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In early-onset myasthenia gravis, the thymus contains
lymph node-type infiltrates with frequent acetylcholine
receptor (AChR)-specific germinal centers. Our recent
evidence/two-step hypothesis implicates hyperplastic
medullary thymic epithelial cells (expressing isolated
AChR subunits) in provoking infiltration and thymic
myoid cells (with intact AChR) in germinal center for-
mation. To test this, we screened for complement attack
in a wide range of typical generalized myasthenia pa-
tients. Regardless of the exact serology, thymi with size-
able infiltrates unexpectedly showed patchy up-regula-
tion of both C5a receptor and terminal complement
regulator CD59 on hyperplastic epithelial cells. These
latter also showed deposits of activated C3b comple-
ment component, which appeared even heavier on in-
filtrating B cells, macrophages, and especially follicular
dendritic cells. Myoid cells appeared particularly vul-

nerable to complement; few expressed the early com-
plement regulators CD55, CD46, or CR1, and none were
detectably CD59�. Indeed, when exposed to infiltrates,
and especially to germinal centers, myoid cells fre-
quently labeled for C1q, C3b (25 to 48%), or even the
terminal C9, with some showing obvious damage.
This early/persistent complement attack on both ep-
ithelial and myoid cells strongly supports our hypoth-
esis, especially implicating exposed myoid cells in
germinal center formation/autoantibody diversifica-
tion. Remarkably, the similar changes place many
apparent AChR-seronegative patients in the same
spectrum as the AChR-seropositive patients. (Am J
Pathol 2007, 171:893–905; DOI: 10.2353/ajpath.2007.070240)

More than 80% of patients with typical generalized
myasthenia gravis (MG) have IgG autoantibodies
(IgG1 and IgG3) against the muscle acetylcholine re-
ceptor (AChR) in its native conformation (and are des-
ignated AChRAb�).1,2 These antibodies cause receptor
loss, and thus weakness, by accelerating AChR degra-
dation1,3 and especially by activating complement.1,4 An-
other 5 to 10% of cases instead have (predominantly
IgG4) autoantibodies against the muscle-specific kinase
(MuSK).5–8 These MuSKAb� patients’ MG tends to be
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more severe, more bulbar,6,7 and apparently harder to
control with corticosteroids and azathioprine. It is ex-
tremely rare to find anti-AChR and anti-MuSK antibodies
in the same patient.5–11 The remaining 10 to 15% of MG
patients seem to have neither antibody in standard radio-
immunoprecipitation tests5–10,12 and are usually termed
seronegative (“SNMG”). Their MG nevertheless improves
after plasma exchange, implying that they too have
autoantibodies. Identifying their target(s) and developing
an equally clear antibody test should save many delays in
diagnosis.

In patients with early-onset anti-AChRAb� MG
(EOMG), the myasthenia often ameliorates after
thymectomy, and characteristic thymic changes are
found in �80% of cases.13–19 These include epithelial
hyperplasia16 and extra-parenchymal infiltration by
lymph node-like tissue with T-cell areas and germinal
centers (GCs).13–17,19 We have hypothesized that au-
tosensitization is a two-step process15,17: First, helper
T cells are primed by unfolded AChR subunits that are
expressed in medullary thymic epithelial cells
(mTECs).20,21 Next, early antibodies against these sub-
units then attack rare muscle-like myoid cells nearby.
These express intact AChR22 and have long been im-
plicated in autoimmunization.15,23 The ensuing immune
complex formation, activation of antigen-presenting
cells, and consequent inflammation and complement-
mediated damage together provoke formation of GC,
leading to autoantibody diversification.17 Myoid cells
are the only cells known to express whole AChR out-
side muscle, where lymphoid infiltrates are minimal in
MG.24 By contrast, in the thymus, myoid cells colocal-
ize significantly with these GCs, especially in cases of
recent MG onset,15 which clearly incriminates them still
further in pathogenesis. Attack on them and/or de-
struction by complement could explain their very un-
even distribution and/or their occasional rarity in
EOMG.15 In MuSKAb� MG, the thymus is typically
normal-for-age, and such hyperplasia is rare,25,26 but
some infiltrates are seen in 30%26 to 50%25 of SNMG
cases.

Seeking more direct evidence to implicate thymic
myoid and/or epithelial cells in the response, we have
now looked for signs of complement attack on them
and for expression of the complement-regulatory pro-
teins CD46, CD55, and CD59. The ability to label these
markers in routine paraffin sections25 has enabled us
to study a large series of these uncommon cases col-
lected over �25 years. Our findings further implicate
myoid cells and mTECs in the pathogenesis not only of
EOMG but also of SNMG.

Materials and Methods

Clinical Material

With informed consent and ethical committee approval,
we studied thymic tissue from the same 11 adult age-
matched controls (mostly undergoing thyroid or parathy-
roid surgery in Würzburg25) and the same 67 patients

with generalized MG as in Leite and colleagues25 (de-
tailed in Supplemental Table at http://ajp.amjpathol.org).
Their MG was diagnosed by clinical and electromyographic
criteria in several centers25; these patients comprised 23
with AChRAb� MG (�EOMG), 14 with MuSKAb� MG, and
30 with SNMG (clearly seronegative for both antibodies).
We also included another eight generalized MG cases with
previously borderline antibodies that now proved low-posi-
tive (0.5 to 2 nmol/L) with the higher AChR concentrations
currently available27 (and negative against MuSK); these
are designated AChRAblo here.

Thymic Sections and Antibodies

Thymic sections (5 �m) from routine formalin-fixed, par-
affin-embedded blocks were mounted on 3-amino-pro-
pyl-triethoxy-silane-coated slides.25 The sections were
dewaxed and rehydrated through graded ethanol solu-
tions and then either microwaved in Target Retrieval So-
lution (DakoCytomation, Glostrup, Denmark) for 10 min-
utes at 900 W (for most antibodies) or pretreated with
protease type XXIV [0.0125% solution (w/v) in phosphate-
buffered saline (PBS; Sigma, Gillingham, Dorset, UK)] at
37°C for 30 minutes for the antibodies asterisked in Table
1, which lists all of the antibodies used.28–32

Immunohistochemistry

Microwaved sections were incubated at 20°C in a perox-
idase-blocking reagent for 10 minutes (DakoCytomation)
and for 30 minutes with monoclonal antibodies to human
CD3, CD1a, or cytokeratin at optimized dilutions in PBS.
After two washes in PBS, binding was detected with the
peroxidase-based Envision� (DakoCytomation) method,
before washing and counterstaining with hematoxylin,
washing in tap water, and mounting.

Double-Immunofluorescence Labeling

Pretreated sections were incubated for 30 minutes at
20°C with a mixture of two primary antibody dilutions.
After two 5-minute washes in PBS, the sections were
then incubated with isotype-specific secondary anti-
bodies conjugated to Alexa Fluor 488 or Alexa Fluor
568 (Molecular Probes, Leiden, The Netherlands) at
1:200, for 45 minutes at 20°C. After two further washes,
slides were mounted, and nuclei counterstained with
4,6-diamidino-2-phenylindole in fluorescence mount-
ing medium (DakoCytomation).

We used paraffin sections of tonsils or biopsies from
rejecting or IgA-nephropathic kidneys as positive con-
trols. Negative controls included either irrelevant primary
antibodies matched for species/isotype or none at all.
The slides were stored at 4°C for 24 hours and then
analyzed on a Zeiss fluorescence microscope (Welwyn
Garden City, UK). All of the images were captured via a
cooled digital camera, using MacProbe V3.4 software
(Applied Imaging, Newcastle-upon-Tyne, UK).
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Immunofluorescence Analysis

All slides were coded and analyzed systematically by a
single blinded observer (M.I.L.). Entire sections la-
beled for CD3, CD1a, or cytokeratin (CK) were used to
measure areas of total thymic tissue and its compart-
ments25; GCs were counted throughout entire anti-
CD20/CD21�CD35-labeled sections to calculate their
frequencies/mm2 of thymic tissue.25

Myoid cells were counted throughout two entire sec-
tions from each case (one double-stained for desmin/
CD20 and the other for desmin/cytokeratin); counts
were averaged when we calculated the percentage of
exposed myoid cells, ie, those in direct contact with, or
wholly within, any infiltrates (see Figure 6). We as-
sessed their disposition in different compartments in all
of the sections stained for desmin/cytokeratin. Optimal
staining for desmin (in myoid cells) required different
retrieval conditions from C3b and C9 (but not from
CD59). Double labeling therefore demanded compro-
mises; these were made at the expense of desmin,
which normally stains strongly. We might thus have
overlooked some small/weakly desmin� cells.

In every staining combination for complement regu-
lators, components, or receptors, the overall distribu-
tion of the labeling was noted (diffuse versus patchy,
blood vessels versus parenchyma), and each main
feature was graded in each entire section from � to
���� according to its extent and intensity (�, no
staining; �/�, very weak or very rare; �, weak or
sporadic; ��, moderate or frequent; ���, strong or
extensive; and ����, very strong staining throughout
the section). We recorded labeling on myoid cells ac-
cording to the thymic compartments in which they were

found. Most staining combinations were studied sys-
tematically in every thymus, but CD46, CD55, and C1q
only in two representative samples from each sub-
group (including one MuSKAb� thymus with infiltrates
and one without).

Statistical Analysis

We used the Kruskal-Wallis one-way analysis of variance
test followed by Dunn’s post test (for heterogeneity), lin-
ear regression, and �2 with Yates’ correction.

Results

Overview of Distinct Thymic Compartments

In all of the MG thymi, the cortex was essentially normal,
as expected,13–18 apart from some evidence of atrophy/
fatty replacement. This was more evident after steroid
treatment in some cases (Supplemental Table at http://
ajp.amjpathol.org), which thus enriched the medulla and
infiltrates, but had very few other obvious effects. Nearly
all MG samples also included areas of relatively normal
medullary parenchyma (nMed) with abundant CD4� and
CD8� T cells, dendritic cells, macrophages, and thymic
epithelial cells (TECs), as well as numerous CD20� B
cells mainly around the Hassall’s corpuscles.

In many of the MG thymi, other parenchymal areas
were compressed into characteristic medullary epithelial
bands (MEBs) by expanding perivascular infiltrates,
which were negative for cytokeratin. These infiltrates con-
sisted primarily of lymph node-type T-cell areas, includ-
ing many antigen-presenting cells, high endothelial

Table 1. Primary Antibodies Used for Labeling of Thymic Tissue Sections

Antibody to Species, isotype Clone Source

Thymocytes and T cells
CD1a Mouse, IgG1 O10 Immunotech
CD3 Rabbit DakoCytomation
CD4 Mouse, IgG1 1F6 Novocastra
CD8 Mouse, IgG1 C8/144B DakoCytomation

B cells and germinal center cells
CD20 Mouse, IgG2a L26 DakoCytomation
CD21 (CR2) Mouse, IgG1 1F8 DakoCytomation
CD35 (CR1) Mouse, IgG1 Ber-MAC-DRC DakoCytomation

Epithelial cells and myoid cells
Cytokeratin Rabbit Abcam
Cytokeratin Mouse, IgG1 LP34 DakoCytomation
Desmin Mouse, IgG1 D33 DakoCytomation
Desmin* Mouse, IgG1 DE-R-11 DakoCytomation

Complement components, receptors, and regulators, and IgG
C1q Mouse G10 (B.P. Morgan, unpublished)
C3c,* NB also detects C3b Rabbit DakoCytomation
C9* Rabbit Reference 28
C3aR Mouse, IgG2a BIIG1 Reference 29
C5aR Rabbit Reference 29
CD46 Mouse GB24 References 30, 31
CD55 Mouse, IgG1 BRIC 216 IBGRL, Bristol, UK
CD59 Rabbit Reference 32
D68 Mouse, IgG3 PG–M1 DakoCytomation
gG* Rabbit DakoCytomation

*Tissue pretreated with protease as in Materials and Methods.
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Figure 1. Distribution of complement receptors C3aR, C5aR, and CR1 (receptor for C3b and C4b) (all in red) in epithelial areas and/or infiltrates in thymi from
non-MG controls (A and B), AChRAb� (C–E), or SNMG (F) MG patients. A and B: In control thymi, occasional mTECs are weakly C5aR�, as in some areas in MG
thymi, but labeling for C3aR is almost absent, even in blood vessels (arrowheads) (female donor 29 years of age). C–F: In MG, both C3aR and C5aR are expressed
strongly in most samples with infiltrates (INF) � GCs. C5aR is mainly on epithelial cells (cytokeratin� in C; green), whether in the relatively normal medulla (nMed)
or MEBs (C, D, and F), whereas most C3aR labeling is seen in the infiltrates and particularly in the GC (D–F), and in blood vessels (white arrowheads) (D and
E). [MG donors all female: C, 17 years of age; D, 20 years of age, E, 29 years of age; and F, 38 years of age (only F was taking steroids)]. Original magnifications,
�200.
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venules, and some B cells, as well as GCs varying in
number and size. Infiltrates are quantitated (in the same
samples) in Leite and colleagues.25 In brief, they were
rare/small in the controls, although they were age-
matched adults. However, they were seen in nearly all of
the AChRAb� MG thymi (including the AChRAblo) and
also in �50% of the SNMG samples but in only 3 of the 14
with MuSKAb� MG.25 The distribution of myoid cells is
detailed in the final section. The changes in MG are
described below in order of increasing abnormality.

Expression of Complement Receptors [C5aR,
C3aR, and CR1 (�CD35)]

Numerous cell types (T, B, and dendritic cells and mac-
rophages) normally express receptors for activated com-
plement components. In both MG and normal thymi,
some TECs stained for C5aR, mainly in subcapsular and
medullary areas (especially around the Hassall’s corpus-
cles) rather than in the cortex (Figure 1 A). Surprisingly, in
the MG samples with infiltrates, we saw increased stain-
ing on many of the mTECs in the MEBs as well as in the
nMed, but it was minimal in the infiltrates (Figure 1C;
summarized in Table 2).

In general, C3aR showed an inverse distribution to
that of C5aR (Figure 1, D and F; Table 2). It was seen
in only two of the controls, where it was largely con-
fined to blood vessels (Figure 1B, arrowheads). In most
MG samples, it was seen also on occasional patches of
mTECs (Figure 1D). Although many extraparenchymal
T and B cells were C3aR� too, it was strongest/most
abundant on the follicular dendritic cells in the GC
(Figure 1, D–F) and also in blood vessels (Figure 1, D
and E). The receptor for C3b, CR1 (CD35), was essen-
tially confined to GCs (Figure 1E) and was not detected
in the controls.

In the various MG subgroups, the above changes oc-
curred in any thymi with sizeable infiltrates (summarized
in Table 2), correlating with their frequency and extent.
Therefore, they were somewhat more prominent in the
AChRAb� than the AChRAblo and apparently SNMG
samples but were rare in MuSKAb� thymi. The C3aR and
C5aR expression implies the potential to respond to any
available activated complement component, subject to
complement regulation.

Expression of Complement Regulators [CR1
(�CD35), CD46, CD55, and CD59]

On binding their targets, antibodies may initiate the clas-
sical complement cascade by activating C1, leading to
formation of the C3 convertase (C4b2a) and activation
(conversion) of C3, so generating both active C3b frag-
ments and the C5 convertase (C4b2a3b). This leads to
cleavage of C5 and assembly of pore-forming mem-
brane-attack complexes (MAC; C5b-C9) in target cell
membranes.33

The major cell-bound complement regulators are
CD55 (DAF), which accelerates decay of the C3 conver-
tase, CD46, which enhances enzymatic degradation of
C3b and C4b, and CD59, which blocks assembly of C9 into
the MAC.34 CR1 (�CD35) can also regulate the C3 conver-
tase but is primarily a receptor for activated C3. We
screened all thymi for CD59 and CR1 and two representa-
tive samples from each patient subgroup for CD46 and
CD55. We detected CR1 in all GCs (Figure 1E), but not
elsewhere.

In control thymi, labeling for CD46 (Figure 2A) and
CD55 (not shown) was minimal and primarily restricted
to blood vessels in the medulla and septa (Table 2). By
contrast, CD59 was more widespread, being found, in
addition, on scattered macrophages and dendritic

Table 2. Summary of the Range and Intensity of Labeling in the Main Thymic Compartments in MG Samples with Infiltrates

Complement receptors: Complement regulators: Activated complement components:

C5aR C3aR CD46/CD55 CD59 C1q C3b C9

Cortex
MG �/� � �/� ��/� � � �
(Con) (�) (�) (�) (�) (�) (�) (�)

nMed
MG ���/� �/� ��/� ���/� ��/� ��/� �
(Con) (��) (�) (�) (�) (�) (�/�) (�)

MEBs
MG ����/� ��/� ���/� ����/� ����/� ����/� �/�

Infiltrates
MG �/� ����/� ���/� ����/� ���/� ����/� �/�

Myoid cells
MG �/� �/� �/� � ��/� ���/� �/�
(Con) (�) (�) (�) (�) (�) (�) (�)

Blood vessels
MG ��/� ����/�/� ��/� ����/� ��/� �� �
(Con) (�) (�) (�) (���) (�) (��) (�)

Maximal levels for controls (Con) are shown in parentheses where applicable. Each staining was graded in each entire section from � to ����
according to its extent and intensity (�, no staining; �/�, very weak or very rare; �, weak or sporadic; ��, moderate or frequent; ���, strong or extensive;
and ����, very strong staining throughout the section). The controls had virtually no MEBs or infiltrates and MG samples without infiltrates (eg, in
MuSKAb� MG) were broadly similar. Labeling in septa and surrounding connective tissue was similar to that in blood vessels, but generally weaker, especially for
C3aR and CD59. Distributions were very similar for CD46 and CD55. nMed, relatively normal medullary areas; MEBs, medullary epithelial bands.
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cells, as well as on some subcapsular and medullary
TECs (especially around Hassall’s corpuscles; Figure
2D), like C5aR, but more variable in extent and
intensity.

In MG, CD46 and CD55 were again patchily up-
regulated in the nMed, and especially in the MEBs
(Figure 2, B, C, and F), and so was CD59 (Figure 2, E,
H, and I; summarized in Table 2); they were frequently
also seen in blood vessels (Figure 2, C and F; arrow-
heads). Clear double-labeling of cytokeratin� cells was
more obvious for CD59 and CD55 than CD46 (Figure 2,
E, F, and I than B). As expected,35 all three comple-
ment regulators were more prominent in the infiltrates,
on macrophages, B cells, and dendritic cells and es-
pecially in most GCs (Figure 2, B, C, E, F, H, and I;

Table 2), although not in every infiltrated area (Figure
2G). With rare exceptions, all these findings were
broadly similar in the infiltrated areas in all of the MG
subgroups, although CD55 was less evident in an un-
usual MuSKAb� sample with infiltrates (not shown).

Deposition of C1q, C3b, and C9 Components

In control thymi, labeling for C1q and C3b was largely
restricted to the Hassall’s corpuscles,36 blood vessel en-
dothelium, and connective tissue and was otherwise min-
imal in both cortex and medulla (Table 2, Figure 3C). In
MG, by contrast, we saw clear signs of activation of the
classical complement pathway; surprisingly, most sam-

Figure 2. Distribution of complement regulators CD46, CD55, and CD59 (all in red) in epithelial areas and infiltrates in control (A and D) and MG thymi (B, C,
and E–I). Cytokeratin (CK, green). A: In controls, CD46 (A) and CD55 (not shown) expression is minimal; in MG, both are much stronger in the MEBs than in
the nMed in both AChRAb� (B and F) and SNMG (C) MG. They are also seen on blood vessels, some mTECs, and other cells (eg, macrophages), and especially
in the GC; CD55 sometimes shows a linear distribution at MEB borders (F, bottom left) like that of laminin. D: In controls, CD59 is expressed by numerous
medullary TECs and some septal macrophages. In MG, CD59 labeling is variable: it is extensive in nMed (I) and in many MEBs, infiltrates, and GC in both
AChRAb� (E) and SNMG (H) MG, but not universally, even where there are nearby infiltrates (G). White arrowheads mark blood vessels. (Donors all female:
A, 17 years of age; B, 16 years of age; C, 40 years of age; D, 21 years of age; E, 20 years of age; F, 16 years of age; G, 20 years of age; *H, 38 years of age; and
*I, 33 years of age; *taking steroids). Original magnifications, �200.
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Figure 3. Labeling for C1q and C3b complement fragments (both in red) in epithelial areas and infiltrates in MG and control thymi. Cytokeratin (CK, green). A
and B: In MG, there is extensive patchy labeling for C1q in mTECs and other cells in MEBs and in infiltrates and GC in AChRAb� (A) or SNMG (B) samples. C:
In controls, C3b labeling is seen in Hassall’s corpuscles (HC), fat, and connective tissue septa and blood vessels. In MG, whether AChRAb� or SNMG, it is most
evident in MEBs (focally in D and F), in the adjacent infiltrates (D and E), and in their GC (F). The nMed areas are negative for C3b in most MG thymi (E and
F). (Donors all female: A, 16 years of age; *B, 38 years of age; C, 24 years of age; *D, 24 years of age; E, 43 years of age; and F, 28 years of age; *on steroids).
Original magnifications, �200.
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ples with infiltrates showed substantial labeling for C1q
on patches of densely packed mTECs in samples with
infiltrates (Figure 3, A and B). Many such mTECs also
labeled strongly for C3b (Figure 3, D–F), which some-
times showed a linear laminin-like pattern (Figure 3D).
However, other apparently similar areas in the same sec-
tions were negative for either C1q or C3b (Figure 3D), as
was the nMed (Figure 3, E and F; except for C3b in three
AChRAb� cases). Within the infiltrates, labeling for C1q,
and especially for C3b, was strongest/most consistent in
the GCs (on follicular dendritic cells and B cells as ex-
pected35; Figure 3, A and F; see also Figure 5C) but was
also evident on some B lymphocytes and macrophages
(Figure 3, D and E).

Staining for C9/MAC was generally weak and was
not seen on either TECs or even C3b� follicular den-
dritic cells (not shown), implying a bias toward earlier
stages of complement activation. Thus, C9/MAC
showed an inverse distribution to that of CD59 in reac-
tive GC. Overall, as in our previous studies, these thymic
GCs show labeling essentially identical to that in reactive

tonsillar GC for all of the markers we have now applied for
the first time in MG.

Again, all such labeling was rare in the relatively nor-
mal thymi but was broadly similar in any MG sample with
infiltrates, regardless of the subgroup (as summarized in
Tables 2 and 3), although it did vary in degree. Moreover,
C3b deposition on mTECs was equally prevalent in thymi
from the most recent onset and the longer-standing
AChRAb� and apparently SNMG patients (Supplemental
Figure A at http://ajp.amjpathol.org).

Involvement of Myoid Cells

In general, myoid cells (desmin�) were haphazardly
distributed in the nMed, often near the Hassall’s cor-
puscles, and were sometimes clustered. In any thymi with
infiltrates, other very typical locations were at the edges of
MEBs, ie, where they interfaced with infiltrates (Figures 4B
and 5, A, B, and D), especially where there were GCs
nearby, or even wholly within the infiltrates (Figures 4A and
5C); together, these are designated exposed myoid cells.

Table 3. Numbers of Samples Showing C3b Deposition in the MEBs, in the Infiltrates, and on Myoid Cells Exposed to the
Infiltrates in Each Subgroup, and Estimated Percentages of the Myoid Cells Positive for C3b in Each Compartment
Median (Range)

C3b in MEB
C3b in

infiltrates
C3b on exposed

myoid cells

% of the myoid cells
in nMed that labeled

for C3b
% of the exposed myoid
cells that labeled for C3b

Controls (n � 11) 2 (18%)* NA NA 0 NA
AChRAb� (n � 23) 20 (87%) 17 (74%) 18 (78%) 3.8% (0.7 to 5.6) 38% (8 to 48)
AChRAblo (n � 8) 4 (50%) 4 (50%) 4 (50%) 3.3% (1.9 to 5.1) 25% (14 to 27)
SNMG (n � 30) 20 (67%) 15 (50%) 19 (63%) 2.7% (0.4 to 3.7) 24% (4 to 33)
MuSKAb� (n � 14) 3 (21%) 2 (14%) 2 (14%) 1.2% 14% (11,17)

The same individual samples in each MG subgroup showed C3b labeling on exposed myoid cells and in the MEB or infiltrates.
*Occasional areas of mTEC adjacent to small perivascular expansions. NA, not applicable.

Figure 4. Rarity of complement regulators on myoid cells. In both control (not shown) and MG thymi (A), myoid cells (MC) are uniformly CD59� (red), even
when exposed to infiltrates, but �5% of the latter express detectable CD55 (red) (B, inset). (Donors both female: A, 20 years of age; B, 16 years of age). Desmin
(De, green). Original magnifications: �200; �1000 (insets).

900 Leite et al
AJP September 2007, Vol. 171, No. 3



Figure 5. Labeling for C1q, C3b, or C9 (all in red) on exposed myoid cells (MC) in MG thymi. Desmin (De, green). A and B: Some exposed myoid cells label for
C1q in AChRAb� (A) or SNMG (B) MG samples, in which many of them label for C3b (C and D; enlarged in insets) and some for C9 in AChRAb� (E) or SNMG
(F) samples. Note aggregation of desmin (B and E). (Donors all female: A, 16 years of age; *B, 33 years of age; C, 20 years of age; *D, 38 years of age; E, 35 years
of age; and *F, 33 years of age; *on steroids). Original magnifications: �200 (C and D); �1000 (A, B, E, F, and insets).
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Complement Regulators and Receptors

We never observed significant staining in any of the
control or MG samples for CD59 on any of the many
thousands of myoid cells we examined (Figure 4A, Table
2). Likewise, they showed no labeling for CD46 or CD55
in the two controls tested, but these regulators were
clearly detectable on �10 and 5%, respectively, of the
exposed myoid cells in the seven representative MG
thymi from each subgroup with infiltrates (Figure 4B).
Nearly all myoid cells must also be negative for CR1
because it was confined to the GC. In one control, they
also appeared negative for C3aR and C5aR; however, in
two AChRAb� thymi, up to 5% of the exposed myoid cells
were C3aR� and up to 10% were C5aR� (not shown).
Hence, in general, myoid cells appear relatively deficient
in complement regulators and therefore vulnerable to
complement attack, for which we checked next.

Complement Components

In the control thymi, myoid cells very rarely showed any
detectable C1q or C3b (Table 3). In MG, both were rare
in thymi without infiltrates and uncommon in the nMed
(Tables 2 and 3). In sharp contrast, �10% of the exposed
myoid cells showed clear C1q labeling (Figure 5, A and
B), which implicates the classical pathway in activation.
More strikingly, in almost every MG thymus with infiltrates,
C3b labeling was seen clearly and strongly on many of
the exposed myoid cells (Figure 5, C and D), up to 48%
of them in some samples (Table 3). At lower frequency,
we also saw clear staining for C9/MAC on some of the
exposed myoid cells (Figure 5, E and F). Although the
C3b� myoid cells showed no terminal dUTP nick-end
labeling staining (for apoptosis; not shown), a few

showed signs of damage (eg, desmin aggregation; Fig-
ure 5, B and E).

Exposed myoid cells were much more frequent in
AChRAb� than control thymi (Figure 6), and were also
more common in most AChRAblo and many apparently
SNMG thymi, whereas they were rare in the MuSKAb�

subgroup (Figure 6). Moreover, the frequencies of myoid
cells under complement attack (by C3b) showed a par-
allel hierarchy, reaching up to 48% in the AChRAb�, 27%
in the AChRAblo, and 33% in some SNMG samples (Ta-
ble 3B) but only 17% in two of the three MuSKAb� sam-
ples with occasional small infiltrates. Remarkably, this
attack was already evident in the most recent-onset
cases, in fact, regardless of MG duration at thymectomy
(Supplemental Figure B at http://ajp.amjpathol.org), and
also in some thymi with very modest infiltrates and few
GC, ie, with signs of atrophy/burnout.

Discussion

This article reports three novel findings in the MG thymus.
First, we found unexpected up-regulation of complement
receptors and regulators on the hyperplastic medullary
epithelial cells (mTECs), and evidence of early and per-
sistent complement attack on them. These findings are
consistent with the proposed roles of mTECs in autosen-
sitizing AChR-specific helper T cells15–17 and in attract-
ing the lymph node-type infiltrates.37 Second, the general
lack of CD46, CD55, and especially CD59 on myoid cells
indicates vulnerability to complement-mediated damage.
Moreover, the deposition of C3b on many exposed myoid
cells (often near GCs), and even of the terminal C5b-9
(MAC) complex on some, strongly supports their pro-
posed role in provoking GC formation and thus in auto-
antibody diversification. Third, the changes in many pa-
tients with apparently seronegative (SNMG), and most
with borderline AChRAb titers (AChRAblo), are very sim-
ilar to those in EOMG (although somewhat milder). This
argues strongly that these subgroups belong to the
EOMG spectrum; it therefore also implicates AChR auto-
antibodies in both, which are evidently underestimated in
standard assays with native AChR in dilute solution (M.I.
Leite, S. Jacob, S. Viegas, J. Cossins, D. Beeson, B.P.
Morgan, N. Willcox, and A. Vincent, in preparation). The
rarity of similar thymic changes in MuSKAb� MG again
emphasizes the distinctness of this subgroup.

Involvement of mTECs

In our previous studies, the mTECs appeared hyperplas-
tic because of their dense packing and more uniform
staining for several integrins, especially �V�516; to that
we can now add increased expression of C5aR, CD46,
and CD55 and CD59. As with other epithelial (and endo-
thelial) cells,38–40 this up-regulation could be a result of
attack by autoantibodies triggering the classical comple-
ment pathway, as indicated by the labeling for C1q, and
especially for C3b. This, in turn, agrees very well with the
previously reported autoantibodies against mTECs in
EOMG,41 whereas our failure to detect factor B (not

Figure 6. Percentages of myoid cells exposed to the infiltrates in non-MG
controls and MG patient subgroups. Their rarity in the control and MuSKAb�

samples reflects the paucity of infiltrates. There were significantly fewer
myoid cells/mm2 in the AChRAb� group than in the controls (see mini-table
below; *P � 0.05, **P � 0.01, ***P � 0.001). *Analysis of variance: Kruskal-
Wallis test indicating intergroup heterogeneity.
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shown) argues against any major concomitant role for the
alternative pathway. Expression of peripheral tissue-spe-
cific autoantigens by mTECs is often focal,42 as with
AChR subunits,17 which could explain the patchy label-
ing we observed for C5aR and complement regulators.
Furthermore, sublytic MAC deposition can stimulate ep-
ithelial, endothelial, and Schwann cell proliferation,43–47

which might contribute to the mTECs’ hyperplastic ap-
pearance in MG.16 Their up-regulation of CXCL13 may
be an important factor in provoking the nearby infiltrates
in MG.37

Involvement of Myoid Cells

In experimental MG in mice, cd55 or cd59 alone can
each protect against motor endplate damage.48–50 How-
ever, unlike the mTECs, few myoid cells expressed CD46
or CD55 and none were CD59�, even when there was
marked local infiltration, implying general vulnerability to
complement. Indeed, a remarkably high proportion of the
exposed myoid cells in MG labeled for C1q, more for
C3b, and a few even for the terminal membrane attack
complex. That implies that GC, and adjacent infiltrates,
develop in response to complement deposition on myoid
cells. Their subsequent killing and/or proliferation might
explain their variable numbers (Figure 6), or even virtual
absence, in some EOMG samples15; C9/MAC� myoid
cells might be underestimated if they are killed in some
cases. In fact, it would be surprising if myoid cells es-
caped such attack because complement-mediated dam-
age is such an important cause of the AChR loss at the
muscle endplates in MG.4 Indeed, the lower expression of
complement regulators in extraocular than other muscles
apparently contributes to their susceptibility in MG,51,52 as it
does on neurons and oligodendrocytes in MS.53

This variability in myoid cells, and in complement dep-
osition, within and between MG subgroups also suggests
that complement dysregulation might be another factor
influencing pathogenesis in MG. Notably, the genes for
CR1, CR2, CD46, CD55, and factor H map to the com-
plement regulatory gene cluster (chromosome 1q32),54

which might prove a fertile region to screen for genetic
susceptibility in MG. Indeed, associations with factor H
are now being recognized in inflammatory diseases.54

One consistent finding is that, very frequently, the GCs
were associated with myoid cells positive for C1q and
C3b, implicating them still more deeply in formation of
GCs. Because these are the sites of somatic hypermuta-
tion,55 and because many of the thymic GCs and their B
cells are specific for AChR,56 including the fetal isoform
that myoid cells express,57 they must both be important
in diversifying the autoantibodies in EOMG56–58 so that
they recognize AChR in its native conformation (even if
other cell types prove also to be involved in this epitope
spreading). Their resulting heterogeneity must, in turn,
enhance both their pathogenicity and their ability to bind
solubilized AChR at high dilution in standard assays.

Correlating Thymic Changes with Autoantibody
Serology

That all of the above findings were so similar, if milder, in
the majority of the apparently SNMG as well as the ACh-
RAblo thymi argues very strongly that many patients in
these subgroups belong to the same spectrum as those
with AChRAb� MG. Indeed, we are now able to detect
anti-AChR antibodies, in �50% of previously SNMG pa-
tients, by their binding to AChRs densely clustered on
transfected human embryonic kidney cells.59 Interest-
ingly, positivity in this new assay correlates with thymic
infiltrates and C3b�-exposed myoid cells in these pa-
tients’ thymi.59 The contrasting rarity of similar thymic
changes in MuSKAb� cases fits with the predominance
of noncomplement-activating IgG4 anti-MuSK antibod-
ies; the few patients with infiltrates might be the ones who
also have some complement-activating IgG1 anti-MuSK.8

There is one final notable correlate. The GCs were
fewer and smaller in these low-affinity (SNMG) patients’
thymi, which might well imply more limited diversity of
their autoantibodies than in typical AChRAb� MG, which
might, in turn, make them harder to detect in standard
assays, and possibly less pathogenic. Indeed, the MG in
these patients does seem to be less severe than in the
MuSKAb� subgroup and more responsive to standard
therapies.6–8,60 These may include thymectomy, which, if
done early, could act by interrupting the processes we
have observed.
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