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ABSTRACT This article evaluates the hydrodynamic interactions between two swimming bacteria precisely. We assume that
each bacterium is force free and torque free, with a Stokes flow field around it. The geometry of each bacterium is modeled as a
spherical or spheroidal body with a single helical flagellum. The movements of two interacting bacteria in an infinite fluid otherwise
at rest are computed using a boundary element method, and the trajectories of the two interacting bacteria and the stresslet are
investigated. The results show that as the two bacteria approach each other, they change their orientations considerably in the near
field. The bacteria always avoided each other; no stable pairwise swimming motion was observed in this study. The effects of the
hydrodynamic interactions between two bacteria on the rheology and diffusivity of a semidilute bacterial suspension are discussed.

INTRODUCTION

An interesting aspect of bacterial suspensions is that bacteria

exhibit various types of collective motions. Recently,

Dombrowski et al. (1) observed a mesoscale structure in a

suspension of Bacillus subtilis in which a B. subtilis cell

tended to swim in the same direction as its neighbors, gen-

erating a flow pattern larger than the scale of an individual

cell but smaller than the scale of the container used in

the experiment. The mesoscale structure changed its direction

randomly in a manner reminiscent of turbulence, so they

named this phenomenon ‘‘slow turbulence’’. Mendelson et al.

(2) also observed mesoscale motions of whorls and jets

generated by B. subtilis experimentally. In their experiment,

populations of B. subtilis were placed in a water film above an

agar gel. It has been demonstrated that the diffusion in such

suspensions is considerably enhanced by the mesoscale struc-

tures (3). Another well-known collective motion of bacteria is

the band formation observed for magnetotactic bacteria.

Magnetotactic bacteria contain intracytoplasmic Fe3O4 par-

ticles, and the magnetic dipole is oriented more or less parallel

to the axis of motility of the cells (4). Spormann (5) and Carlile

et al. (6) reported a migration phenomenon in suspensions of

unidirectional magnetotactic bacteria swimming in narrow

glass tubes subjected to magnetic fields in which thousands of

cells formed a stable band perpendicular to the swimming

direction.

Although the collective motions of bacteria are interesting

and important when discussing suspension properties, such

as rheology and diffusivity, the fundamental mechanism for

these motions is still unknown. Analytical models have been

proposed at a number of levels to better understand the

mechanism of collective motions. Vicsek et al. (7) proposed

an analytical model to express self-ordered motion in systems

of particles with biologically motivated interactions. In their

model, particles were driven with a constant absolute ve-

locity and assumed the average direction of motion of the

particles in their neighborhood at each time step with some

random perturbations added. Ramaswamy and his co-

workers (8,9) constructed hydrodynamic equations for sus-

pensions of self-propelled particles, which considered the

effect of swimming particles by adding force dipoles to the

fluid momentum equation. Lega and Passot (10) applied a

continuum model in the form of a mixture theory to two-

dimensional bacterial populations. They triggered the motion

of the mixture by applying a random external force to the

particle. More recently, Hernandes-Ortiz et al. (11) perfor-

med direct simulations of large populations of confined hydro-

dynamically interacting swimming particles. In their model,

the swimming motion of bacteria was modeled using three

point forces per bacteria.

Although the results obtained from these studies are valu-

able and consistent with experimental observations, the near-

field fluid dynamics have not been treated precisely. Even the

latest works by Hernandes-Ortiz et al. (11) used three point

forces to model swimming bacteria and neglected the torque

balance of the swimming particles. Modeling a bacterium as

a point force or stresslet is sufficient for discussing the far-

field hydrodynamic interactions because higher moments

decay rapidly if the distance between the particles is great

enough. In the near field, however, all multipole moments

contribute to the hydrodynamic interactions, and one cannot

simplify the phenomena using the first few moments.

Ishikawa et al. (12,13) have shown both experimentally

and analytically that the near-field interaction is important

for discussing the stability of swimming motions, the tra-

jectories of swimming cells, and the stresslet generated by

the cells. Since the stability of swimming motions dominates

the length and timescales of the coherent structure, the near-

field hydrodynamic interaction should be treated precisely

when discussing the collective motion of cells in the sus-

pension. The change in trajectories also dominates the chaos

or randomness of cell swimming so that the near-field
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hydrodynamic interactions again should be treated precisely

when discussing the diffusivity of the suspension (14).

Another important macroscopic quantity for a cell suspen-

sion is the particle stress tensor, which is dominated by the

stresslet of the cells. Therefore, the near-field interaction must

be treated precisely when examining the rheology of the

suspension (15).

Some previous studies have solved the flow field around

bacteria precisely. Phan-Thien and his group have reported

the flow field around a solitary bacterium (16), the interac-

tion between a bacterium and a wall (17), and the interaction

between two bacteria fixed parallel to each other or straightly

aligned in space (17,18). However, these studies did not

discuss the trajectories of the two swimming bacteria and the

stability of their swimming motions. Moreover, one cannot

tell from these studies how the two-cell interaction affects

the macroscopic quantities of the suspension, such as the

rheology and diffusivity.

In this article, we solve the hydrodynamic interactions

between two swimming bacteria precisely. We show the

trajectories of two interacting bacteria and the stresslet for

the first time to our knowledge. These are essential quan-

tities when discussing the diffusivity and rheology of bac-

terial suspensions. We also show that a parallel swimming

motion is unstable, which, to our knowledge, is a new

finding that is important to the stability of collective motions

in bacterial suspensions. Lastly, we discuss the effect of

hydrodynamic interactions between two bacteria on the

rheology and diffusivity of a bacterial suspension in a semi-

dilute regime.

METHOD

Bacterial model

We used the same bacterial model as Phan-Thien and his group (16,17). The

details of the model have been presented elsewhere, so only a brief ex-

planation is given here. A bacterium is assumed to be neutrally buoyant

because the sedimentation velocity for typical aquatic bacteria is much less

than the swimming speed. The center of buoyancy of the bacterium is

assumed to coincide with its geometric center. Consequently, the model

bacterium is force free and torque free. The Reynolds number based on the

swimming speed and body length is usually ,10�3, so the flow field around

the bacterium is assumed to be a Stokes flow.

Brownian motion is not considered, since typical bacteria have a body

length, including flagella, of 2–10 mm (19) and are too large for Brownian

effects to be important for the near-field interaction between bacteria. When

two bacteria are far apart, however, we need to discuss carefully the effect of

Brownian motion because it is one of the main factors for a real solitary

bacterium to change its orientation. Berg (20,21) reported that the angular

diffusion of Escherichia coli is ;10� in 0.5 s. We should note that the

orientation change of a real bacterium can be generated not only by the

Brownian motion but also by the asymmetry of flagella shape, the shape

change of flagellar bundle, deviation of the central axis of flagellar spiral

from the body axis, interaction between bacteria, interaction between a

bacterium and a wall, chemotaxis, and so on. Thus we cannot say that the

angular diffusion observed in E. coli is due solely to Brownian motion. By

assuming that the body length of E. coli is ;2 mm and the swimming speed

is ;20 mm, solitary E. coli changes its orientation ;10� after swimming five

times longer than its body length. In this study, we do not discuss trajectories

longer than seven times body length, and the orientation change is much

larger than 10�. Thus, the effect of hydrodynamic interaction dominates the

orientation change of two interacting bacteria in the parameter range used

in this study.

The geometry of a bacterium is modeled as a spherical cell body (or later

as a spheroidal cell body, see Fig. 15) with a single helical flagellum, as

shown in Fig. 1. Though the geometry employed in this study is simple, a

number of real bacteria, notably eubacteria such as Photobacterium

phosphoreum and Pseudomonas aeruginosa, have roughly a spheroidal

cell body with a single helical flagellum. Many bacteria have several flagella

attached at points distributed over the surface of the cell. When such bacteria

are swimming, the separate flagella come together in a synchronous flagellar

bundle, which propels the cell. Since the clearance between flagella in a

bundle is very small, Brennen and Winet (19) mentioned in their review article

that whether the principal propulsive unit is a single flagellum or a bundle has

relatively minor effects on the external hydrodynamics. Thus, the flagellar

geometry used in this study could be appropriate to a flagellar bundle too.

The bacterial model swims by executing a helical wave down its

flagellum. Let r be the position vector relative to the contact point between

the spherical cell body and the flagellum, and let the x axis coincide with the

central axis of the helix. The position of any point along the centerline of

the flagellum was derived by Higdon (22) and is given parametrically by

r ¼ ðx; h EðxÞcosðkx � vtÞ; h EðxÞsinðkx � vtÞÞ;
EðxÞ ¼ 1� expð�k

2

Ex
2Þ; (1)

where h is the amplitude, k is the wave number, v is the angular frequency of

the helical wave, and kE is a constant that determines how quickly the helix

grows to its maximum amplitude. We also assume that the flagellum is a

cylindrical filament of cross sectional radius af. Phan-Thien et al. derived the

position vector for any point on the surface of the flagellum (16).

In this study, we used three flagellum shapes, as shown in Fig. 2. Shape A

(Fig. 2 a) had parameter values of h ¼ 0.77, k ¼ kE ¼ 1.3, and af ¼ 0.1. The

length of the flagellum, which can be obtained from a line integral along its

centerline, was 7.0. These values were set so that the bacterium was highly

FIGURE 1 Shape parameters for a bacterial model with

360 and 320 triangle elements for the flagellum and

spherical body, respectively. The total number of elements

per bacterium is 680. (a) Shape A (h ¼ 0.77, k ¼ kE ¼ 1.3,

and af¼ 0.1), (b) shape B (h¼ 0.77/2), and (c) shape C (h¼
0.77/2, k ¼ 2.6).
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efficient in terms of swimming power consumption (cf. Phan-Thien et al.

(16)). Shapes B and C have the same flagellum length, but h ¼ 0.77/2 for

shapes B and C and k ¼ 2.6 for shape C. These parameters were used to

determine the effect of h and k on the trajectories.

Since some bacteria have ellipsoidal cell bodies, we also evaluated the

effect of the aspect ratio of the cell body by selecting two ellipsoidal shapes,

as shown in Fig. 15. Shapes D and E had the same flagellum as shape A, but

the length of the major axis ax and minor axis ay were 2 and 1 for shape

D and 1 and 0.5 for shape E, respectively.

Basic equations

The hydrodynamic interactions between two swimming bacteria were

computed in an infinite fluid otherwise at rest. Since the Stokes flow field

was assumed, the velocity field was developed instantaneously by the given

boundary conditions. The numerical method used was similar to the one

used by Ishikawa et al. (13), so only a brief explanation is given here.

When there are two bacteria in an infinite fluid, the Stokes flow field

around the bacteria can be given in integral form as (23)

uiðxÞ ¼ �
1

8pm
+
2

m¼1

Z
Am

Jijðx� yÞtjðyÞdAy; (2)

where u(x) is the velocity at position x, m is the viscosity, Am is the surface of

bacterium m, J is the Oseen tensor, and t is the traction force. The bacteria

are assumed to be force free and torque free, so that

Fm ¼
Z

Am

tðxÞdAm ¼ 0; Tm ¼
Z

Am

x ^ tðxÞdAm ¼ 0: (3)

On the surface of the body, the velocity field takes the form

uðxÞ ¼ U 1 V ^ x if x is on the cell body;
U 1 ðV� vÞ ^ x if x is on the flagellum;

� �

(4)

where U and V are the translational and rotational velocities of the cell body,

respectively. The flagellum rotates with respect to the rest frame with an

angular velocity of (V � v). Both U and V are determined as a part of the

problem, so that Eqs. 2 and 3 are satisfied. Recently, Ishikawa and Hota

investigated the hydrodynamic interactions between real microorganisms

experimentally (12); the results showed that the interactions were mainly

hydrodynamic. Therefore, the rotational motion of the flagellum relative to

the spherical cell body was assumed to be invariant throughout the inter-

actions. These governing equations were nondimensionalized using the

radius of the spherical body, a, the angular velocity, v, and the fluid

viscosity, m. We should note that a typical bacterium has the body length of

;1–3 mm and the flagellar length of ;3–6 mm. The typical angular velocity

of a cell body when its flagellum is tethered is ;100–1000 s�1 (19).

Numerical method

The boundary element method was used to discretize the equations (cf.

Ishikawa et al. (13)). The computational mesh generated on the surface of

the bacterial model is shown in Fig. 1, where 360 triangle elements were

generated for each flagellum and 320 elements were generated for each

spherical body. The total number of elements per bacterium was 680. Both

ends of the flagellum were assumed to be cones in the same manner as Phan-

Thien et al. (16). The integration in Eq. 2 was performed on a triangular

element using 28-point Gaussian polynomials. The singularity in the

integration was solved analytically (23). The time marching was performed

using the fourth-order Runge-Kutta method. The accuracy of this numerical

method was verified by comparing our swimming velocities, swimming

power, and trajectories for a solitary bacterium with previous solutions

(16,24). Trial computations for the mesh convergence showed that the

difference between the swimming velocities obtained using 680 and 2330

elements per bacterium was ,2%.

In a previous study (13), we verified how accurately this method

reproduced the lubrication forces between two nearby spheres. The results

for shearing and squeezing motions agreed well with analytical solutions

using lubrication theory when the gap between the two surfaces e was .0.01

units. Fortunately, in this article, most of the computations were performed

for bacteria that were separated by at least 0.01 units, including flagella, so

we could accurately resolve the interactions with 680 elements per

bacterium. Only when two bacteria initially faced each other (as shown

in Fig. 6) did they come closer than 0.01 units. To avoid numerical errors due

to the small gap and prohibitively small time steps for the computations,

we introduced a short-range repulsive force given by

Frep ¼ a1

a2expð�a2eÞ
1� expð�a2eÞ

d; (5)

where a1 and a2 are dimensionless coefficients and d is the unit vector

passing through the minimum separation points on the two surfaces. This

form of the interparticle force corresponds to charged particles interacting

through colloidal forces at a constant surface charge (25) and has also been

used in previous research (T. Ishikawa and T. J. Pedley, unpublished). The

coefficients used in this study were a1/(ma2v) ¼ 0.1 and a2 ¼ 100. The

minimum separation obtained with these parameters was in the range 10�2–

10�3 units. The effect of the repulsive force on the trajectories was very

small because it acts only in the very near field and changes the distance

between particles by only 10�2 units. The repulsive force had no effect in

this study except when two bacteria were initially facing each other (see Fig. 6).

RESULTS

We begin by introducing interesting features of the trajecto-

ries for three initial orientations: a), two bacteria initially

placed parallel, b), two bacteria initially facing each other, and

c), two bacteria initially placed at right angles. Let the x
direction be e1, where e1 is the orientation vector of bacterium

1. Let two orientation vectors, e1 and e2, and the center of

spherical cell bodies, r1 and r2, be in the same x-y plane.

Although our initial conditions were restricted to two

dimensions, i.e., e1, e2, r1, and r2 were in the same plane,

their motions are not restricted to that plane because a bac-

terium swims with a spiral trajectory due to its asymmetric

flagellum shape, as discussed by Keller and Rubinow (24).

FIGURE 2 Three bacterial shapes used in this study. (a) t ¼ 0, (b) t ¼ 70,

(c) t ¼ 100, (d) t ¼ 140, (e) t ¼ 200, and (f) t ¼ 330.
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Fig. 3 shows the interactions between two shape A bac-

teria that were initially placed parallel to each other at a dis-

tance of four units, i.e., jr1 � r2j ¼ 4. Here, t is the time, and

t ¼ 0 (Fig. 3 a) shows the initial conditions. As the two

bacteria approach, they rotate in a clockwise direction in the

z-y plane and eventually avoid each other. The interactions

are fully three dimensional and show complex orientation

changes that were generated only by the hydrodynamic in-

teractions.

The trajectories of this case are shown in Fig. 4. The

bacteria did not swim in a straight line, but formed a spiral

with a width of ;0.1 units. The trajectories twisted as the

bacteria approached each other. The final swimming direc-

tions were considerably different from the initial swimming

directions. The swimming velocities were also affected by

the hydrodynamic interactions. Fig. 5 shows the change in

the length of the translational velocity vectors, jUj, with time

for this case. Since two bacteria interacted hydrodynami-

cally, even at t¼ 0, the jUj values oscillated from the start of

the simulation. The phases of the bacteria oscillations were

opposite to each other, but their mean values were similar.

The amplitude was large between t ¼ 140–200, when the

two flagella were in proximity to each other. The swimming

motions were affected by the phase of the flagella relative to

the orientation of the two bacteria.

Fig. 6 shows the interactions between two shape A

bacteria that were initially facing each other at a distance of

five units, i.e., jr1 � r2j ¼ 5 (see Fig. 6 a). In this case, the

two bacteria were very close initially. Then, they passed each

other while maintaining a small gap between the two spher-

ical bodies and finally avoided each other. The trajectories

for this case are shown in Fig. 7. The trajectories showed

strong asymmetry, although the two bacteria were placed on

the same x axis initially. This asymmetry arose from the

initial conditions of the two bacteria and the shape of the

flagellum. Since a bacterium generates a spiral trajectory, the

two bacteria initially facing each other do not collide at

the top of their spherical bodies. In addition, the two bacteria

can rotate even if they do collide at the top of their spherical

bodies since their flagella are not axisymmetric. The inter-

actions were again three dimensional and exhibited complex

orientation changes.

Fig. 8 shows the interactions between two shape A

bacteria that were initially placed at right angles to each other

at a distance of 3
ffiffiffi
2
p

units, i.e., jr1 � r2j ¼ 3
ffiffiffi
2
p

(see Fig. 8

a). In this case, the two bacteria were close initially but then

changed their orientations as the two flagella approached.

Once again, the bacteria avoided each other. The trajectories

for this case are shown in Fig. 9. Again, the interactions

showed complex orientation changes.

We rotated the flagellum of bacteria 2 for the parallel

swimming case of Fig. 3 to observe the effect of the phase of

the flagella relative to the orientation of the two bacteria. Let

u be the angle from the y axis in the y-z plane, as shown

schematically in Fig. 10. We changed u2 from p to p/2. The

resulting trajectories, which are compared in Fig. 11, changed

considerably, and the final swimming directions differed

for these two cases. Therefore, the interactions between two

bacteria are affected not only by the orientation vectors but

also by the phase of the flagella.

FIGURE 3 Sequences a–f showing the interactions

between two shape A bacteria initially placed in parallel

at a distance of four units, as shown in a.
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We also investigated the effect of the bacterial shape. The

parallel swimming case in Fig. 3 was computed using shape

B and shape C bacteria (cf. Fig. 2). The resulting trajectories

are compared with the shape A bacteria trajectory in Fig. 12.

Again, the trajectories changed considerably, and the final

swimming directions differed for each case. Therefore, the

bacterial shape also affected the interactions between the two

bacteria. However, the general tendencies of the interactions,

such as the direction of the twist in the trajectories, were

similar for all the bacterial shapes and flagella phases.

Next, we investigate the rheology of a bacterial suspension

in dilute and semidilute regimes. For any concentration of

particles, there is a relation between the deviatoric part of the

bulk stress and the conditions at the surfaces of the individual

particles. Batchelor (26) derived this relation as

P ¼ I:T:1 2m E 1
1

V
+S (6)

where I.T. stands for an isotropic term and E is the bulk rate

of the strain tensor. The last term is the particle bulk stress,

which is expressed as a summation of the stresslet S in a fluid

occupying volume V. The stresslet, S, which is the symmet-

ric part of the hydrodynamic stress, is defined as (26)

S ¼
Z

Am

1

2
fðs:nÞx 1 xðs:nÞg � 1

3
x:s:nI

� �
dA; (7)

where s is the stress tensor, n is the outward normal vector,

x is the position vector, and I is the unit tensor.

The stresslet of a shape A, B, or C solitary bacterium can

be calculated from Eq. 7, and the results are as follows:

SA ¼
�2:96 0:71 0:20

0:71 1:71 0:19

0:20 0:19 1:25

0
B@

1
CA;

SB ¼
�1:30 0:26 0:12

0:26 0:72 0:07

0:12 0:07 0:58

0
B@

1
CA;

SC ¼
�1:71 0:16 0:08

0:16 0:88 0:10

0:08 0:10 0:83

0
B@

1
CA; (8)

where the x axis coincides with the direction of the orient-

ation vector, and the y and z axes are taken as shown in Fig.

13. Since a bacterium generates a thrust force from behind

the body, the xx component is negative, whereas the yy and zz
components are positive.

Although the stresslet for a solitary bacterium gives a first-

order correction to the bulk stress in terms of the volume

fraction, c, one must consider the hydrodynamic interactions

between bacteria to calculate the bulk stress in a nondilute

FIGURE 5 Temporal change in the length of the translational velocity

vectors (shape A, initially parallel). (a) t ¼ 0, (b) t ¼ 70, (c) t ¼ 120, and

(d) t ¼ 200.

FIGURE 4 Trajectories of interacting bacteria (shape A, initially parallel).

FIGURE 6 Sequences a–d showing the interactions be-

tween two shape A bacteria initially facing each other at a

distance of five units, as shown in a.
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suspension. The next term in the asymptotic expression for

the particle bulk stress in terms of c is O(c2), which can be

obtained by considering the interactions between just two

bacteria (see Batchelor and Green (27)). Fig. 14 shows the

temporal change in the stresslet component See for interact-

ing shape A bacteria initially placed parallel to each other

(the same condition is shown in Figs. 3–5), where See

indicates the stresslet component in the direction of its ori-

entation vector. The stresslets oscillate in a similar manner

with the velocities shown in Fig. 5. These oscillations and

changes in the stresslets are generated by the hydrodynamic

interactions.

The effect of the aspect ratio of a bacterial cell body

should also be considered, since some bacteria have ellip-

soidal bodies rather than spherical bodies. There are several

ways to change the shape of the cell, such as keeping the

major or minor axis constant, keeping the surface area

constant, or keeping the volume constant, while fixing the

flagellum shape. Here, we show the results obtained when

the major or minor axes were kept constant. (The results

obtained when the surface area or volume were kept constant

were straightforward, so they are omitted here.) We calcu-

lated the stresslet for a solitary bacterium with shape D and

E ellipsoids, as shown in Fig. 15. The flagellum remained

the same as that of shape A. The results are as follows:

SD ¼
�4:68 0:95 0:35

0:95 2:71 0:19

0:35 0:19 1:97

0
B@

1
CA;

SE ¼
�0:92 0:26 0:03

0:26 0:54 0:09

0:03 0:09 0:38

0
B@

1
CA; (9)

where the x axis coincides with the direction of the orientation

vector, and the y and z axes are as shown in Fig. 13. The shape

D stresslet was greater than the shape A stresslet, whereas the

shape E stresslet was less than the shape A stresslet. The

difference was mainly due to the size difference of the cell

bodies. Although the values of the stresslet components

changed with the body shape, the general tendencies, such as

the ratios of Sxx, Syy, and Szz, were similar. Therefore, the

general tendencies of the interactions between two bacteria

were also similar, regardless of the aspect ratio.

DISCUSSION

These results show that a parallel swimming motion of

bacteria is unstable and breaks down easily in three di-

mensions. This instability arises from the three-dimensional

flow field around the bacterium due to the asymmetric and

helical flagellum shape. Previous studies that discussed the

collective motion of bacteria did not consider this parallel

swimming motion instability. Guell et al. (28) explained the

band formation mechanism for magnetotactic bacteria using

the flow field generated by the point stresslet. (If the bacteria

FIGURE 7 Trajectories of interacting bacteria (shape A, initially facing

each other). (a) t ¼ 0, (b) t ¼ 60, (c) t ¼ 130, and (d ) t ¼ 250.

FIGURE 8 Sequences a–d showing the interactions

between two shape A bacteria, initially placed at right

angles to each other, as shown in a.
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are force free and torque free, they can be approximated as a

point stresslet when determining far-field interactions.) The

stresslet of a bacterium is negative in the direction of the

orientation vector because it generates thrust force from

behind. Consequently, the velocity field generated by the

stresslet attracts two bacteria in a parallel swimming motion.

Our results show that such a parallel swimming motion

generates twisting trajectories and does not persist. We also

performed trial computations with different initial conditions

and different bacterial shapes, but we did not observe any

stable pair swimming motions. This is because all multipole

moments were considered in this study, whereas Guell et al.

considered the stresslet only (28). Other studies, such as

Hatwalne et al. (9) and Hernandes-Ortiz et al. (11), also

modeled bacteria as point forces or stresslets, and the near-

field interactions were not solved precisely. Therefore, the

near-field interactions differed from the far-field interactions,

and one must deal with them precisely when discussing the

collective motion of bacteria.

Next, we discuss the rheology of a bacterial suspension in

dilute and semidilute regimes. The stresslet for a solitary

bacterium gives the bulk stress in a dilute suspension in

which the hydrodynamic interactions between bacteria can

be neglected. If the orientation of the bacteria in a dilute

suspension is isotropic, the particle bulk stress also becomes

isotropic. If the bacteria have a preferred direction due to

chemotaxis, phototaxis, thermotaxis, etc., the particle stress

tensor is no longer isotropic and the bacteria have direct

contributions to the stress field. From Eq. 8, the diagonal

components of the stresslet for a solitary bacterium increase

with h and k, where h is the amplitude and k is the wave

number as shown in Fig. 1. Therefore, bacteria have more in-

fluence on the suspension rheology as h and k increase.

Another interesting feature of Eq. 8 is that the yy com-

ponent is greater than the zz component. The velocity field

generated at x due to a point stresslet at the origin of the

coordinate system is given by (cf. Durlofsky et al. (29))

FIGURE 9 Trajectories of interacting bacteria (shape A, initially at right

angles). (a) u1 ¼ u2 ¼ p, and (b) u1 ¼ p, u2 ¼ p/2.

FIGURE 10 Two initial conditions for parallel swimming cases, in which

the angle of flagellum 2 relative to that of flagellum 1 differs.

FIGURE 11 Effect of the flagella phase on the trajectories of interacting

bacteria (shape A, initially parallel). (a) Comparison between shapes A and

B. (b) Comparison between shapes A and C.

FIGURE 12 Effect of flagella shape on the trajectories of interacting

bacteria (initially parallel).

Interactions between Swimming Bacteria 2223

Biophysical Journal 93(6) 2217–2225



uiðxÞ ¼
1

8pm

=kJij 1 =jJik

2
Sjk (10)

Therefore, the far-field disturbed velocity in the y direction

is greater than that in the z direction when the stresslet is

given by Eq. 8. This is one reason the trajectories of two

bacteria become three dimensional. Previous studies discus-

sing the interactions between bacteria did not consider the

asymmetry of the stresslet. For example, Hatwalne et al. (9)

assumed an axisymmetric stresslet for a bacterium to discuss

the rheology of suspensions. Hernandes-Ortiz et al. (11) also

assumed an axisymmetric stresslet to discuss the collective

motions of bacteria. If one averages the stresslet of a bac-

terium over time, the stresslet becomes axisymmetric to the

swimming direction. However, if one considers the interac-

tions between bacteria or physical quantities in nondilute

suspensions, one must consider the asymmetry because it

affects the interactions and eventually the microstructures in

the suspension.

In the case of a nondilute suspension, one must consider

the hydrodynamic interactions between bacteria to calculate

the bulk stress. The next term in the asymptotic expression

for the particle bulk stress in terms of c is O(c2), which can be

obtained by considering the interactions between just two

bacteria. We see from Fig. 14 that the stresslet value changes

considerably during the interactions, becoming about half of

its time-mean value at t ¼ 190. Such changes in the stresslet

contribute to the bulk stress of the suspension directly. By

contrast, the previous studies modeled a bacterium using a

point stresslet, and changes due to hydrodynamic interac-

tions were not considered. Since the stresslet changes

dramatically as two bacteria approach each other, the near-

field interactions must be computed precisely to evaluate the

rheology of the suspension.

Lastly, we discuss the self-diffusion of the bacteria in a

semidilute suspension. Understanding the diffusive behavior

of bacteria is important to obtain a better continuum model

for a bacterial suspension. Therefore, the self-diffusivity of

swimming cells has been investigated both experimentally

(3,11,30,31) and numerically (T. Ishikawa and T. J. Pedley,

unpublished). In a semidilute suspension, Locsei et al. (32)

showed that the self-diffusion coefficient could be predicted

using a simple gas model based on the hydrodynamics of

two-body interactions. In the model, the mean value of the

change in the swimming direction during an interaction is the

key parameter. This can be obtained by averaging the change

in the swimming direction over all possible initial orienta-

tions. (These computations were not performed here because

they are beyond the scope of our study.)

From Figs. 4, 7, and 9, the change in the swimming

direction was strongly affected by the initial orientations, and

the final direction was determined by the near-field fluid

dynamics between the two bacteria. The change in the

swimming direction was also strongly affected by the angle

and shape of the flagellum (see Figs. 11 and 12). Therefore, a

precise hydrodynamic treatment is required to calculate the

self-diffusion of bacteria in a suspension accurately. Previ-

ous studies by Vicsek et al. (7) and Lega and Passot (10) used

a random external force to express the hydrodynamic in-

teractions between swimming particles. In our study, the

directional changes of swimming bacteria were calculated

deterministically using hydrodynamics. Therefore, the dif-

fusive process was described by the chaotic motions of the

interacting bacteria, not by random motions. We expect that

our method can be used to predict the self-diffusivity quan-

titatively in the near future.
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FIGURE 14 Temporal change in the stresslet component See for interact-

ing shape A bacteria, initially parallel. (a) shape D (ax ¼ 2, ay ¼ 1), and (b)

shape E (ax ¼ 1, ay ¼ 0.5).

FIGURE 13 Velocity field generated by the stresslet of a solitary

bacterium. The large open arrows indicate the stresslet on each coordinate

axis, and the shaded arrows schematically indicate the direction of the

generated flow.

FIGURE 15 Two bacterial shapes with an ellipsoidal cell body with an

aspect ratio of 2.0.
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