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Objectives. I used computational models to test the relationship between in-
terorganizational network structures and diffusion of moderate- to high-priority
health information throughout a system. I examined diffusion effects of mean
and variance in organizational partnering tendencies, arrangement of ties among
subgroups of the system, and the diffusing organization’s effective network size.

Methods. I used agent-based models to simulate local information-sharing
processes and observe the outcomes of system-level diffusion. Graphs of diffu-
sion curves demonstrated differences among intergroup structures, and regres-
sion models were used to test effects of parameterized and emergent network var-
iables on diffusion.

Results. The average tendency of participating organizations to engage in part-
nerships with other network members influenced diffusion of information, but
variance in partnering tendencies had little effect. Fully connected subgroup struc-
tures outperformed hierarchical connections among subgroups, and all outper-
formed group-to-group chains. Introduction of a small proportion of randomness
in connections among members of the chain structure improved diffusion with-
out increasing network density. Finally, greater effective size in the diffusing or-
ganization’s network increased diffusion of information.

Conclusions. Small interventions that build connecting structures among sub-
groups within a health system can be particularly effective at facilitating natural dis-
semination of information. (Am J Public Health. 2007;97:1684–1692. doi:10.2105/
AJPH.2005.063669)
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affect the diffusion of moderate- and high-
priority health information from an initial
source to a set of interrelated but indepen-
dent organizations? Second, how can a
health organization adjust its networking
strategies to increase the likely distribution
of its information without increasing its net-
working expenditures?

NETWORKS AND THEIR ROLES

Organizations that support the health of a
population often develop relationships with
each other. The relationships form patterns of
interaction and exchange that compose the
public health network. Relationships between
organizations can support collaboration,2

knowledge sharing,3 and access to resources.4

By providing crucial communication channels,
networks of relationships enable diffusion of
products,5 practices,6 and information.7 Char-
acteristics of the network structure influence
the availability of information to individual

organizations8 and to the system as a whole.9

As a result, interorganizational network struc-
tures influence the systemwide ability to dis-
tribute information.

NETWORK STRUCTURES AND
DIFFUSION OF INFORMATION

People form subgroups within a network
because of business demands, social similari-
ties, proximity, profession, complementary
needs or goals, and ease of communication.
Homophily, or preference for others whom
we see as similar to ourselves, plays a large
role in relation-building.10 People who see
themselves as members of a particular group
are likely to identify with other members of
that group11 and to prefer them because of
social identification.12 Dense connections
form within clusters of health organizations
that share a common purpose,13 operate in
the same geographic region, or benefit from
joint action.14

A public health system, defined by the Insti-
tute of Medicine as a “complex network of in-
dividuals and organizations,”1 can include
government agencies, health care delivery
systems, businesses, media, nonprofit organi-
zations, private health practitioners, and aca-
demia. A better understanding of public
health networks is needed, but research ef-
forts are complicated by the enormity of each
network, the cost of obtaining data, and the
impossibility of measuring enough complete
systems to compare effects among them. Al-
though qualitative information about organiza-
tional partnering contributes to our under-
standing of public health networks, it is
inadequate to create measurable standards
and actionable guidelines for network devel-
opment. Actual tests of network effects on var-
iables that influence public health could pro-
vide foundations for such action. These tests
can be accomplished through computational
modeling of individual and dyadic activities
that accumulate to create system-level out-
comes. Results provide benchmarks for build-
ing health networks.

The computational models (“simulation
models”) reported here address a question
raised by an official in a county-level public
health department. I asked the official to
identify key issues regarding the overall pub-
lic health network in her area, and one of her
primary concerns was information delivery. In
particular, she asked what her organization
could do to improve the flow of information
without relying on personal relationships or
sending a nurse to knock on every physician’s
door. She explained that her staff invest a lot
of effort to maintain direct relationships with
health organizations, but there are many oth-
ers that they cannot contact directly. She was
particularly concerned about getting health in-
formation to people and organizations that are
not currently involved with her department.

I examined the issue from 2 angles. First,
how do prototypical network structures
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This tendency toward subgroup adhesion
permeates health systems, but the interaction
patterns and levels of centralization vary
among networks.15 In a study of relationships
between state and local health agencies in the
United States, 16 of the public health systems
were decentralized, 16 included a mixture of
decentralization and centralization, and 10
were centralized.16 Community-based net-
works form a variety of substructures, includ-
ing hierarchical, factional, and amorphous
decentralized tendencies.17

In this study, I modeled the diffusion of in-
formation through 5 prototypical structures
among 10 subgroups that include 20 organiza-
tions each. Graphs depicting examples of all 5
structures are available as online supplements
to this article at http://www.ajph.org. These
prototypes represent a variety of situations
that can occur among organizations.18 The first
prototype is an “unconstrained” network in
which organizational attributes alone create
the structure; no preference exists for in-group
members, and no social, institutional, or geo-
graphic barriers limit partnerships with mem-
bers of other subgroups. It is likely to support
rapid diffusion of information, but diffusion is
not likely to occur naturally. The uncon-
strained structure serves as a point of refer-
ence for comparing effects of the other, more
obtainable, structures.

In the second, “fully connected” structure,
clustering patterns arise from in-group prefer-
ences, shared interests, and functional de-
mands, but interactions occur among all
groups. A fully connected structure may arise
from interventions that invite members of
organizational, ethnic, professional, and geo-
graphic subgroups to participate in joint dis-
cussions or to join task forces on public
health issues. It is unlikely to occur without
interventions because people are inclined to
create ties to geographically or socially adja-
cent groups but disinclined to build ties with
members of distant or dissimilar groups.

In the third structure, members prefer
other groups that are near or similar to them-
selves, creating a “chain” of adjacent groups
that interact among themselves and with their
immediate neighbors. Chain structures can
occur, for example, in rural areas populated
by small communities, in urban areas where
ethnic subgroups interact mainly with similar

others, or among specialists who interact
primarily within their own and related spe-
cialties. In the fully connected and chain net-
works, members of each group have equal
opportunities to find partners, but in the
chain network, their partners are socially or
geographically proximate to themselves.

The fourth structure depicts “hierarchy”
among groups. This pattern occurs when a
central group holds the majority of influence
but interacts with some members of allied or
dependent groups, and some members of
those second-tier groups then interact with
members of peripheral groups. This scenario
is particularly likely to occur where central 
organizations—often public health agencies, hos-
pitals, and health maintenance organizations—
share information, resources, and collabora-
tion opportunities with in-group members,
and other groups find themselves on the
fringes of the system.

The final structure represents “connected
clusters.” This situation occurs when sub-
groups form clusters, and a portion of each
cluster maintains ties to a central group that
connects the clusters. In the hierarchy and
connected clusters structures, members of
the central and bridging groups have more
partnering opportunities.

Because existing relationships foster subse-
quent ties,19 small interventions that build
new relationships have the potential to change
broad network structures over time. Public
health organizations may improve transfer of
information and other network-dependent
functions of a system by supporting the devel-
opment of effective network structures.

HEALTH ORGANIZATIONS’
INDIVIDUAL NETWORKS AND
DIFFUSION OF INFORMATION

Within the overall health system, public
health organizations build their own partner-
ships, the number and pattern of which influ-
ence an organization’s ability to distribute
information. Each organization’s degree of
centrality (number of ties to others) limits the
extent to which it can diffuse information di-
rectly. In addition, the pattern of its ties may
influence the speed and extent to which infor-
mation flows outward through the system. By
creating partnerships with organizations that

are not already connected to its existing part-
ners, an organization increases its potential
for broad distribution of information. This
concept of network effectiveness has been
applied to obtaining information and opportu-
nities through a network,8 but it could prove
equally important for distributing informa-
tion. The key thought is that the “effective
size” of a network is smaller than the number
of ties if those ties provide redundant access
to the same parts of the system. Broader net-
working patterns by public health organiza-
tions are therefore likely to increase informa-
tion flow through the system.

HYPOTHESES

The simulation models tested the following
hypotheses:

1. The mean and SD of partnering tenden-
cies influence systemwide diffusion.

2. The pattern of ties among subgroups influ-
ences systemwide diffusion.

3. The degree and effective size of the infor-
mation diffuser’s network positively influ-
ence systemwide diffusion.

METHODS

Model Development, Parameters, and
Measured Variables

For each of 100 trials, I modeled diffusion
from a central source to members of a health
system that varied systematically in overall
mean and variance of partnering tendencies.
Within every combination of means and vari-
ances, each organization retained its partnering
tendency while I redistributed the pattern of
ties into each of the 5 types of intergroup net-
work structures (Figure 1). This yielded 3000
system-level data points. The procedure ran
once for diffusion of medium-priority informa-
tion and once for high-priority information.

Approximate network densities of 0.10 and
0.15 were chosen because real-world net-
works are sparse relative to the number of
potential contacts.21 Larger systems tend to
be less dense than smaller systems because
the number of possible ties increases dramati-
cally with the number of participants. To rep-
resent natural variation, each organization’s
tendency to create ties was randomly drawn
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Note. Network drawing created using Netdraw software.20

FIGURE 1—Parameters and procedures for a simulation model testing the effects of organizational partnering tendencies, the diffusing
agency’s structural position, and interorganizational network structures on diffusion of health information throughout a public health system.
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from a normal distribution having the mean
equal to the desired network density and a
range from 0 to 1. SDs in organizations’ tie
tendencies were modeled at 3 levels in each
density setting (SD=0.2×density, 0.3×den-
sity, and 0.4×density). Within each of these
conditions, for every cycle of the simulation,
every organization was assigned a partnering
tendency, and pairwise averages were as-
signed to dyads as the probability that they
would form a reciprocal relationship. The
simulation then created intergroup structures
based on existing models.18

Studies that measure health networks gen-
erally define those networks narrowly, such
that member organizations tend to be similar,
connected by formal structure, or focused on
1 particular aspect of health. These networks
are small and fairly dense. For example,
Johnsen et al. found that information net-
works among child health organizations
ranged in density from 0.49 to 0.68.13

The current problem requires a broader
focus because a county-level public health
system includes a variety of organization
types. Such a system is nearly guaranteed to
include dense subgroups, with limited interac-
tion among them. This pattern was reflected
in the simulation design by increasing the
likelihood of within-group ties while decreas-
ing the probability of across-group ties in all
but the unconstrained structure. The simula-
tion presented here multiplied the probability
of within-group ties by 5, but a parallel sim-
ulation was run as a sensitivity test using
within-group probability weightings of 4.
Each structure was generated within each
centrality distribution by scaling (si ) partner-
ing tendencies (ti ), maintaining an average
partnering tendency (d , network density) of
approximately 0.1 in the first condition and
0.15 in the second condition:

(1) , 0.15.

The exact probability weightings and the
resulting structures appear in Figure 1. The
unconstrained, fully connected, and chain
networks have normally distributed partner-
ing tendencies that are not moderated by in-
tergroup structures. The hierarchy and con-
nected clusters structures create disparity in
centralities, as occurs in scale-free networks.
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In a scale-free network, the majority of
nodes have low degree (few connections)
while 1 or more heavily connected, high-
centrality hubs bridge the gap between
many lower-degree peripheral nodes.22

Community networks often exhibit normally
distributed ties,23 but larger systems are
sometimes scale-free. The fully connected
and chain structures are decentralized and
“scale-rich” according to the definition by
Alderson et al.24 The connected clusters
structure is less scaled, and the hierarchy
structure is closer to scale-free, with a cen-
tral hub and smaller branches.

Degree of centrality (number of ties) and
effective network size (degree minus the aver-
age number of ties among the organization’s
contacts)8 were measured for each diffusing
organization. Diffusion level was defined as
the number of organizations in the population
that received the information.

Simulation Procedures
The virtual experiment, comprising 2 den-

sities × 3 levels of networking variance × 5
intergroup structures, ran for 100 cycles
under each condition as follows:

1. Draw networking tendencies from a nor-
mal distribution.
a. Networking tendency has means of 0.1

and 0.15 (yielding densities of approxi-
mately 0.1 and 0.15, respectively) and
SDs at 0.2, 0.3, and 0.4 of the mean.

2. Generate ties among 200 organizations.
a. Probability of a tie between any 2 organ-

izations is equal to the average of their
individual partnering tendencies.

b. Weighting of probabilities within groups
versus between groups creates a prototyp-
ical structure (each of 5 structures under
each networking tendency in each cycle).

c. Structural position of information source
is recorded.

3. Determine diffusion.
a. Information source distributes health

alert to all contacts at time 1 with p=.5
for medium-priority information or .95
for high-priority information.

b. Each organization communicates with 1
contact per time period.

c. If initiator of the contact has the informa-
tion and the contact does not, transfer

occurs with p=.5 (medium priority) or
0.95 (high priority); after the information
is received, it cannot be forgotten.

d. The knowledge-holder matrix updates.
e. This process repeats for 30 time periods,

recording information diffusion at each
time period.

4. Reset parameters and return to step 1 until
all conditions have run.

Analyses
Ordinary least squares regression analyses

tested the effects of parameterized and
emergent variables on the diffusion level of
medium-priority information after 10 time
periods and of high-priority information after
5 and 10 time periods. (A time period is a
unit in which 1 round of events is allowed to
occur. Because this is a simulation, a time
period doesn’t map onto a specific number
of hours or days.) Diffusion curves depict the
average level of information diffusion over
time through each intergroup structure.

RESULTS

Tables 1 and 2 show means, SDs, and cor-
relations among variables. Regression results
appear in Table 3. Because of the large num-
ber of data points, only relations that were
significant at P<.001 were considered mean-
ingful. Medium-priority information diffusion
data appear in Table 1; high-priority informa-
tion data appear in Table 2. Variable means
and SDs in the medium-priority condition ap-
pear in the second column. Variable means
and SDs in the high-priority condition appear
under the column headers across the top of
the table.

Mean partnering tendency, which is di-
rectly responsible for overall network density,
positively influenced diffusion. Although SD
in partnering tendencies correlated positively
with diffusion level, its effect was small and
inconsistent in the regression models predict-
ing level of diffusion after 5 and 10 time peri-
ods. Intergroup structures and diffusers’ effec-
tive networks, by contrast, had large effects
on diffusion processes. The chain structure
inhibited diffusion of information, as did the
hierarchy and connected clusters to lesser ex-
tents. The fully connected intergroup struc-
ture served nearly as well for distributing
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TABLE 2—Means, Standard Deviations (SDs), and Correlations for Diffusion of information 
under the High-Priority Condition, by Predictor Variable

Diffusion Diffusion Diffusion 
after after after Mean Partnering Fully Connected Diffuser’s Diffuser’s 

5 time 10 time 15 time partnering tendency Unconstrained connected Chain Hierarchy clusters degree effective 
Variable Mean (SD) periodsa periodsa periodsa tendency SD structure structure structure structure structure centrality network

Diffusion after 5 time periodsa 112.911 (25.858) 0.797* 0.519* 0.376* 0.183* 0.398* 0.235* –0.721* 0.009 0.079* 0.516* 0.532*

Diffusion after 10 time 187.015 (17.432) 0.797* 0.705* 0.116* 0.042 0.293* 0.288* –0.926* 0.143* 0.202* 0.217* 0.218*

periodsa

Diffusion after 15 time 199.203 (1.751) 0.519* 0.705* 0.148* 0.025 0.182* 0.186* –0.541* 0.066* 0.107* 0.193* 0.194*

periodsa

Mean partnering tendency 0.125 (0.025) 0.376* 0.116* 0.148* 0.585* 0.000 0.000 0.000 0.000 0.000 0.651* 0.594*

Partnering tendency SD 0.038 (0.013) 0.183* 0.042 0.025 0.585* 0.000 0.000 0.000 0.000 0.000 0.356* 0.316*

Unconstrained structure 0.200 (0.400) 0.398* 0.293* 0.182* 0.000 0.000 –0.250* –0.250* –0.250* –0.250* –0.101* –0.073*

Fully connected structure 0.200 (0.400) 0.235* 0.288* 0.186* 0.000 0.000 –0.250* –0.250* –0.250* –0.250* –0.149* –0.118*

Chain structure 0.200 (0.400) –0.721* –0.926* –0.541* 0.000 0.000 –0.250* –0.250* –0.250* –0.250* –0.138* –0.134*

Hierarchy structure 0.200 (0.400) 0.009 0.143* 0.066* 0.000 0.000 –0.250* –0.250* –0.250* –0.250* 0.344* 0.333*

Connected clusters structure 0.200 (0.400) 0.079* 0.202* 0.107* 0.000 0.000 –0.250* –0.250* –0.250* –0.250* 0.043 –0.009*

Diffuser’s degree centrality 26.066 (7.867) 0.516* 0.217* 0.193* 0.651* 0.356* –0.101* –0.149* –0.138* 0.344* 0.043 0.993*

Diffuser’s effective network 22.119 (6.112) 0.532* 0.218* 0.194* 0.594* 0.316* –0.073* –0.118* –0.134* 0.333 –0.009* 0.993*

Note. n = 3000 observations for each variable.
aA time period is defined as a unit in which 1 round of events is allowed to occur.
*Significant at P < .001.

TABLE 1—Means, Standard Deviations (SDs), and Correlations for Diffusion of information 
under the Medium-Priority Condition, by Predictor Variable

Diffusion Diffusion Diffusion 
after after after Mean Partnering Fully Connected Diffuser’s Diffuser’s 

5 time 10 time 15 time partnering tendency Unconstrained connected Chain Hierarchy clusters degree effective 
Variable Mean (SD) periodsa periodsa periodsa tendency SD structure structure structure structure structure centrality network

Diffusion after 5 time periodsa 45.915 (14.026) 0.811* 0.571* 0.476* 0.267* 0.136* –0.002 –0.340* 0.171* 0.035 0.702* 0.706*

Diffusion after 10 time 120.699 (27.922) 0.811* 0.886* 0.343* 0.177* 0.351* 0.211* –0.682* 0.048 0.072* 0.459* 0.469*

periodsa

Diffusion after 15 time 173.227 (23.337) 0.571* 0.886* 0.194* 0.088* 0.337* 0.295* –0.855* 0.084* 0.139* 0.287* 0.292*

periodsa

Mean partnering tendency 0.125 (0.025) 0.476* 0.343* 0.194* 0.585* 0.000 0.000 0.000 0.000 0.000 0.644* 0.587*

Partnering tendency SD 0.038 (0.013) 0.267* 0.177* 0.088* 0.585* 0.000 0.000 0.000 0.000 0.000 0.360* 0.321*

Unconstrained structure 0.200 (0.400) 0.136* 0.351* 0.337* 0.000 0.000 –0.250* –0.250* –0.250* –0.250* –0.118* –0.093*

Fully connected structure 0.200 (0.400) –0.002 0.211* 0.295* 0.000 0.000 –0.250* –0.250* –0.250* –0.250* –0.146* –0.114*

Chain structure 0.200 (0.400) –0.34* –0.682* –0.855* 0.000 0.000 –0.250* –0.250* –0.250* –0.250* –0.143* –0.139*

Hierarchy structure 0.200, (0.400) 0.171* 0.048 0.084* 0.000 0.000 –0.250* –0.250* –0.250* –0.250* 0.363* 0.355*

Connected clusters structure 0.200, (0.400) 0.035 0.072* 0.139* 0.000 0.000 –0.250* –0.250* –0.250* –0.250* 0.044* –0.009*

Diffuser’s degree centrality 26.118, (7.973) 0.702* 0.459* 0.287* 0.644* 0.36* –0.118* –0.146* –0.143* 0.363* 0.044* 0.993*

Diffuser’s effective network 22.153, (6.203) 0.706* 0.469* 0.292* 0.587* 0.321* –0.093* –0.114* –0.139* 0.355* –0.009* 0.993*

Note. n = 3000 observations for each variable.
aA time period is defined as a unit in which 1 round of events is allowed to occur.
*Significant at P < .001.
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TABLE 3—Regression Models Using the Diffusing Agency’s Network Position and Structural 
Characteristics of a Public Health Network to Predict Systemwide Information Diffusion

Medium Prioritya High Priorityb High Prioritya

Variable Model 1c,d Model 2c,e Model 1c,d Model 2c,e Model 1c,d Model 2c,e

Mean partnering tendency 0.364*  0.104*  0.409*  0.087* 0.138* 0.072*

Standard deviation in partnering –0.036 –0.022 –0.056 –0.032* –0.038 –0.033*

Fully connected structure –0.105* –0.112 –0.001

Chain structure –0.810* –0.870* –0.970*

Hierarchy structure –0.396* –0.479* –0.155*

Connected clusters structure –0.252* –0.282* –0.078*

Diffuser’s effective network 0.429* 0.518* 0.107*

R2 model 0.119 0.726 0.144 0.877 0.014 0.889

F statistic for R2 (df) 202.018* (2, 2997) 1133.179* (7, 2992) 251.081* (2, 2997) 3046.901* (7, 2992) 21.818* (2,2997) 3443.272* (7, 2992)

R2 change 0.607 0.733 0.875

F statistic for change in R2 (df change) 1326.895* (5, 2992) 3567.624* (5, 2992) 4742.814* (5, 2992)

Note. A time period is defined as a unit in which 1 round of events is allowed to occur.
aAfter 10 time periods.
bAfter 5 time periods.
cStandardized regression coefficients are reported to enable direct comparison of effect sizes across variables.
dModel 1 uses mean organizational partnering tendencies and SDs in organizational partnering tendencies to predict diffusion.
eModel 2 includes variables from Model 1 as well as structure types and the diffuser’s effective network to predict diffusion.
*P < .001.

effect on early diffusion, and their influence
continued throughout the diffusion process.
Because of extremely high correlation (r=
0.993 in both data sets) and resultant multi-
collinearity, I could not include degree and
effective size of network in the same regres-
sion model. To determine which was most in-
dicative of diffusion outcomes, I ran stepwise
regressions. In all cases, the effective size of
the network was a better predictor than sim-
ple degree, indicating that diversity in part-
nerships improves capacity for information
diffusion.

Simulated Bridge Building
Although the chain structure performed

noticeably worse than did the others, small
amounts of bridge building should be able to
improve its diffusion capacity. To determine
how much health systems would gain from a
few unconstrained ties, I ran a simulation that
introduced small amounts of randomness to
the partner selection process in the chain
structure. This simulation (using mean part-
nering tendency=0.1, SD= .03) began with
100 iterations of high-priority diffusion under
the chain structure. It then ran another 100
iterations of high-priority diffusion, replacing
0.5% of the ties in each chain with randomly

placed ties that were not constrained by the
chain structure. The process continued, in-
creasing the random “rewiring” by 0.5% in-
crements in each subsequent model until the
final model included 20% random ties amid
80% chain-based ties. The number of ties is
retained through this process, but the pattern
of ties is slightly altered.

The results of simulated bridge-building
appear in Figure 3. The first graph shows
percentage of randomness on the horizontal
axis and diffusion level on the vertical axis.
Lines in the graph represent time periods,
where the bottom line is time 1, the next
line is time 2, and so on. Following a line
from left to right enables one to track the
difference in diffusion at that time on the
basis of percentage of random ties intro-
duced to the chain structure. The steepest
improvement occurs from 0% to 3.5% ran-
domness; modest improvements continue
until about 10.5%, and there is little effect
beyond that point. The second graph shows
diffusion curves beginning with the chain
structure at the bottom, and each succeeding
line shows diffusion given 1% more random-
ness. Counting up from the bottom, there
were distinct improvements from each 1%
increase in random ties up to 3.5%, after

information as did the unconstrained struc-
ture. Inclusion of intergroup structures and
diffusers’ effective networks in the regression
models increased the R2 for the medium-pri-
ority diffusion by 0.607 and the R2 for the
high-priority diffusion by 0.733 at time 5 and
by 0.875 at time 10.

Diffusion curves in Figure 2 demonstrate
differences in diffusion of high-priority infor-
mation through the 5 intergroup structures.
Networks that directly connect all subgroups
outperformed more constrained networks.
The hierarchy and the connected clusters
both outperformed the more egalitarian chain
structure, which performed significantly
worse than the others. Diffusion curves (avail-
able as an online supplement to the article at:
http://www.ajph.org) extending over a some-
what longer term span, depict similar struc-
ture effects on medium-priority information
diffusion. These results were paralleled in the
alternative simulation model that weighted in-
group tie probabilities by 4 instead of 5 and
adjusted across-group ties accordingly.

In addition to systemwide network struc-
tures, the number and pattern of ties main-
tained by the information source influenced
diffusion. Diffuser’s degree centrality and
effective network had a predictably strong
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Note. Each curve represents the average level of diffusion at each time period (a unit in which 1 round of events is allowed to
occur) during 300 simulated diffusion processes.

FIGURE 2— Diffusion of high-priority information over time for varying network structures
with a network density of 0.1 (a) and 0.15 (b).

which the diffusion curves improve only
slightly.

DISCUSSION

Results of the simulation models indicate
that intergroup structure and the information
source’s effective network have a greater in-
fluence than does the density of the network
or variance in partnering tendencies on infor-
mation diffusion. Increasing direct ties from
the diffuser to others can facilitate the spread
of information, but selection of partners that
are not already involved with one’s current

contacts is likely to be most helpful. This prin-
ciple applies to intergroup structures as well.
A little networking effort can have a signifi-
cant effect if it yields ties between previously
disconnected subgroups. In lieu of bridging
ties among all groups, a central group that
creates ties to disparate parts of the network
may also improve the effectiveness of the sys-
tem for information transfer. Both of these ap-
proaches shorten path lengths between mem-
bers of the system, but direct connection of
subgroups may create less demand on inter-
mediaries and fewer bottlenecks in the sys-
tem when information flows are high.

Practical Applications
By testing alternative scenarios, simulations

provide information and benchmarks to guide
policymakers and practitioners. For example,
the current results suggest that public health
agents may be able to increase the dissemina-
tion capacity of their community’s health
network without acquiring more direct ties
of their own. One strategy is to connect mem-
bers of different subgroups with each other,
as modeled by introducing randomness to the
chain structure. Another strategy is to direct
networking efforts toward disparate groups,
thus increasing the agency’s effective network
size and connecting the clusters.

In Monterey County, California, Dona
Putnam, public health program manager
and director of nursing, has worked to help
members of the community develop a better-
connected network. In 2006, she invited
stakeholders in maternal, child, and adoles-
cent health issues to a meeting of the Mon-
terey County group, where the 35 attendees
selected 3 priority issues for the county. The
people at the meeting brainstormed about
other organizations that could be invited to
collaborate, which subpopulations were cur-
rently outside their reach, and how to inter-
vene. Small groups began working on the 3
topics, identifying categories of organiza-
tions (e.g., schools, churches, social service
agencies) as well as dozens of specific or-
ganizations (e.g., YMCA, Boy and Girl
Scouts, Department of Motor Vehicles) that
could be contacted.

According to Putnam,

Participants were asked ‘who’s out there’ so we
could include them. . . . It became apparent
that each agency needed to share its resources
and begin to collaborate together to ensure that
the impact would be maximized. One of the
outcomes from our collaboration discussion was
the realization that most of our outreach efforts
were concentrated in the largest city and the
greatest need was in the outlying smaller cities.
Identifying this gap of service sparked dialogue
among the agencies represented to begin to in-
vestigate how they could effectively coordinate
their efforts to address these needs. (D. Putnam,
personal e-mail, January 2006)

By providing a forum for stakeholder inter-
action, Putnam is helping members of the
collaboration to build bridges among geo-
graphically, socially, and professionally
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Note. Each curve represents the average level of diffusion at each time period (a unit in which 1 round of events is allowed to
occur) during 300 simulated diffusion processes.

FIGURE 3—Diffusion of medium-priority information over time for varying network
structures with a network density of 0.1 (a) and 0.15 (b).

distinct subgroups of the county. In addition
to connecting organizations that already work
on child and adolescent health issues, the
collaboration is finding and reaching out to
subpopulations that were not previously in-
cluded in the network.

Over time, efforts to connect subgroups of
a health system can increase communication,
inclusive decisionmaking, and development of
community-based programs. For example,

Community Voices Miami (CVM) convened a
multiagency consortium of approximately 90
health and human service providers, founda-
tions, and community-based organizations
over a period of 3 to 4 years, and it jointly
produced the Miami Action Plan (MAP) for
access to health care. According to program
director Leda Perez (L. Perez, personal e-mail,
January 2006), a valuable component of the
effort was “a community dialogue process.

This was about talking to folks in different
neighborhoods, in different settings about
their realities accessing health care. The result
is that we talked to around 700 people over
the course of 6–8 months and conducted
about 19 dialogues and 3 focus group-like
follow-ups. All of these elements contributed
to the MAP.”

Continuing their networking efforts, CVM
is coordinating efforts by community organi-
zations to develop a training program for
community health workers. Perez explained
that “the training, curriculum, leadership of
this has been very much community-driven
and driven by CHWs [community health
workers] themselves. CVM has been able to
play a role in creating the space, facilitating
the meetings, providing the follow-up and
momentum and negotiating with the commu-
nity college.” (L. Perez, personal e-mail, Janu-
ary 2006)

Comparing these approaches for network
building, we see that the Monterey County
group is striving toward a fully connected net-
work, while CVM builds consortia to connect
clusters of organizations. Both approaches
may be effective.

Limitations and Future Research
Directions

The usefulness of simulations for improv-
ing public health systems depends on integra-
tion with fieldwork that tests and validates
recommendations derived from the simula-
tions. By taking an iterative approach to
modeling and field research, we can obtain
practical insights that could not be obtained
by either approach alone.

Variance in the size of subgroups and sys-
tems might be an interesting aspect of future
research. Another important issue for public
health partnerships and networks that might
be addressed through simulation modeling is
the effect of competition, mutual aid, and
bounded rationality on growth of collabora-
tive networks. Butler has suggested that in-
creasing complexity demands more feedback
and collaboration, which leads organizations
to operate collectively.25 Yet limited resources
and existing structures may constrain mem-
bers’ future opportunities. Central organiza-
tions tend to remain central, but we may find
in public health, as in biotechnology, that



American Journal of Public Health | September 2007, Vol 97, No. 91692 | Research and Practice | Peer Reviewed | Gibbons

 RESEARCH AND PRACTICE 

organizations with more diverse relationships
obtain more subsequent partners.26

The effects of technology on mitigating
constraints on partnering time and resources
also merit further investigation. In conjunc-
tion with this line of research, ongoing atten-
tion to the distribution of centralities may be
needed. A wide variety of real-world systems
form scale-free networks, including sexual
networks27 and the World Wide Web.22 One
might fruitfully apply knowledge about scale-
free networks to widespread global, national,
or regional public health systems. Recent re-
search indicates that extremely large scale-
free networks include subnetworks that are
not scale-free,28 so mixed models of large
public health systems could be appropriate.
Practitioners and field researchers could gain
substantially by investing in online forums
for measuring and supporting such commu-
nity networks.

By incorporating qualitative understanding
of local processes into computational models,
we learn more than we could through qualita-
tive or quantitative research alone. Researchers
performing site-based investigation and inter-
vention in current activities, practices, events,
and so on can then take recommendations
derived from the simulations into the field.
Through this cooperative process, we may de-
velop interventions that will enable the net-
works to better serve everyone in the system.
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