C. burnetti RSA493 (B) and L. pneumophila Philadelphia 1 (C).
The scale in bp indicates the genomic location of the type IVB locus from YpsIP31758_B0095 to YpsIP31758_B0122. Corresponding CDSs involved in
type IVB pilus assembly are colored accordingly; species-specific CDSs often found interspersed are colored white. icm/dot genes that are unique to C.
burnetti and L. pneumophila are colored in dark gray and light gray, respectively.

doi:10.1371/journal.pgen.0030142.9g007

encoding integrases and structural components, and the
plasmid-borne replication initiation genes repA and repB.
Furthermore, a 21-kb region encoded entirely on the plus
strand (YpsIP31758__0312 to YpsIP31758__0327) is similar to
and syntenic with other enterobacterial pathogenicity islands
[63-67] (Figure 1A). Most of the genes within these two islands
encode conserved hypothetical proteins with no assigned

functions, and orthologs of these genes are found within
enterobacterial PAIs [63-67]. The flanking Rhs- and Vgr-
related loci are often found to be recombinational hotspots
in E. coli [68]. However, while these findings could suggest
horizontal transfer, the nucleotide composition of this 21-kb
region does not show any unusual pattern, no mobile
elements are associated with the island, and the region is
conserved in all published Yersinia species genome sequences.
It is unclear if this island represents an ancient insertion
event, is the remnant of a y-proteobacterial ancestor genome,
or has been transferred between Yersinia and other Enter-
obacteriaceae.

Strain-Specific Phage Pattern

Phages have been implicated in the evolution of bacterial
pathogens [69], and our analysis indicates that phage
infections might have been responsible for the acquisition
of several of the genomic islands implicated in FESLF
pathogenicity [53]. The genome sequence of Y. pseudotubercu-
losis IP31758 contains several regions that were identified as
prophage or phage remnants (Figure 1A and Tables 1 and S6).
A large 41-kb prophage called PhiYpsl has been identified. It
is encoded entirely on the minus strand and is inserted into
tRNAM"2 which is part of a tRNALCu-2-Cys1-Gy2 ster,
resulting in two imperfect direct repeats of 124 bp flanking
the insertion site. PhiYpsl appears to be complete and
potentially functional. PhiYpsl is similar to Enterobacteria-
ceae phages previously linked to pathogenicity in Salmonella
and Shigella (Table S6) [70,71]. The 10-kb P2-like phage
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PhiYpsll is found adjacent to PhiYpsl and is encoded entirely
on the plus strand. These two phages appear to have inserted
in tandem into the same target tRNA cluster. The PhiYpsll
phage coding sequences (CDSs) display homology with CDSs
of the large 122-kb phage of Y. pseudotuberculosis 1P32953
(Figure S1 and Table S6; YPTB1834-1840, YPTB1741-1743)
[22]. The similar target tRNA insertion site of these two
phages may argue for the presence of a P2-like phage at this
site in the ancestor of these two isolates, despite that PhiYpslII
in IP31758 appears to have lost parts of this ancestral phage.
Another 14-kb prophage, PhiYpslII (Figure 1A and Table S6),
displays similarity to the Burkholderia cenocepacia phage
BcepB1A [72,73]. While the phages and their insertion sites
can be identified, most of the CDSs encode hypothetical
proteins whose relevance to pathogenicity cannot be eval-
uated, but is not excluded. Recently, the role of the unstable
filamentous phage Ypf® in the pathogenicity and fitness of Y.
pestis was demonstrated [74]. The strain-specific prophage
profile of the scarlatinoid and gastroenteric pathogenic
strains Y. pseudotuberculosis IP31758 and IP32953 together with
their unique gene content could potentially be used for the
genotyping of clinical Y. pseudotuberculosis isolates.

Invasion and Adhesion Genes

Besides the sheer presence or absence of virulence
determinants in the Y. pseudotuberculosis strains IP31758 and
1P32953, genes of the shared genomic inventory revealed
distinct polymorphisms, which may affect the pathogenic
potential of the individual strains. Variation in length in their
respective sets of adhesion genes may alter the adhesive and
invasive capabilities of each Y. pseudotuberculosis strain during
infection (Figures 1A and S1). The invasins are mediators of
pathogenesis in some Yersinia species [75] and confer the
ability to invade epithelial cells by binding to integrins,
collagen, and fibronectin [76]. The invasin gene (inv) has been
shown to be important in Y. enterocolitica pathogenesis, but its
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role in Y. pseudotuberculosis is not fully understood, and it plays
no role in Y. pestis in which it is nonfunctional [77,78]. Both
sequenced Y. pseudotuberculosis strains also encode the attach-
ment invasion locus (ail) protein (YpsIP31758__1160,
YPTB2867) [79] and a set of three invasins that show length
variation (YpsIP31758__0608 [2,795 aa], YpsIP31758__2329
[941 aa], YpsIP31758__4008 [4,953 aa], YPTB1572 [1,075 aa],
YPTB1668 [985 aa], and YPTB3789 [5,623 aa]).

Plasmid-Encoded Virulence Factors on the Y.
pseudotuberculosis 1P31758 Plasmids pYpsIP31758.1 and
pYpsIP31758.2

»The large plasmid pYpsIP31758.1 (Figure 1B) encodes
several factors that could play a role in the pathogenicity of
Y. pseudotuberculosis 1P31758. A detailed analysis of pYp-
sIP31758.1 revealed the presence of a type IVB icm/dot
secretion system (Figure 7). The type IVB icm/dot system was
initially discovered by examining Legionella pneumophila
mutants defective in replication inside the macrophage
and in the secretion of distinct effector molecules [80]. This
system had previously only been found in Legionella and
Coxiella species [81] and is reported for the first time in the
genus Yersinia. The Y. pseudotuberculosis IP31758 icm/dot locus
gene structure is most similar to that of C. burnetti, being
contained within a single locus, whereas in L. pneumophila,
this type IVB secretion system is comprised of two separate
loci (Figure 7). In addition, the presence of a phage-like
integrase (YpsIP31758__B0092) within this cluster may
indicate the acquisition in Y. pseudotuberculosis IP31758 via
lateral gene transfer. In Legionella and Coxiella, these secretion
systems have only been reported on the chromosome, while
Y. pseudotuberculosis IP31758 represents the first instance of an
icm/dot secretion system encoded on a plasmid as part of the
mobile genome pool. The infectious process of both
pathogenic Yersinia and Legionellales is thought to involve a
temporary intracellular stage [4]. While this icm/dot secretion
system is absent in all other sequenced Yersinia, it may
mediate the intracellular survival of Y. pseudotuberculosis
IP31758 in epithelial cells and trigger the host immune
system response, both of which are features that may
contribute to the unusual scarlatinoid-like clinical presenta-
tion [7,82-85]. Aside from DotA, none of the type IVB
effector molecules reported for L. pneumophila and C. burnetti
[86] are found in the genome of Y. pseudotuberculosis IP31758.
However, a number of hypothetical genes found interspersed
within the cluster could be potential effector molecule
candidates or a unique part of the secretion machinery. Such
is the case in Legionella, where type IVB gene clusters include
distinct hypothetical genes that are found at syntenic
locations in different strains and are believed to be involved
in the assembly of the secretion machinery. These diversified
gene sets appear to be the result of strain-specific adaptation
and specialization. This hypothesis is strengthened by the
presence of polymorphisms in the secreted effector molecule
DotA found in different Legionella isolates [87,88]. Y.
pseudotuberculosis 1P31758 DotA shows aa similarities of
52% and 54% to the respective homologs in L. pneumophila
and C. burnetti. pYpsIP31758.1 encodes additional features
that could potentially play a role in the pathogenicity and
overall bacterial fitness of Y. pseudotuberculosis IP31758. This
includes a gene cluster (fox) similar to that of the biosynthetic
operon of the phytotoxin toxoflavin initially described in
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Burkholderia glumae BGR1. Toxoflavin has been shown to be
critical to the pathogenicity and to the overall fitness of B.
glumae [89,90]. In addition, a homolog of the E. coli umuDC
operon that confers UV resistance is present on the plasmid
and might contribute to the survival of Y. pseudotuberculosis
IP31758 in the environment. The larger plasmid codes for
three regulators, the Yersinia global negative regulator (ymoA)
is found adjacent to the fox operon, the DNA-binding
protein H-NS (YpsIP31758__B0123) found upstream of the
type IVB secretion machinery and the hemolysin expression-
modulating protein Hha (YpsIP31758__B0044) [91,92].
YmoA is a virulence-modulating regulator that controls
multiple virulence-associated genes and is known to interact
with the DNA-binding protein H-NS. In Y. pseudotuberculosis
IP31758, homologs of ymoA are present on both the
chromosome (YpsIP31758__3073) and pYpsIP31758.1 (Yp-
sIP31758__B0060), displaying 89% aa similarity. One could
speculate on a concerted role for these regulators in
modulating plasmid- and chromosome-encoded virulence
determinants [93]. pYpsIP31758.1 appears to lack a complete
plasmid transfer system; however, such a system is present on
the smaller plasmid pYpsIP31758.2 (Figure 1C). The pYp-
sIP31758.2 transfer system is most similar to that of the
Pseudomonas species IncP-1beta group pB3 plasmids [94,95],
and may also provide the transfer function for the large
plasmid. pYpsIP31758.2 is replicated and maintained
through a kil/kor system. Such a mechanism has not
previously been reported in Yersinia, nor has the incompat-
ibility surface exclusion protein also found on pYp-
sIP31758.2 (YpsIP31758__A0016) [96,97].

Together with the chromosomally encoded pathogenicity
determinants, the factors present on both pYpsIP31758.1 and
pYpsIP31758.2, including the two type IV pil gene clusters
mentioned previously, might be key to the peculiar clinical
presentations of Y. pseudotuberculosis IP31758 FESLF infections.

Gene Loss and Metabolic Capabilities

Among the 67 Y. pseudotuberculosis species-specific genes in
regard to Y. pestis, two loci were found to encode metabolic
functions. These genes code for the methionine salvage
pathway and the mdoCGH glucan biosynthetic cluster (Figure
1A). Orthologs have been recently reported to be also present
in the distantly related Y. enterocolitica strain 8081 [27].
Osmoregulated periplasmic glucans are intrinsic components
of the Gram-negative bacterial envelope. This pathway was
initially characterized in Erwinia chrysanthemi osmoprotectant-
deficient mutants presenting hypersensitivity to bile salt and
antibiotics, reduced enzymatic production, and even com-
plete loss of virulence [98]. mdoG and mdoH are sufficient for
glucan biosynthesis, and deletions in either abolish osmo-
regulated periplasmic glucans synthesis, whereas mdoC is
dispensable and thought to succinylate the periplasmic
glucan [99,100]. The number of deleterious point mutations
observed in the two sequenced Y. pseudotuberculosis isolates
suggests mdoC might not be functional.

The methionine salvage pathway is present in both Y.
pseudotuberculosis strains, IP31758 and IP32953, although it is
absent in all sequenced Y. pestis strains [101]. The methionine
salvage cycle biochemical pathway maintains methionine
levels by recycling methylthioadenosine, a product of the
biosynthesis of polyamines such as spermine and spermidine
into methionine. The presence of this pathway in the atypical
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Figure 8. Screening for Unique Y. pseudotuberculosis IP31758 CDSs against Representative Strains of Y. pseudotuberculosis and Y. pestis

A panel of 46 geographically and phenotypically diverse Y. pseudotuberculosis (36) and Y. pestis (ten) isolates representing the genetic diversity were
screened for the presence (+) or absence (—) of unique chromosomal regions and the plasmid distribution identified in Y. pseudotuberculosis IP31758.

UN, unknown; NA, not applicable.
doi:10.1371/journal.pgen.0030142.g008

Y. pestis subspecies pestoides F and Y. enterocolitica strain 8081
[27] suggests that this loci has been lost in Y. pestis and was
present in the ancestral root of this lineage. This hypothesis is
strengthened by the absence of deviating GC content or
colocalization of mobile genetic elements at this locus that
would indicate a recent or ancient acquisition. In addition,
minN (5'-methylthioadenosine/S-adenosylhomocysteine nu-
cleosidase), a component of the pathway located elsewhere
in the genome, remains present in all sequenced Y. pestis
strains.

Identification of the IP31758-Specific Genetic Elements
That Might Be Associated with the FESLF Clinical
Presentation

To expand the analysis, a panel of 46 geographically and
phenotypically diverse Y. pseudotuberculosis and Y. pestis was
screened for the presence of the identified unique chromo-
somal regions and plasmid content of Y. pseudotuberculosis
IP31758 (Figure 8 and Table S6). We attempted to determine
those genetic regions that differentiate the gastroenteric
pathogenic type Y. pseudotuberculosis strain IP32953 from the
FESLF-causing Y. pseudotuberculosis strain IP31758 and might
be directly responsible for the peculiar clinical features of
FESLF. The occurrence of such genes should be uniform
within distinct Y. pseudotuberculosis FESLF isolates, while genes
whose presence is variable within strains probably are not
related to the clinical FESLF manifestation. The isolates
selected encompass Yersinia genetic diversity (serotype: I, II,
III, IV, V; biotype: Antiqua, Medievalis, Orientalis) and include
11 isolates from the time period of the first reported FESLF
epidemic on the east coast of Russia [10] (Figure 8 and Table
S6). We also tested for the prevalence of pYV within 12 other
Russian isolates used in the study (Carniel et al., personal
communication). This analysis revealed that 9 strains
(IP33117, 1P33215, 1P33125, 1P33223, 1IP33156, IP33199,
1P33208, 1P33218, and IP33185) contained pYV, while 3
isolates (IP33187, IP33170, and IP33111) lack pYV. It is not
uncommon for pathogenic Yersinia to lose pYV in vitro, in
particular when incubated at 37 °C, the temperature used for
stool cultures in clinical microbiology laboratories (Figure 8)
and used for the isolation of Y. pseudotuberculosis 1IP31758.
Similarly, Y. pseudotuberculosis IP33187 and IP33170, two pYV ™~
isolates, were isolated from the stools of patients with FESLF.
Furthermore, a number of Y. pseudotuberculosis and Y. enter-
ocolitica isolates have been reported to be pathogenic while
lacking pYV [28-30]. Because of the high sequence similarity
between all Y. pseudotuberculosis pYV or Y. pestis pCD plasmids
[9], it is unlikely that pYV is responsible for the unique clinical
manifestation of FESLF disease, but when present, pYV might
contribute to the pathogenic potential of the isolates, such as
1P33223 and IP33199. The 36 Y. pseudotuberculosis isolates
selected encompassed the main classical serotypes (I to V)
found worldwide and included another 12 isolates from
Russia, of which eight were isolated from human stools (six of
them from patients presenting FESLF symptoms: 1P33223,
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1P33170, 1P33187, 1P33199, IP33156, and IP33185). The
remainder included isolates from wildlife and environmental
samples for which no clinical phenotypes were assigned.
Five of the Russian isolates harbored all the loci tested but
those of pYpsIP3158.2, suggesting that they are genetically
homogeneous. However, a broader diversity was found in the
other isolates, some of which known to cause FESLF. This
strengthens the findings that the genomic diversity in Y.
pseudotuberculosis is greater than originally thought. Interest-
ingly, two Y. pseudotuberculosis strains (IP33208 and IP33199)
isolated from stools of patients with FESLF appeared to be
lacking three and four of the pYpsIP31758.1 loci tested,
respectively. This result might indicate that in these isolates,
either the sequence at these loci is missing or divergent from
that of pYpsIP31758.1, or the plasmid is lacking. The latter is
not supported by previous experiments showing that pVM82
is critical for the pathogenicity of FESLF [8,21]. Overall, the
tested markers are restricted to Y. pseudotuberculosis and
narrowly distributed in Far East Asian isolates; they might
therefore play a role in FESLF pathogenicity [102]. The
genetic heterogeneity between Y. pseudotuberculosis isolates in
far eastern and western countries is documented in our
screening analysis [56,57]. The pattern linked to Y. pseudotu-
berculosis IP31758 dominates in Far East Asia, and the modern
Russian strains still harbor the unique characteristics of the
original strain. The superantigenic toxin ypmA was found in
all FESLF-causing strains as well as in two Russian environ-
mental isolates. However, a PCR product was also identified
in non-FESLF-associated isolates from other parts of the
world (Figure 8). This may indicate either that ypmA is not
responsible alone for the scarlet-like symptoms, but it may be
necessary in association with other genes, or that Russian and
non-Russian isolates harbor different alleles with different
activities. Most other Y. pseudotuberculosis 1P31758 specific
chromosomal genes were detected in several Y. pseudotubercu-
losis isolates of worldwide origins (Figure 8). Some of these
genes have metabolic functions (periplasmic glucans biosyn-
thesis gene mdoG or glycerol phosphate transporter gipT) and
likely contribute to the overall bacterial fitness for the
survival of Y. pseudotuberculosis in the environment. The small
conjugative plasmid pYpsIP31758.2 was exclusively found in
Y. pseudotuberculosis IP31758, which argues against a role of
this plasmid during FESLF infection. Nevertheless, the
encoded adhesive pilin structure may contribute to the Y.
pseudotuberculosis TP31758 strain-specific FESLF symptoms,
and its conjugal transfer apparatus may interact with the
coharbored pYpsIP31758.1 plasmid and facilitate its trans-
mission and spread. Interestingly, the only non-Russian strain
that carries pYpsIP31758.1 also harbors ten of the 12
IP31758-specific genes. This strain was isolated from the
biopsy of an otter in Sweden (Figure 8). It may thus be
speculated that derivatives of FESLF-associated Y. pseudotu-
berculosis isolates are spreading among wildlife in this part of
the globe, and that human cases of FESLF may appear in
previously unscattered countries neighboring Russia.
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Genomic Plasticity and Pathogenicity in Y.
pseudotuberculosis

The genome sequence comparison of two Y. pseudotubercu-
losis strains gives insights into the evolution of this important
species and refines our understanding of genome reduction
by lowering previous estimates of the number of genes lost in
Y. pestis since emerging from Y. pseudotuberculosis. The genetic
traits predicted to contribute to pathogenicity in Y. pseudo-
tuberculosis IP31758, including two novel plasmids, comprise
the majority of the strain-specific gene pool. We have
presented evidence demonstrating that most of the unique
genes in each sequenced Y. pseudotuberculosis strain were
laterally acquired, and not lost in the other Yersinia as
previously thought. By reducing the Y. pseudotuberculosis
species-specific gene pool to 67, the number of putative
genes lost in Y. pestis during the speciation process is also
reduced (128 genes were found to be unique to Y.
pseudotuberculosis IP32953 and Y. pestis CO92 [22]). Unlike the
Y. pestis lineage that has undergone gene loss [22], our analysis
indicates that lateral gene acquisition is the predominant
driver in the evolution of Y. pseudotuberculosis species. In the
case of Y. pseudotuberculosis IP31758, its unique gene pool was
mainly acquired from Enterobacteriaceae and other soil-
dwelling bacteria (Figure S2). The acquisition of a short DNA
segment in a single event, such as observed for the inserted
superantigenic toxin YPM or genes introduced by the novel
plasmids pYpsIP31758.1 and pYpsIP31758.2, may be a major
evolutionary step in the evolution of a species and sufficient
to transform a pathogenic bacterial strain into a more severe
variant, causing a drastically different disease, regardless of
the preexisting chromosomal background heterogeneity. The
Y. pseudotuberculosis IP31758 genome contains only 21 degen-
erate genes, which is far less than reported for the published
Y. pestis genomes [23-26]. Driven by different environmental
selective pressures, the two sequenced Y. pseudotuberculosis
isolates appear to have undergone niche specific micro-
evolution that led to two different strains with vastly different
pathogenic potential and unique physiological capabilities.

Materials and Methods

Bacterial strains. Y. pseudotuberculosis IP31758 (serotype O:1b) was
isolated in 1966 from the stools of a patient presenting with scarlet-
like fever in the Primorski region of the former Soviet Union and was
sent in 1971 to the Institut Pasteur (Paris, France) by Dr. Timofeeva
(Antiplague Institute, Irkoutsk, Russia). The strain sequenced and
analyzed in this study was subcultured once from that original 1971
stock culture for the purpose of this study. A collection of 46
geographically and phenotypically diverse Y. pseudotuberculosis and Y.
pestis strains was screened for the presence or absence of 18 loci
specific to Y. pseudotuberculosis IP31758 (Figure 8).

Genome sequencing and annotation. Genomic DNA of Y. pseudo-
tuberculosis IP31758 was subjected to random shotgun sequencing and
closure strategies as previously described [103]. Random insert
libraries of 3-5 kb and 10-12 kb were constructed, and 61,634 high-
quality sequences of 837 nt average read length were obtained. A
draft genome sequence was assembled using the Celera assembler
[104]. An estimate of the copy number of each plasmid was obtained
by dividing the coverage depth of the plasmid by the coverage depth
of the chromosome. The chromosome and the two plasmids were
manually annotated using the TIGR Manatee system (http:/manatee.
sourceforge.net).

BLAST score ratio analysis. For each of the predicted proteins of
Y. pseudotuberculosis IP31758, a BLASTP raw score was obtained for the
alignment against itself (REF_SCORE) and the most similar protein
(QUE_SCORE) in each of the genomes of Y. pseudotuberculosis
1P32953 and Y. pestis CO92. These scores were normalized by dividing
the QUE__SCORE obtained for each query genome protein by the
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REF_SCORE. Proteins with a normalized ratio of <0.4 were
considered to be nonhomologous. A normalized BLAST score ratio
of 0.4 is generally similar to two proteins being 30% identical over
their entire length [36].

Screening analyses. The primer pairs are listed as supporting
information in Table S7. PCRs were performed with 1 U of Tag
polymerase (Roche, http:/lwww.roche.com) in the supplied buffer.
PCR amplification reaction mixtures contained 10 uM of each primer
and 1 mM dNTPs. The PCR program involved one step at 94 °C for 5
min, followed by 35 cycles of amplification of three steps: (1) 94 °C for
30 s, (2) 60 °C for 30 s, and (3) 72 °C for 7 min. PCR products were
maintained at 72 °C for 7 min, separated by gel electrophoresis in 1%
agarose gels, and stained with ethidium bromide.

Genome visualization. The chi squares and GC skews were
computed according to Nelson et al. [103]. For the chromosomal
chi square, a window size of 2 kb and a sliding window of 1 kb was
used, while a window size of 1 kb and a sliding window of 0.2 kb were
used for the two plasmids. GC skews were calculated using a window
size of 1 kb for the chromosome and 0.2 kb for the two plasmids. The
whole-genome alignment tool NUCmer [105] was used to calculate
the overall gene identities to the respective Y. pseudotuberculosis and Y.
pestis strains.

Taxonomy BLAST. Each of the 4,164 Y. pseudotuberculosis CDSs (not
including the RNA genes) was blasted using BLASTP against the
National Center for Biotechnology Information (NCBI) protein
database (E-value > 107°). The BLAST output was parsed using a
custom Perl script that recorded the taxonomic affiliation of the
BLAST best hit for each protein.

Supporting Information

Figure S1. Circular Representation of the Y. pseudotuberculosis IP32953
Genome

From outer to inner circle. Circle 1 and 2 predicted open reading
frames encoded on the plus (circle 1) and minus strands (circle 2),
colored according to the respective TIGR role IDs (http://cmr.tigr.org/
tigr-scripts/lCMR/Rolelds.cgi). (Circle 3) Noncoding RNAs. Brown,
tRNA genes; black, ribosomal rRNAs. (Circle 4) GC skew. (Circle 5)
Genomic islands. Violet, species-specific RIM system shared between
Y. pseudotuberculosis strains IP31758 and IP32953. (Circle 6) IS
elements, transposases, and phage integrases. (Circles 7-13) Com-
parative analysis of the genomic inventory. Intraspecies comparison
to Y. pseudotuberculosis IP31758 (circle 7) and interspecies comparison
to Y. pestis CO92 (circle 8), KIM (circle 9), 91001 (circle 10), Nepal516
(circle 11), Antiqua (circle 12), and Pestoides F (circle 13). (Circle 14)
Chi square.

doi:10.1371/journal.pgen.0030142.sg001 (8.6 MB AI).

Figure S2. Phylogenetic Analysis and Taxonomy BLAST of the
Complete Genomic Inventory of Y. pseudotuberculosis IP31758

Each of the 4,164 Y. pseudotuberculosis CDSs except the noncoding
RNAs were blasted using BLASTP against the NCBI protein database
(E-value < 1077).

(A) Taxonomic distribution of each protein. Almost 90% of the
predicted Y. pseudotuberculosis proteins do have their closest homolog
in the genus Yersinia, and only a minority of 3% in other microbes.
For 9% of the genes, no database homologs were found.

(B) Gene acquisition via horizontal gene transfer. The majority of
these genes group phylogenetically in the gamma-subdivision of
proteobacteria, in particular into the family of Enterobacteriaceae.

doi:10.1371/journal.pgen.0030142.sg002 (505 KB PPT).

Table S1. Comparative Analysis of the Restriction Profiles of pVM82
and pYpsIP31758.1

doi:10.1371/journal.pgen.0030142.5t001 (35 KB XLS).

Table S2. Statistics of the Intra- and Interspecies BLAST Score Ratio
Analyses

doi:10.1371/journal.pgen.0030142.st002 (32 KB DOC).

Table S3. Species-Specific Genes in Y. pseudotuberculosis
doi:10.1371/journal.pgen.0030142.st003 (40 KB XLS).

Table S4. Strain-Specific Genes in the Y. pseudotuberculosis TP31758
Genome

doi:10.1371/journal.pgen.0030142.st004 (68 KB XLS).
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Table S5. Strain-Specific Genes in the Y. pseudotuberculosis 1P32953
Genome

doi:10.1371/journal.pgen.0030142.5st005 (70 KB XLS).

Table S6. Genomic Regions Generating Genomic Plasticity in the Y.
pseudotuberculosis IP31758 Genome

doi:10.1371/journal.pgen.0030142.5st006 (68 KB DOC).

Table S7. Primer Pairs
doi:10.1371/journal.pgen.0030142.5t007 (56 KB DOC).

Accession Numbers

The sequences have been deposited in GenBank (http:/lwww.ncbi.nlm.
nih.gov/Genbank) under accession numbers CP000720 (chromosome),
CP000719 (pYpsIP31758.1), and CP000718 (pYpsIP31758.2). The
genome assembly has been deposited in the NCBI Assembly archive
(http:/f/www.ncbi.nlm.nih.gov) under Assembly ID (AI) 1935, and all
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