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ABSTRACT Intrinsically disordered proteins (IDPs) are unfolded under physiological conditions. Here we ask if archetypal IDPs
in aqueous milieus are best described as swollen disordered coils in a good solvent or collapsed disordered globules in a poor
solvent. To answer this question, we analyzed data from molecular simulations for a 20-residue polyglutamine peptide and
concluded, in accord with experimental results, that water is a poor solvent for this system. The relevance of monomeric
polyglutamine is twofold: It is an archetypal IDP sequence and its aggregation is associated with nine neurodegenerative
diseases. The main advance in this work lies in our ability to make accurate assessments of solvent quality from analysis of
simulations for a single, rather than multiple chain lengths. We achieved this through the proper design of simulations and
analysis of order parameters that are used to describe conformational equilibria in polymer physics theories. Despite the
preference for collapsed structures, we find that polyglutamine is disordered because a heterogeneous ensemble of conforma-
tions of equivalent compactness is populated at equilibrium. It is surprising that water is a poor solvent for polar polyglutamine
and the question is: why? Our preliminary analysis suggests that intrabackbone interactions provide at least part of the driving
force for the collapse of polyglutamine in water. We also show that dynamics for conversion between distinct conformations
resemble structural relaxation in disordered, glassy systems, i.e., the energy landscape for monomeric polyglutamine is rug-
ged. We end by discussing generalizations of our methods to quantitative studies of conformational equilibria of other low-
complexity IDP sequences.

INTRODUCTION

Intrinsically disordered proteins (IDPs) are functional pro-

teins that do not fold into well-defined, ordered tertiary struc-

tures under physiological conditions (1–4). These proteins

are termed intrinsically disordered because disorder prevails

under nondenaturing conditions and amino acid sequence en-

codes the propensity to be disordered. Generic IDP sequences

have a combination of low overall hydrophobicity (5) and

low sequence complexity (6). The question of how disorder

is used in function will remain unanswered pending the avail-

ability of accurate physical models for conformational equilibria

of IDPs (4). Conformational equilibria refer to ensemble aver-

ages and spontaneous fluctuations of structural properties

of IDPs in their native milieus.

In polymer physics, global descriptors provide a
way to classify disorder

Theories based on the physics of polymer solutions are

relevant for describing conformational equilibria of IDPs (7).

The focus in these theories is on global measures such as the

ensemble-averaged radius of gyration, ÆRgæ (8). The balance

between chain-chain and chain-solvent interactions is deter-

mined by the nature of solvent milieus, which are classified

as being good or poor solvents (9,10). The scaling of ÆRgæ
with chain length N is written as ÆRgæ ¼ RoNn. In a good

solvent, the main repeating unit is chemically equivalent

to the surrounding solvent, the effective chain-chain inter-

actions are strictly repulsive, and ÆRgæ ; N0.59. In a poor

solvent, attractive interactions dominate and the result is a

preference for an ensemble of compact conformations such

that ÆRgæ ; N0.33 (11). In the simplest of polymer frame-

works, conformational ensembles for IDPs in aqueous mi-

lieus can be classified either as disordered swollen coils in

a good solvent or compact, albeit disordered globules in a

poor solvent. Which of these classifications best suits the

description of conformational ensembles for archetypal IDP

sequences in water? This question forms the focus of this

work.

Rationale for studying monomeric polyglutamine

The relevance of monomeric polyglutamine is twofold: Homo-

polymers such as polyglutamine are archetypal IDPs because

they are low complexity sequences and they are deficient in

hydrophobic residues (5,6,12). Second, conformational fluc-

tuations in monomeric polyglutamine are involved in seeding

the aggregation of polyglutamine—a process that is relevant

to the onset and progression of a class of hereditary

neurodegenerative diseases (13–19). Ages-of-onset of dis-

ease in polyglutamine disorders show nonlinear, inverse

correlation with the length of polyglutamine expansions
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(13). Different hypotheses have been put forth to explain

both the toxicity associated with polyglutamine expansions

and its chain length dependence (20). There is evidence for

increased proteolytic processing of proteins with expanded

polyglutamine tracts (20). Products of proteolysis are rich

in polyglutamine (21) and their aggregation appears to be es-

sential for toxicity (22). Inhibiting polyglutamine aggregation

reduces neurodegeneration (23–25). Furthermore, the early

species along aggregation pathways are viewed as being the

most toxic (26,27). Obviously, monomeric, soluble polyglut-

amine is the starting point for the process of aggregation. An

assessment of fluctuations that seed the formation of aggre-

gates requires quantitative knowledge of conformational

equilibria within the monomeric form and this topic is the

focus of this work.

Monomeric polyglutamine is
intrinsically disordered

Structural studies of monomeric polyglutamine suggest that

these peptides are intrinsically disordered in aqueous milieus

(28–30), although claims of short stretches of consensus

polyproline II helix structure have been made (31). The

absence of sequence specificity in a homopolymer explains

the lack of preferred secondary and tertiary structures in

polyglutamine (32–34). Analysis of data from our previous

molecular dynamics (MD) simulations showed that mono-

meric polyglutamine is intrinsically disordered and favors

collapsed conformations in water (32). However, we did not

arrive at definitive conclusions regarding the solvent quality

(good or poor) of water for polyglutamine because we conjec-

tured that this would require simulations of conformational

equilibria for multiple chain lengths. Instead, we sought quan-

titative adjudication using experimental methods.

Monomeric polyglutamine forms collapsed,
spherical globules in water

Crick et al. (35) used fluorescence correlation spectroscopy

(FCS) measurements to quantify the hydrodynamic sizes of

monomeric polyglutamine as a function of chain length.

They measured the scaling of translational diffusion times

(ÆtDæ) for the peptide series (Gly)-(Gln)N-Cys-(Lys)2 in

aqueous solution at room temperature (;25�C). It was found

that ÆtDæ scales with chain length N as toN
n where n ¼ 0.32 6

0.02 and ln(to) ¼ 3.04 6 0.08. The measured value for n

supports the conclusion that water is a poor solvent for

monomeric polyglutamine. The scope of these experiments

is limited to quantifying scaling exponents, which is a

necessary but not sufficient condition to assess the quality of

a solvent (36). Conformational equilibria for polymers in

poor solvents are distinguishable from those in good solvents

based on the behavior of specific order parameters (36,37).

Here, we complement the recent FCS studies by analysis of

data from molecular simulations from which the relevant

order parameters are directly accessible.

Questions of interest

This work focuses on answering three specific questions:

1. Is it possible to make quantitative assessments regarding

the quality of a solvent milieu for a single IDP sequence

using data obtained from molecular simulations? To

answer this question, we use the sequence Ac-(Gln)20-

Nme (Q20) as our archetypal IDP sequence. Specifically,

we compared results from analysis of multiple replica

molecular dynamics (MRMD) for Q20 in water (T ¼
298K, P ¼ 1 bar) to data from two sets of Metropolis

Monte Carlo simulations for reference ensembles in good

and poor solvents. The Monte Carlo simulations em-

ployed here are routinely used in the polymer physics

literature and are based on the use of generic Hamilto-

nians that lack the specificities of chain-chain and chain-

solvent interactions (38,39). The comparative analysis is

guided by the use of polymer theories (36,37), which

make specific predictions regarding variations of order

parameters such as the scaling of internal distances,

angular correlation functions, and radial density profiles

as a function of solvent quality. We show that the com-

parative analysis leads unequivocally to the identification

that water is a poor solvent for Q20. The main highlight of

this analysis is that it can be adapted to classify the nature

of disorder for any low-complexity IDP sequence (6).

2. Why is water a poor solvent for polyglutamine? The obser-

vation that water is a poor solvent for polyglutamine

can be inferred from its strong aggregation propensity

(30,40,41). However, it seems counterintuitive that a sys-

tem composed entirely of polar moieties readily forms

aggregates given that the building blocks of polyglut-

amine, i.e., primary and secondary amides, are freely mis-

cible with water (42,43). If anything, the high miscibility

of model compounds suggests that water should be a good

solvent for polyglutamine. Obviously, the concatenation

into a polymer alters the solvation properties of amide

groups. Here, we present a preliminary analysis based on

comparisons of data from simulations of aqueous solu-

tions of amide mixtures to that of Q20 in water. Based on

this analysis, we propose that favorable intrabackbone

interactions in the polymer provide at least part of the

driving force for the collapse of polyglutamine in water.

3. What is the nature of conformational relaxation dynamics

for an IDP such as polyglutamine? Polyglutamine forms

aggregates, albeit very slowly (44). Chuang et al. (45)

have proposed that the rate limiting step for aggregation

of polymers in poor solvents is conformational relaxation

within polymer globules. Consistent with this prediction,

we find that although the collapse transition for Q20 in

water is rapid (;5 ns), the timescales for conversion
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between distinct compact conformations are very slow,

and the dynamics are akin to structural relaxation in glassy

systems (46). We also show that the glassy behavior of

Q20 in water is uncovered using the MRMD methodol-

ogy employed in our work.

We organize the remainder of our presentation as follows:

First, we describe details of the methods used in our work.

Next, we describe the details of our results. Finally, we end

with a summary and discussion of the main results.

MATERIALS AND METHODS

Potential functions for simulating conformational
equilibria of polymeric reference states

Reference conformational equilibria of disordered polymers in good and

poor solvents can be simulated using generic, implicit solvent models

(38,39). In this approach (47), conformational equilibria for chains in good

solvents are simulated using interatomic interactions based on a purely

repulsive, inverse power potential as shown in Eq. 1.

UEV ¼ 4 +
i

+
j,i

eij

sij

rij

� �12

: (1)

Equation 1 corresponds to the so-called excluded volume (EV) limit,

wherein only steric interactions are included. Simulations of conformational

equilibria in the EV limit provide a good mimic for equilibria in good

solvents. Conversely, the nonspecific drive of a chain to sequester itself from

making contacts with a poor solvent can be captured by adding attractive van

der Waals interactions to the repulsive potentials from the EV limit (38,39).

This model, based on the Lennard-Jones functional form, is shown in Eq. 2,

and is termed the LJ model.

ULJ ¼ 4 +
i

+
j,i

eij

sij

rij

� �12

� sij

rij

� �6
" #

: (2)

In Eqs. 1 and 2, rij denote distances between any two nonbonded atoms,

sij are contact distances, and eij are the Lennard-Jones dispersion param-

eters. For the EV limit, Eq. 1, the parameters for sij and eij are those used

in previous work (48). Conversely, for the LJ model, Eq. 2, we used the

parameters from the OPLS-AA/L force field (49). These choices are justified

on the following grounds: The sij values used in previous work were derived

from Pauling’s parameterization, which in turn reproduce heats-of-fusion

data for model compounds. These sij values can be used in purely repulsive

potentials and it has been shown that these parameters allow us to reproduce

accurate Ramachandran maps (48). Conversely, the values of sij in the

OPLS-AA/L force field are coparameterized with eij to reproduce the heats-of-

vaporization and densities of neat liquids. Therefore, the sij values in

OPLS-AA/L are too large for use in purely repulsive potentials. However,

use of the OPLS-AA/L parameters for the LJ model guarantees that the

densities of the maximally compact reference globules are similar to those

expected for globules populated by chains in explicit water.

Simulations of reference conformational equilibria

We carried out Metropolis Monte Carlo simulations, as described in

previous work (47,48), to simulate reference conformational equilibria for

polyglutamine peptides using the EV and LJ models. In these simulations,

the degrees of freedom were the backbone and side-chain dihedral angles of

an isolated chain. We carried out two sets of simulations using each of the

models shown in Eqs. 1 and 2. In the first set, we carried out simulations for a

series of chain lengths to demonstrate that ensemble averaged radii of

gyration scale (ÆRgæ) with chain length as ;N0.6 for the EV model and as

;N0.33 for the LJ model. The scaling of ÆRgæ with chain length N was

obtained by gathering statistics for peptides of the form: Ac-(Gln)N-Nme,

where Ac denotes the acetyl group and Nme stands for N-methylamide. For

the EV limit, N ¼ 50, 75, 100, 150, and 250 and for the LJ model, we

simulated equilibria for N ¼ 24, 27, 33, 36, 40, 47. The simulation

temperatures were T ¼ 298 K and T ¼ 425 K for the EV and LJ models,

respectively. We used a higher temperature in simulations based on the LJ

model to improve the efficiency with which conformational space is sampled

and to reduce the error bars in our estimates for polymeric properties. Given

the high melting temperature for the LJ model, at T ¼ 298 K we would have

needed simulations that were orders of magnitude longer to obtain converged

estimates, and hence the choice of T ¼ 425 K as the simulation temperature.

As noted above, the purpose of the Monte Carlo simulations was to

demonstrate that the two models, viz., EV and LJ, reproduce the scaling

behaviors for polymers in good and poor solvents, respectively. The EV

limit calculations were carried out for longer chains to overcome the finite

size artifacts because the thickness of the polymer ‘‘tube’’ has to be

negligible when compared to its contour length. For polyglutamine, this

requirement does not hold true for chains with N , 50. In contrast, finite size

effects play a minor role for quantifying the scaling law for chains in a poor

solvent. This is true so long as N is larger than the length of locally stiff

segments, approximately seven residues (47). The chain lengths used for

calculations in the globular limit were therefore chosen in correspondence

with recent FCS studies (35). In addition to the simulations used to quantify

scaling laws, we also simulated conformational equilibria for Ac-(Gln)20-

Nme, i.e., Q20 using both the EV and LJ models. As we will show in the

Results section, the comparative analysis between ensembles obtained for

Q20 using the EV, LJ, and molecular mechanics potentials in explicit solvent

allows us to assess if the conformational equilibria for Q20 in water are

congruent with those of chains in poor versus good solvents.

Setup of molecular dynamics simulations for Q20

To characterize conformational equilibria in water we used an approach that

we refer to as multiple replica molecular dynamics (MRMD). This approach

relies on the use of data from a large number of independent simulations and

the advantage is that data are gathered using multiple independent simu-

lations as opposed to a single, long, and potentially uninformative simulation.

Conformational space is explored more efficiently by relying on the un-

derlying stochasticity of phase space trajectories, given different initial po-

sitions and velocities.

We used the GROMACS simulation package (50) for all MD simula-

tions. In this work, we report data from MRMD simulations applied to the

peptide Q20 in water at T ¼ 298 K. We simulated 60 independent replicas.

For the peptide we used the OPLS-AA/L force field (49). The peptide was

soaked in a bath of 8952 TIP3P water molecules (51). Boxes for individual

simulations were prepared by soaking a random peptide conformation

obtained in the EV ensemble, followed by adding or deleting water mole-

cules such that we ended up with the same number of water molecules for all

replicas. In each case, a steepest-descent minimization to remove steric

clashes was followed by an equilibration run of 11 ns in the isothermal-

isobaric ensemble (T ¼ 298 K, P ¼ 1 bar). The final configuration of the

latter was used as the starting point for the production run of 50 ns length.

Therefore, the total simulation time for each of the 60 independent

simulations was 61 ns for a cumulative simulation time of ;3.7 ms.

The leap-frog integrator was used with a time step of 2 fs. The tem-

perature was maintained through the Berendsen thermostat (52) with a

coupling time of 0.2 ps. Similarly, constant pressure was maintained by the

Berendsen manostat (52) with a coupling time of 1 ps and a compressibility

of 4.5 3 10�5 bar�1. The average size of the cubic box throughout the

simulations was roughly 65.4 Å with negligible volume fluctuations. Peptide

bond lengths were constrained using the LINCS algorithm (53) and the
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rigidity of water molecules was achieved using the SETTLE algorithm (54).

For nonbonded interactions, we employed 10 Å spherical cutoffs for van der

Waals as well as for short-range Coulomb interactions. Long-range Cou-

lomb interactions (10–14 Å) were recalculated every 10 steps, as were

neighbor lists. The reaction field (RF) method (55) was used as a correction

term for polar interactions beyond 14 Å. For each of the 60 independent

simulations, structures of the peptide alone were saved once every 4 ps for

subsequent analysis.

Setup of simulations for aqueous solutions of
model compounds

To assess the differences between polyamides (such as polyglutamine) versus

amides in water we carried out simulations of aqueous mixtures of amides.

The systems studied were aqueous mixtures of trans-N-methylacetamide

(NMA) and propionamide (PPA) in water; NMA is a model compound

mimic of the peptide backbone (a secondary amide) whereas PPA is a mimic

of the side chain (a primary amide). We followed the simulation protocol

described for Q20. The amides were modeled using the OPLS-AA force field

(56) and we used the TIP3P model for water molecules. To achieve

concentrations of 1 m, 2 m, and 4 m, respectively, 15, 30, and 60 molecules

of each amide were soaked in a box of 833 water molecules, and equilibrated

for mixing purposes for 1 ns in the canonical (NVT) ensemble at T¼ 298 K.

The production run was carried out in the isothermal-isobaric (T ¼ 298 K,

P ¼ 1 bar) ensemble for 50 ns after an extra equilibration period of 200 ps.

Ten such trajectories were run for each concentration and the snapshots of

the amide configurations, which were saved every 10 ps, were analyzed to

calculate site-site pair correlation functions.

Reliability analysis

Given ns independent trajectories, the standard error (SE) was estimated by

computing the average of an observable for each trajectory. The SE is

defined as the standard deviation in ns independent estimates for the mean.

Our procedure for computing the SE is an adaptation of conventional block

averaging methods. The difference is that the size of the block being

averaged over is the length of an individual trajectory. The standard de-

viation of the trajectory-averaged structural quantities yields the SE in-

dicated by error bars in the plots. This approach for calculating error bars is

reasonable because data from different trajectories are in fact truly

uncorrelated.

RESULTS

Demonstration of the validity of reference models

Fig. 1 shows the scaling of ÆRgæ versus chain length N for

polyglutamine in the EV and LJ limits, respectively. In the

log-log plots shown in Fig. 1, the slopes provide an estimate

of the scaling exponent. We find that slopes for polyglut-

amine in the EV and LJ limits are similar to the theoretical

values of 0.59 and 0.33 in good and poor solvents, respec-

tively. Deviations from theoretical values are primarily due

to finite-size effects, i.e., the fact that we did not gather data

for very long chains. In properly converged simulations, the

scaling exponent in the EV limit will be overestimated when

there are finite size artifacts. This is because short chains in

the EV limit have a smaller, apparent ÆRgæ when compared to

the theoretical prediction. Conversely, finite size artifacts

lead to an underestimation of the poor solvent exponent. This

is because short chains have a larger apparent ÆRgæ, which is

precisely what we find.

The preceding analysis demonstrates that conformational

equilibria simulated using the EV and LJ models provide

limiting distributions for disordered polypeptides in good

versus poor solvents. Due to the extensive computational

cost of the simulations in explicit water (see below) we can-

not determine the scaling exponent, which requires very expen-

sive simulations for multiple chain lengths. Instead, analyses of

specific polymeric measures for Q20 in water were compared

to those of Q20 in the EV and LJ limits, respectively. This

allowed us to make definitive conclusions regarding the

solvent quality of water for polyglutamine.

Comparative analysis of the distribution of
shapes and sizes

For a specific conformation of a polymer, the shape and size

are quantified using the gyration tensor defined as:

T ¼ 1

Zm

� +
Zm

i¼1

ð�ri � rÞ5ðri � �rÞ: (3)

Here, Zm is the number of atoms in the molecule, ri are the

position vectors of individual atoms, �r is the position vector

of the centroid, and the symbol 5 refers to the dyadic product.

If we use l1,2,3 to denote the eigenvalues of T, the radius of

gyration (Rg), the measure of size, and asphericity (d), which

measures chain shape are given as:

Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1 1 l2 1 l3

p

d ¼ 1� 3
l1l2 1 l2l3 1 l3l1

ðl1 1 l2 1 l3Þ2
� �

: (4)

FIGURE 1 Scaling laws for the two reference models (see Eqs. 1 and 2).

The fit for the EV limit is done only over the last five points. As can be seen,

finite-size effects cause the data for shorter chain lengths to fall off this line.

Including these points would significantly overestimate the scaling expo-

nent. In the globular reference state, finite-size effects are restricted to much

shorter chain lengths. The theoretical exponent of ;0.33 is slightly under-

estimated.
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For a perfect sphere, d¼ 0, and for a perfect rod, d¼ 1; for

intermediate values, the chain assumes ellipsoidal shapes.

Therefore, d quantifies the degree to which chain shape

deviates from that of a perfect sphere. This measure of shape

has been very useful for analyzing asymmetry in protein struc-

tures (57) and for the analysis of average shapes of denatured

proteins (47).

Two-dimensional histograms, i.e., r(Rg, d) in the space

spanned by the two parameters Rg and d provide insights

regarding the preferred shapes and sizes of a molecule (32).

Fig. 2 shows these distributions for Q20 in water and for the

two reference models. Conformations with low asphericity

and low Rg are favored for Q20 in water. This is suggestive of

water being a poor solvent for Q20. This point is reinforced

by favorable comparison of histograms in water to those

obtained for the globular reference ensemble using the LJ

model. The only difference is that the latter are characterized

by smaller-scale fluctuations. In stark contrast, the peptides

in the EV limit prefer conformations with larger Rg and

asphericity values. Even more importantly, there is no over-

lap between histograms obtained in the EV limit versus those

for either Q20 in water or Q20 in the reference globule.

Polymers, of the requisite length have access to three distinct

phases, viz., the globule, coil, and rod phases (37). The data

shown in Fig. 2 support the conclusion that conformational

equilibria for Q20 in water and calculated using the LJ model

are consistent with the globule phase whereas the equilibria

in the EV limit are those of the coil phase.

Collapse does not mean order

One might be tempted to speculate that Q20 prefers a specific

globular structure in water. If true, then such an observation

would be incongruent with experimental observations, ac-

cording to which soluble and monomeric polyglutamine

peptides are described as being disordered by measures such

as circular dichroism (30) or NMR (28). Fig. 3 shows that

our results are consistent with interpretations of experimental

data. The interresidue contact maps show no preference for

specific contacts. We can, however, distinguish two classes

of disorder: i), disorder under the constraint of dense packing

results in relatively large contact probabilities (see panels B
and C), and ii), disorder in the swollen-coil state with very

low contact probabilities (see panel A). The preferred

contacts in the EV limit are exclusively local. Conversely,

in both the LJ globule as well as in water, long-range con-

tacts (sequence spacing .10) are actually more likely than

midrange contacts (sequence spacing 5–9). Local contacts

are enhanced in the aqueous case vis-à-vis the LJ globule.

We attribute these differences between the LJ globule and

the aqueous globule to specific local interactions present in

the latter (32), a feature that is missing in the case of the LJ

globule. One might argue that our analysis of disorder

observed for Q20 in water masks the identification of sec-

ondary structure, since a-helices or b-sheets with highly

variable registry might be possible. However, previous anal-

ysis of backbone segments confirmed that there is little to no

stable canonical secondary structure (32). Similar conclu-

sions were drawn from the current dataset (data not shown).

Scaling of internal distances with
sequence separation

The first polymeric measure we quantify is the scaling of

internal distances with sequence separation:

ÆRijæ ¼
D 1

Zij

+
m2i

+
n2j

jri

m � rj

nj
E
: (5)

In Eq. 5, the ri
m and rj

n denote the position vectors of atoms

m and n, which are part of residues i and j, respectively, and

Zij is the number of unique pairwise distances between the

two residues. As in all equations, the angular brackets

indicate the average over all trajectories and all saved

snapshots. Plotted as a function of sequence separation, it is

expected that for chains in a good solvent ÆRijæ ; jj � ij0.59

(58), which is also true in the EV limit (47). In a good

solvent, polymers behave like fractal objects, i.e., internal

distances scale with sequence separation the way end-to-end

distances scale with chain length. Fig. 4 shows that the

scaling of internal distances in the EV limit ensemble agrees

with the theoretical scaling law. Significant deviations occur

at small sequence separations, for which the local rigidity

FIGURE 2 Two-dimensional histograms of

the normalized radius of gyration and aspher-

icity (see Eq. 4) for Q20 in water and the two

reference models. The data are binned with a

spacing of 0.05 Å on the Rg axis and 0.02 on

the d axis, respectively. For the purpose of

clarity, the colors are slightly offset from the

white background.

Conformational Equilibria of PolyQ 1927

Biophysical Journal 93(6) 1923–1937



and detailed structure of the polymer modulate the limiting

behavior. Similar observations were made by Ding et al. (59)

in their analysis of the scaling behavior of proteins near and

above the folding transition.

Conversely, for chains in a poor solvent, theory tells us

that ensemble-averaged internal distances should plateau to a

constant value corresponding to the density of the collapsed

species (37). The scaling of internal distances for Q20 in

water and in the globular reference state is found to be

consistent with this expectation. The plateau values achieved

are in agreement with each other within error. Local length

scales, also known as ‘‘blob’’ lengths are a characteristic of

linear flexible polymers (11). Over this length scale, the

scaling of internal distances as a function of sequence spac-

ing is determined primarily by steric interactions, and it is not

possible to distinguish good from poor solvents based on

conformational equilibria over the ‘‘blob’’ length. Blob

lengths can be deduced from the rising part of the curves

shown in Fig. 4 and are found to be approximately seven to

eight residues, consistent with previous findings (47,48).

Up-and-down topologies in water

Ensemble-averaged angular correlation functions, cij, pro-

vide a way to quantify average topologies adopted by chains

in different milieus. This function, analogous to a function

proposed by Socci et al. (60), and computed as a function of

sequence spacing, is defined as:

cij ¼ ÆjcosQijjæ ¼
*����li � lj

l
2

����
+
: (6)

Here, li(j) denotes the vector from the backbone nitrogen of

residue i(j) to the carbonyl carbon on the same residue, and l
is its length. Therefore, Qij is the effective angle between the

direction of the chain at residues i and j. For chains in a good

solvent cij will decay exponentially as a function of sequence

separation ji � jj. Conversely, chains in a poor solvent are

under a packing constraint, and on average, the chain will

reverse direction. This results in negative values for cij. Fig. 5

shows precisely this behavior. In the EV limit, correlations

slowly decay to zero as expected. In contrast, the data for the

peptide in water and for the globular reference state are

characterized by significant anticorrelation at approximately

five to 10 residues of sequence separation. This is the afore-

mentioned midrange length scale, over which the chain on

FIGURE 3 Contact maps for Q20 in

water (B), in the EV limit (A), and in

the globular limit (C). Grayscale indi-

cates the frequency of observing a given

residue-residue contact throughout the

simulation. Short-range contacts are ex-

cluded to enhance the signal/noise ratio.

A contact is defined by any two atoms

k and l from residues i and j having

a distance #3 Å. The maps are by

definition symmetric.

FIGURE 4 The scaling of average internal distances as a function of

sequence separation (see Eq. 5). A theoretical good solvent scaling law is

indicated by the dotted line. SE are indicated by error bars for the data in

water and the globular reference state. Errors are negligible for the EV

ensemble and hence not shown. The polypeptide caps are included in this

analysis, which is why there are effectively 22 residues in the chain.

FIGURE 5 The angular correlation function (see Eq. 6) as a function of

sequence separation. The polypeptide caps are excluded from this analysis.

For details on errors see caption to Fig. 4.
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average turns on itself. Beyond this length scale, correlations

decay to zero. The large error bars for the data in water seen

in Fig. 5 are due to two effects: i), every trajectory results in a

distinct topology for the globule, and ii), on the timescale of

the simulations, there is no interconversion between these

distinct topologies indicating quenched disorder (see below).

Radial density profiles

Density profiles are another way to characterize the average

shape of macromolecules, and form the basis for Lifshitz-

type theories for the coil-to-globule transition (8,36):

rðr 1 DrÞ ¼
*

+
Zm

i¼1

mi 3 ½Hðri � rÞ � Hðri � ðr 1 DrÞÞ�
Vðr 1 DrÞ � VðrÞ

+
:

(7)

Here, ri is the distance of atom i from the molecule’s

center of mass, mi is the mass of atom i, Zm is the number of

atoms in the molecule, V(r) is the volume of a sphere with

radius r, and H is the Heaviside step function. Fig. 6 shows

that r(r) reaches a plateau value for short distances in both

the globular reference state and for the peptide in water. The

limiting density is ;1.2 g/cm3. The most significant dif-

ference is in the long distance regime of the density profile.

This implies that the peptides in water undergo larger-scale

conformational fluctuations than in the globular reference

state. The observed plateau value for the density of globules

in water and in the LJ reference state is less than that of small,

folded proteins (61). We attribute this difference to the

presence of pronounced conformational fluctuations for an

IDP such as Q20 when compared to stable, folded polypep-

tides. In the EV limit, the density profile is shallow, and

reaches a plateau value of ;0.4–0.5 g/cm3. Such a low value

is possible, since chains in the EV limit are characterized by

interior cavities of all sizes (47), and the density is averaged

over both void spaces and the chain itself.

Kratky profiles

Finally, Kratky or scattering profiles, K(q), (62) provide a

direct connection to experimental data, as they are available

from small angle x-ray scattering (SAXS) measurements. If

we assume homogeneous scattering cross sections across the

molecule, the Kratky profile becomes an effective measure

of the peptide’s density as a function of a specific length

scale:

KðqÞ ¼ Nq
2ÆPðqÞæ

PðqÞ ¼ 2

ZmðZm � 1Þ+
Zm

i¼1

+
Zm

j¼i11

sinðqrijÞ
qrij

: (8)

Here, the rij are pairwise atomic distances, Zm is the

number of atoms in the molecule, N is chain length, and q are

wavenumbers in units of Å�1. Large peaks in the low and

intermediate q-regime (0.1 # q # 0.4) are indicative of

compact geometries, as they result from a dense collection of

scatterers. Conversely, if the Kratky profile is essentially flat

with generally low amplitudes, we infer that the scatterers

form a loosely packed object with low average density. This

is the expected signature for chains in the EV limit. Fig. 7

shows that our expectation is again met by the actual data.

The profile for the chain in water is very similar to that in

the globular reference state, and is undoubtedly distinct from

the profile for the EV chain. It is interesting to note that the

Kratky profile shows significant quantitative differences be-

tween the globular reference and the water data in the high

q-regime. This probes differences in local structural propen-

sities between the two ensembles.

Based on the preceding discussion, we conclude that

polymer theory provides us with at least four distinct mea-

sures, which allow us to establish that water is a poor solvent

for Q20. The four quantities we have used to make conclusive

analyses are the scaling of internal distances, angular

correlation functions to measure average topologies, radial

density profiles, and Kratky profiles (closely related to radial

FIGURE 6 The average density as a function of distance to the center of

mass (see Eq. 7). For details on errors see caption to Fig. 4.

FIGURE 7 Ensemble averaged Kratky profiles (see Eq. 8) calculated for

the three different models. For details on errors see caption to Fig. 4.
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density profiles). When these quantities are computed for

data obtained from simulations in explicit water and com-

pared to analysis of simulation data from reference states, we

are able to make an unequivocal adjudication regarding the

balance between chain-chain and chain-solvent interactions,

i.e., solvent quality.

What are the driving forces for the collapse of
polar polyglutamine in water?

Polyglutamine is a polyamide built of a repeat of secondary

amides in the backbone and primary amides in the side chain.

Fig. 8 shows a comparison of site-site pair correlation func-

tions, g(r), for Q20 in water and for aqueous mixtures of

dissociated primary and secondary amides. We normalized

the intrachain and intermolecular pair correlation functions

using different default models because the former is a poly-

mer and the latter is a mixture of freely diffusing molecules.

For the polymer, we used an ideal chain model, and for the

model compounds, we used an ideal gas prior. Details are dis-

cussed in the Appendix. The model compounds chosen to rep-

resent the ‘‘dissociated’’ peptide are trans-N-methylformamide

(NMF) and propionamide (PPA) mixing freely in solution.

NMF, a secondary amide, is an analog of the backbone

peptide unit, whereas PPA, a primary amide, is an analog of

the polar side chain of glutamine.

The first row in Fig. 8 compares correlation functions

between intrachain backbone donor and acceptor atoms to

the site-site correlations between NMF donors (NNMF) and

NMF acceptors (ONMF). The first peak around 3 Å is pro-

nounced for the polymer and only weakly present for the

model compound mixtures in solution. A different scenario

holds for the comparison of pair correlations between back-

bone-donor and side-chain-acceptor atoms to those between

NNMF and OPPA, which are shown in the second row of Fig.

8. There is a distinct, yet broad peak at 3 Å separation in the

polymer, but general depletion otherwise. For the amide

mixtures in solution, the situation is inverted in that there is

relatively strong association at 4–5 Å, but no short-range

peak at ;3 Å. On the polymer side, the situation is very

similar for the inverse pair correlation, viz., backbone ac-

ceptor and side-chain donor. Again, there is a weak, yet

distinct peak around 3 Å, and a general depletion of density

for short distances (third row of Fig. 8). For the model

compounds, however, we observe a dominant peak at 3 Å

followed by a broad second peak in the site-site correlation

function for NPPA-ONMF. Finally, there is minimal deviation

between pair correlations for the side chain–side chain

donor-acceptor pair in the polymer and NPPA-OPPA (fourth
row of Fig. 8). For the polypeptide, the correlation function

is much smoother than that for other pairs. This is because

the side chains have the most flexibility to rearrange with

respect to one another. In both the polymer and for free

amides we observe a distinct peak at 3 Å.

In summary, we can establish the following changes in the

self-association behavior for amides in solution when com-

pared to amides that are part of polyglutamine:

1. For the model compounds in solution, we observe a

marked preference for short-range correlations (;3 Å)

between donor atoms of primary amides (NPPA) and

acceptor atoms of secondary amides (ONMF). Interroga-

tion of the inverse pair correlations between sites NNMF

and OPPA suggests favorable, solvent-separated intermo-

lecular associations. These differences in donor-acceptor

pair correlations are not preserved in the polymer. In-

stead, both types of pair correlations, viz., side-chain donor

to backbone acceptor and backbone donor to side-chain

acceptor, are equivalent.

2. For the polymer, we observed a general trend that corre-

lation function values are larger than unity for short (;3 Å)

and long distances (.6 Å) but are diminished over

medium ranges (3.3–6 Å). This is due to excluded volume

FIGURE 8 The left column shows site-site correlation

functions for different atom pairs for Q20 in water. The data

are normalized by an ideal chain prior (see Appendix). Dot-

ted lines indicate SE intervals. The right column shows

analogous site-site correlation functions for the solutions of

NMF and PPA in water normalized by an ideal gas prior.

Data for three different concentrations are shown (1 m, solid
curves; 2 m, dashed curves; and 4 m dash-dotted curves).

The sensitivity of the results to amide concentration is

small. SE are negligible for these simulations.
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effects, which are absent in the ideal chain model used to

normalize the pair correlations (see Appendix).

3. The two pronounced terms in the polymer are the backbone-

backbone and side chain–side chain correlation functions,

which measure effective interactions between donor and

acceptor atoms. Of these two correlation functions, only

the pair correlations between backbone units are enhanced

vis-à-vis the model compound counterparts. It appears that

concatenated backbone units can solvate each other more

favorably when compared to free secondary amides. There-

fore, our preliminary conclusion is that the main driving

force for collapse of polyglutamine in water derives from

favorable intrabackbone correlations. This finding appears

to be consistent with recent experimental data (63). There

could be multiple sources for enhanced pair correlations.

These include hydrogen bonding, the entropic benefits of

releasing water molecules into the bulk, and the associated

increase in chain packing density.

In the interest of clarity, we reiterate that the intrapolymer

and model compound site-site pair correlations were nor-

malized using different default models. Details of the normal-

ization procedure are presented in the Appendix. For the

polymer, we used an ideal chain model. This is different

from the ideal gas model used as the default model for

analyzing distance histograms for model compounds. There-

fore, an intrapolymer site-site correlation is meaningful only

if the peak or trough in the pair correlation function is greater

than or less than unity, i.e., all enhancements and depletions

in intrapolymer pair correlation functions arise due to spe-

cific multibody attractive/repulsive interactions. They should

not be misinterpreted as being a consequence of elimination

of entropic barriers via chain connectivity.

An alternative approach for making assessments regarding

driving forces for collapse is to quantify the contributions of

enthalpy and entropy to the free energy change associated

with coil-to-globule transitions for polyglutamine. If this

transition were to resemble hydrophobic collapse, the driv-

ing force would be primarily entropic in nature (64–68). The

information necessary to make judgments regarding entropy

and enthalpy is not available from simulations carried out

for a single set of solution conditions. Free energy calcula-

tions on the solvation of collapsed versus extended states

of Q20 would be able to address the above issue, but are

intractable at this point.

Conformational relaxation dynamics: evidence
for glassy kinetics and ruggedness of the
energy landscape

Fig. 9 shows a checkerboard map of the average root mean

square deviation (ÆRMSDæij) calculated by superposition of

all the structures in trajectory j onto the final structure in

trajectory i. We find that the diagonal has a significantly

lower average RMSD when compared to the off-diagonal

elements, i.e., ÆRMSDæii , ÆRMSDæij. This is indicative of

two features: First, there is strong residual correlation within

each trajectory. Second, no pair of trajectories yields similar

final structures, an observation that establishes the disordered

nature of the ensemble. One might argue that inaccurate

molecular mechanics force fields as well as the sluggishness

of conformational sampling are the primary sources for our

FIGURE 9 Checkerboard map of the average all-atom

RMSD in angstroms of the structures observed in trajec-

tory j (y axis) from the final structure of trajectory i (x axis).

This map is by construction not symmetric.
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observation that the ensemble for polyglutamine is disor-

dered. In other words, the MRMD simulation methodology

applied to any polypeptide sequence with initial conforma-

tions drawn from the EV limit ensemble will yield a similar

result. Although this skepticism is reasonable, it is also note-

worthy that the ensemble dynamics methods of Pande and

co-workers, which is similar in spirit to MRMD, have been

used to successfully fold several small two-state proteins and

obtain accurate estimates of their folding rates (69). There-

fore, we propose that the congruence between our results and

those based on spectroscopic experiments are robust because

the homopolymeric nature of polyglutamine provides a

reasonable physical basis for its intrinsic disorder. Of course,

the concern expressed above can be addressed fully only

through application of the MRMD approach to a wide range

of sequences that have stable folds as well as to sequences

that are predicted to be intrinsically disordered. These sorts

of simulations are computationally challenging and may

become feasible with appropriate methodological advances.

In Fig. 10, we show comparative analysis of the differ-

ences between the timescales for collapse versus the time-

scales associated with conformational relaxation. In panel A
we plot SðtÞ ¼ ð½ÆRgæðtÞ � ÆRgæ�Þ=ðÆRgæÞ as a function of

time. A single exponential fit for the decay of S(t) versus t is

also shown. This function, SðtÞ ¼ Soexp½�ðtÞ=ðtÞ� has the

parameters So¼ 0.40 and t ¼ 5 ns. In each of the trajectories,

collapse from the relatively extended starting conformations,

which are extracted from the EV ensembles is found to be a

rapid process and occurs within the timescale of ;5 ns,

which is shorter than the equilibration times (11 ns) used in

our analysis of MRMD data. This observation is robust

across all trajectories. In the interest of clarity, we have

added data from the equilibration periods. This was done for

the analysis reported in Fig. 10 alone. For all other figures,

only data from the production runs were used.

Although collapse is rapid, conformational relaxation is

considerably slower. Panel B of Fig. 10 shows the time

evolution of the average RMSD for superposition of struc-

tures within a trajectory i to the final structure of trajectory i,
i.e., ÆRMSD(t)æself. The temporal evolution of this parameter

is described using a stretched exponential function:

ÆRMSD(t)æself ¼ Roexp½�(t/t)b�, with Ro ¼ 22 Å and b ¼
0.15. Here, t is set to be 5 ns, the timescale for collapse. The

stretched exponential function, also known as the Kohlrausch-

Williams-Watts (KWW) function (with 0 # b # 1), is

used to describe structural relaxation in glassy systems

(below the glass transition temperature) (46,70–72). If b

assumes small values, then the system has access to a broad

and heterogeneous distribution of relaxation times (70). Our

discovery that conformational relaxation of Q20 follows

nonexponential kinetics with a fairly small value of b is

consistent with the postulate that distinct collapsed structures

are likely to be of equivalent stability on account of the ho-

mopolymeric nature of polyglutamine, i.e., the energy land-

scape is rugged for Q20 in water at T ¼ 298 K and P ¼ 1 bar.

There are two predicted features for rugged energy land-

scapes: The first is slow, nonexponential relaxation within

distinct basins, which is best described using a KWW

function (46,70,71). Secondly, there should be evidence of

even slower interconversion between distinct basins (70).

Evidence for the latter is also shown in panel B of Fig. 10.

Here, we track the temporal evolution of ÆRMSD(t)æcross,

which is the average RMSD for superposition of a snapshot

from trajectory i upon the final structure of trajectory j, where

j 6¼ i. The desired average is calculated over all unique pairs

of trajectories (i) and final structures (j). We find that, once

the chain is collapsed, ÆRMSD(t)æcross shows no significant

FIGURE 10 (A) The time evolution of S(t), a normalized measure of ÆRgæ
as a function of time, t. The plot also shows the fit to a single exponential

function SðtÞ ¼ Soexp½�t=t� with So ¼ 0.40 and t ¼ 5 ns. The norm of the

residuals between the raw data and the exponential function is 0.01. (B)

RMSD of the structures within a trajectory from their final structure (gray

diamonds) is compared to that of the structures within a trajectory to the final

structure of other trajectories (gray circles). SE for the former could not be

obtained because there is only one value per trajectory and per time point.

For the cross-term, the 59 values per trajectory and per time point were

preaveraged and SE could be obtained as usual. Data for the average

conformational relaxation within a trajectory (gray diamonds) are fit to

a stretched exponential function of the form described in the text. This is

shown as the solid curve in the plot. Deviations from the stretched expo-

nential function are largest for the earliest time points, t , 5 ns, and for the

last 10-ns interval. The former is explained by the rapid collapse over short

timescales, whereas the latter is entirely due to our choice of the final

snapshot of the trajectory as the reference snapshot for analyzing confor-

mational relaxation.
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time dependence over the remaining time scale of 50 ns. The

time dependence of both ÆRMSD(t)æcross and ÆRMSD(t)æself

taken together are interpreted as follows: Although collapse

is rapid and the ÆRgæ values across trajectories are similar

to each other, each trajectory samples a distinct family of

globular conformations, and there is no obvious intercon-

version between the distinct globules over the 50-ns time-

scale.

Our MRMD approach provides reliable information

regarding global, polymeric order parameters, because this

information is converged and roughly equivalent across all

trajectories. Conversely, any analysis of specific structural

propensities would yield entirely unreliable information

because this requires interconversion between distinct con-

formational basins. To achieve this, each independent tra-

jectory in the MRMD approach will need to be extended into

the microsecond range or longer, without pruning, and per-

haps increasing the number of independent trajectories. The

impact of conformational heterogeneity and diminished con-

formational averaging is seen in the large error bars for

the angular correlation function (see Fig. 5). This measure

probes local conformational propensities as well as global

properties and is therefore most sensitive to the quality of

statistics we gather.

DISCUSSION, CONCLUSIONS, AND
FUTURE WORK

We have analyzed MRMD simulations for a single poly-

peptide chain, Q20, in water. Our analysis, combined with

polymer physics theories, and comparison to data from ref-

erence simulations, allows us to conclude that Q20 in water

has all the characteristics of a chain in a poor solvent (Figs.

2–7). The physics of homopolymers allows us to generalize

and conclude that water is a poor solvent for polyglutamine,

i.e., at infinite dilution these systems form disordered glob-

ules and at finite concentrations, the stable thermodynamic

state will be the phase separated aggregate (11,73). Impli-

cations of the poor solvent nature of aqueous solvents for the

mechanism of aggregation have been discussed in detail (35)

and will not be repeated here.

Polymer theory helps in making
robust predictions

We borrowed the methods for analyzing conformational

equilibria from the polymer physics literature (8,11,37,39,74).

The motivation was to ask if the analysis of simulation data

for a single chain length could lead to robust assertions about

solvent quality. We showed that this is possible using com-

parative analysis of specific ‘‘order parameters’’ (36). Of

particular relevance is the scaling of internal distances because

it obeys a rigorous scaling law for fractal objects, i.e., chains

in good and theta solvents. Departure from a scaling law

must mean that the solvent is poor. Finite size effects limit

the usefulness of such a measure only if the chain length

drops below the ‘‘blob’’ length of seven to eight residues,

since in this regime local structure overrides the mean

polymeric behavior (11). The presence of two distinct length

scales, viz., the blob length and a generic length, also means

that the conclusions obtained from our analysis for N ¼ 20

are robust and valid for all chain lengths N . 20. This point

is emphasized in the development of modern theories for

homopolymers (8,11,36) and in the observations of Crick

et al. (35) who showed that the poor solvent scaling of chain

size with length is obeyed for all lengths N $ 15. Our

analysis was feasible due to low-sequence complexity, i.e.,

the homopolymeric nature of polyglutamine and the appro-

priate choice of chain length (longer than the blob length).

The analysis methods are likely to be of general relevance for

quantitative characterization of conformational equilibria

for IDPs because many of these sequences are deficient in

hydrophobic residues and are of sufficiently low sequence

complexity (1,6).

In the preceding discussion, we proposed that our obser-

vations for Q20 are likely to be generic and valid for longer

chains of monomeric polyglutamine. Although this state-

ment is congruent with experimental data (28,30) and

expectations based on polymer theories (37), recent results

from coarse-grain simulations provide a different picture.

Specifically, Khare et al. (75) used a coarse-grain model and

showed that whereas polyglutamine peptides of length N ,

37 are indeed disordered, chains of length N . 37 are likely

to form marginally stable b-helices. A similar proposal was

put forth by Merlino et al. (76) who used an atomistic force

field and explicit solvent to test the length-dependent sta-

bility of preformed b-helices for monomeric polyglutamine

in short, 5-ns MD simulations. Although it might be argued

that the simulations of Merlino et al. (76) were too short to be

conclusive, the results of Khare et al. (75) are noteworthy. In

light of their results, our predictions for N . 20 will need

closer scrutiny. Toward this end, we are currently simulating

conformational fluctuations and chain oligomerization as a

function of chain length and concentration using molecular

mechanics potentials and atomistic representations for chain

molecules (X. Wang, A. Vitalis, and R. V. Pappu, unpub-

lished data). A detailed comparison between our findings and

those of Khare et al. (75) will be forthcoming in the near

future.

Why is water a poor solvent for
glutamine-rich peptides?

Combining experimental studies and our computational re-

sults, there remains little doubt that water is in fact a

poor solvent for glutamine-rich peptides. These peptides are

assumed to be in a ‘‘random-coil’’ state, the implication

being that the ensemble is consistent with that of highly

denatured proteins. Our results suggest that the absence of a

consensus experimental signal is the result of a different type
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of disorder, i.e., of a heterogeneous ensemble of globular

conformations. Given the polar nature of the side chain, and

the infinite solubility of small amides in water, it is obvious

that the solvation behavior changes upon transitioning from

amides in water to a polyamide in water. To be able to

compare the two cases, we remove effective concentration as

an obvious factor by appropriate normalization. We con-

clude that the short-range steric and topological constraints

in the polymer alter the solvation behavior primarily for the

backbone unit, i.e., the secondary amides are more favorably

solvated by themselves than by water. As a result, the chain

collapses and minimizes its interface with water. This, how-

ever, does not imply that these peptides behave like classical

hydrophobic solutes, such as polyethylene. At this point, we

are unable to adjudicate the nature of the collapse transition,

since we only have simulations of conformational equilibria

for a single set of solution conditions.

Implications for the design of simulations aimed
at quantitative characterization of conformational
equilibria of IDPs

The SE for most of the data we presented are relatively large

considering the investment of computational resources. This

is a direct consequence of the very long interconversion times

for different globular states of these peptides. Enhanced

sampling techniques provide an obvious route to solve the

sampling problem. Umbrella sampling (77–79) along Rg

as the reaction coordinate is a technique we are currently

pursuing although the downside is that a large computational

investment yields limited data, since it is nontrivial to recover

quantities other than the potential of mean force along Rg

from these sets of simulations. This would render an analysis

like the one presented here difficult. Conversely, the replica

exchange method (80,81) uses high temperature replicas to

enhance conformational rearrangement. Although this is

useful in theory, we would suffer from the fact that we would

need multiple replicas for each temperature. This is unavoid-

able for disordered systems such as polyglutamine in wa-

ter, and therefore the required resources would actually

increase.

Our MRMD methodology bears some resemblance to the

ensemble dynamics methods of Pande and co-workers (82).

To extract robust information regarding polymeric proper-

ties, we had to compare MRMD data to those obtained from

simulations using two diametrically opposed reference states.

As is the case in most molecular simulations of biomole-

cules, the choice of the force field will determine the details

of simulation results (83). Since all force fields share similar

features, our analysis methods applied to simulation data

gathered using different force fields will in all likelihood lead

to the conclusion that water is a poor solvent for polyglut-

amine. However, details such as the length scale for collapse

transitions, and the stability of the collapsed states might

vary from one force field to the next. Although comparative

simulations with multiple force fields applied to the same

problem have become more common in recent years (84–

87), they are still prohibitively expensive for systems other

than short peptides. For the data presented here, we used

;1200 CPU days on a single 2.6-Ghz Intel Conroe Core

with the fastest, freely available simulation engine, viz.,

GROMACS. Clearly, for expensive calculations such as

these, simulations to compare different force fields are in-

tractable without the use of distributed computing methods

(69).

Besides our own work, few articles have been published,

which study glutamine-based peptides in explicit solvent

(76,88–90). In fact, coarse-graining and/or implicit solvent

models have been a much more popular approach to answer

questions about the structures of these peptides within inter-

molecular aggregates (91–98). In coarse-graining approaches,

one obviously sacrifices details of the description for efficiency,

which leads to reliable conclusions within the limits of the

given model. However, the preference for collapsed states in

polyglutamine is most convincingly established using

explicit solvent models.

APPENDIX: DETAILS REGARDING CALCULATIONS
OF INTRAPOLYMER SITE-SITE
CORRELATION FUNCTIONS

Consider all unique pairs of backbone donor (N) and acceptor atoms (O),

respectively. For generality, we shall use the labels A and B to refer to these

atom pairs. Let hW(rAB) denote the histogram of interatomic distances

obtained from analysis of MRMD simulation data for Q20 in water.

Additionally, let hD(rAB) be the histogram obtained by gathering statistics

from simulations based on an appropriate default model. Given the two

histograms, hW(rAB) and hD(rAB), the desired site-site correlation function is

defined as:

gABðrÞ ¼
hWðrABÞ
hDðrABÞ

: (9)

It is important to emphasize that the choice for the default model determines

the profile we obtain for gAB(r). The standard noninteracting model one uses

in the theory of liquids is the so-called ideal gas prior. In this model, the sites

are parts of rigid molecules that are free to translate and rotate around each

other. The applicability of this default model for polymers is questionable

because the resultant profiles one obtains for gAB(r) are dominated by the

presence of chain connectivity in the real chain, which increases the effective

concentration of repeating units with respect to each other. Therefore, we

constructed intrachain site-site correlation functions using a so-called ideal

chain model, which is analogous to the freely rotating chain model of Flory

(9). In this model, bond lengths and bond angles are held fixed at equilibrium

values (47) and the peptide unit is held fixed in the trans configuration. An

ensemble of freely rotating chain conformations is generated by ignoring

(turning off) all nonbonded interactions, including excluded volume effects.

Histograms, hD(rAB), constructed using the resultant ensemble include the

effects of chain connectivity, and exclude the effects of intrachain and chain-

solvent interactions.
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