Skip to main content
. Author manuscript; available in PMC: 2007 Sep 21.
Published in final edited form as: J Opt Soc Am A Opt Image Sci Vis. 2006 Aug;23(8):1960–1966. doi: 10.1364/josaa.23.001960

Table 1.

Coefficient conversion relationships for Zernike polynomial expansions up to order 8

n m New expansion coefficients bn,m
0 0 b0,m=a0,m3(11λ2)a2,m+5(13λ2+2λ4)a4,m7(16λ2+10λ45λ6)a6,m+3(110λ2+30λ435λ6+14λ8)a8,m
1 −1, 1 b1,m=1λ[a1,m22(11λ2)a3,m+3(38λ2+5λ4)a5,m4(210λ2+15λ47λ6)a7,m]
2 −2, 0, 2 b2,m=1λ2[a2,m15(11λ2)a4,m+21(25λ2+3λ4)a6,m3(1045λ2+63λ428λ6)a8,m]
3 −3, −1, 1, 3 b3,m=1λ3[a3,m26(11λ2)a5,m+22(512λ2+7λ4)a7,m]
4 −4 −2, 0, 2, 4 b4,m=1λ4[a4,m35(11λ2)a6,m+35(37λ2+4λ4)a8,m]
5 −5, −3, −1, 1, 3, 5 b5,m=1λ5[a5,m43(11λ2)a7,m]
6 −6, −4 −2, 0, 2, 4, 6 b6,m=1λ6[a6,m37(11λ2)a8,m]
7 −7, −5, −3, −1, 1, 3, 5, 7 b7,m=1λ7a7,m
8 −8 −6, −4, −2, 0, 2, 4, 6, 8 b8,m=1λ8a8,m