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Abstract
Advances in expressed protein ligation (EPL) methods that permit specific introduction of unique
modifications into proteins have facilitated protein engineering, structure-function and protein
interaction studies. An EPL-generated hybrid exchangeable apolipoprotein has been constructed
from recombinant fragments of apolipoprotein E (apoE) and apolipophorin III (apoLp-III). A
recombinant fusion protein comprised of human apoE N-terminal residues 1–111, a modified
Saccharomyces cerevisiae intein and a chitin binding domain was subjected to 2-
mercaptoethanesulfonic acid (MESNA) induced cleavage to generate apoE(1-111)-MESNA. A
second fusion protein was comprised of a bacterial pelB leader peptide fused to a variant form of
Galleria mellonella apoLp-III residues 1–91. The N-terminal pelB leader sequence directed the
newly synthesized fusion protein to the E. coli perisplamic space where endogenous leader peptidase
cleavage generated the desired N-terminal cysteine-containing protein fragment. The resulting
apoLp-III fragment, which contained no sequence tags or tails, escaped the bacteria and accumulated
in the culture medium. When cultured in M9 minimal medium, Asp1Cys apoLp-III(1–91) was
produced in high yield and was the sole major protein in the culture supernatant. Ligation reactions
with apoE(1–111)-MESNA yielded an engineered hybrid apolipoprotein. The results document the
utility of the pelB fusion protein system for generating active N-terminal cysteine containing proteins
for EPL applications.
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Introduction
Native chemical ligation is a useful synthetic method to join independently generated protein
fragments via a native peptide bond. Expressed protein ligation (EPL) is a form of native
chemical ligation that utilizes intein technology for expression and/or purification of one or
more of the fragments to be ligated [1]. EPL has been used to incorporate unnatural amino
acids [2,3], biophysical probes [4], post-translational modifications [5] and isotope labels [6,
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7] in specific locations within a ligated protein product [reviewed in 1,8,9]. These and other
EPL strategies have allowed unique problems of protein structure, folding, enzyme mechanism,
ion channel function and signaling to be addressed in novel and insightful ways.

EPL involves joining the desired protein fragments via an autocatalytic chemical ligation [8,
10]. This reaction, which creates a peptide bond between protein fragments, requires a specific
thioester linked leaving group moiety covalently bound to the terminal carboxyl group of one
fragment and a cysteine at the amino terminus of the second fragment [8,10]. Adaptations of
intein-dependent protein splicing reactions (analogous to intron/exon splicing) originally
observed in Saccharomyces cerevisae have made it possible to isolate appropriately modified
fragments for subsequent ligation [10–12]. Recombinant production of the protein fragment
containing a thioester-linked leaving group moiety normally includes thiol-dependent
autocatalytic, intein-mediated cleavage of an engineered fusion protein. Generation of the
second protein fragment has relied on three primary approaches including synthetic production
by solid-phase peptide synthesis, proteolysis of recombinant proteins by in vitro or in vivo
methods [13,14], or thiol and temperature dependent intein mediated fusion protein cleavage
[15,16; reviewed in 9,17]. Given limitations on fragment length using solid phase peptide
synthesis, the specificity and cost of in vitro protease cleavage and production/yield issues with
intein-mediated fusion protein cleavage, the EPL strategy employed requires careful
consideration.

Signal peptidases located in the bacterial periplasmic space have been extensively utilized for
high-yield production of recombinant proteins [18,19]. The predictable and precise nature of
leader peptidase cleavage at the pelB-protein junction combined with high protease activity
with a cysteine at position −1 [18], suggests EPL-active protein fragments can be generated
by engineering a pelB leader sequence adjacent to the amino-terminal cysteine of the fragment
of interest. Furthermore, the pelB sequence directs the newly synthesized protein to the
periplasmic space where the membrane-anchored peptidase is localized [20,21]. Studies of
bacterially expressed recombinant apolipoproteins have shown that, not only does efficient
pelB cleavage occur, the protein product also escapes the periplasm and accumulates in the
extracellular culture media [22–25]. This process, for which the mechanism is unknown,
facilitates recovery and downstream processing of recombinant proteins from bacterial
cultures.

Apolipoprotein E (apoE) is a 299-amino acid glycoprotein that is a well-characterized ligand
for the low-density lipoprotein receptor [26]. The X-ray crystal structure of the isolated N-
terminal domain revealed a globular bundle of four elongated amphipathic α-helices that is
stabilized by interhelical hydrophobic interactions in the absence of lipid [27]. Likewise, insect
apolipophorin III (apoLp-III) adopts a helix bundle organization [28,29]. Using recombinant
DNA technology, a hybrid apolipoprotein comprised of sequence elements derived from apoE
and apoLp-III has been generated [30]. Studies revealed that this engineered hybrid
apolipoprotein adopts a folded protein structure that manifests biological activity of the parent
proteins. To further pursue hybrid apolipoprotein research, EPL has been employed to generate
a protein hybrid comprised of apoE residues 1-111 and Asp1Cys-substituted apoLp-III residues
1-91. To achieve this, the pelB bacterial expression system was employed to generate Asp1Cys
apoLp-III(1-91) for use in ligation studies with C-terminal thiol-adducted human apoE(1-111)
derived from an intein fusion protein. Optimization studies to determine conditions that
promote protein ligation revealed effects of temperature, pH and thiol agent. The approach
described expands the strategies available for EPL and provides a means to specifically modify
sequence elements within a novel hybrid apolipoprotein.
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Materials and Methods
Preparation of apoE(1-111)

Human apoE(1-111) was cloned into the pTYB1 vector (New England Biolabs) and expressed
in E. coli ER2566 cells as an S. cerevisiae VMA1 intein and chitin binding domain (CBD)
fusion protein. To facilitate optimal intein-mediated fusion protein cleavage [31], valine 111
was mutated to alanine using the QuikChange method (Stratagene) according to the
manufacturer’s instructions. Expression and purification procedures for apoE(1-111) followed
standardized protocols previously established for generating intein-mediated thioester-
adducted proteins [10]. Briefly, saturated overnight cultures were inoculated into 2xYT media
containing 50 μg/ml ampicillin, grown to OD600 = 0.6 and induced with 1 mM isopropyl
thiogalactopyranoside (IPTG). After 6 h at 30 °C the cells were pelleted by centrifugation (8000
g for 15 min), solubilized with buffer A (20 mM Tris, 150 mM NaCl, 1 mM EDTA, pH=8.0)
containing 1% Triton X-100 and stored at −20 °C. Dissolved cell pellets were combined, passed
through a microfluidizer, sonicated and centrifuged at 12000 g for 20 min. Isolated clarified
cell extract was passed over a chitin bead column pre-equilibrated with buffer A containing 1
% Triton X-100. The column was washed with 10 column volumes of detergent-free buffer A.
Fusion protein cleavage was then induced by addition of 2-mercaptoethanesulfonic acid
(MESNA) to a final concentration of 60 mM. Flow was arrested for 16–24 h at 22 °C and eluted
with 2 bed volumes of buffer A containing 5 mM MESNA. The sample was dialyzed against
deionized H20, lyophilized and stored at −20 °C. ApoE(1-111)-MESNA was further purified
by semi-preparative C8 reversed-phase high performance liquid chromatography on a Perkin-
Elmer Series 200 HPLC.

Preparation of apoLp-III(1-91)
The coding sequence for G. mellonella apoLp-III(1-91) was cloned into the pET22b plasmid
(Novagen) directly adjacent to a vector encoded pelB leader sequence. Site directed
mutagenesis of aspartate 1 to cysteine was performed using the QuikChange method.
Expression and purification of Asp1Cys apoLp-III(1-91) was carried out as previously
described for the wild type fragment [25,32]. Briefly, saturated overnight cultures were
inoculated into M9 media supplemented with 13.3 mM glucose, 0.1 mM CaCl2, 2 mM
MgSO4 and 50 μg/ml ampicillin. At OD600 = 0.6, the culture was induced with 2 mM IPTG.
After 6 h at 30 °C, bacteria were pelleted by centrifugation at 8000 g for 15 min and the culture
supernatant collected, concentrated by ultrafiltration and chromatographed on a 2.5 × 30 cm
column of Sephadex G-75. Fractions containing apoLp-III(1-91) were pooled, dialyzed against
deionized H2O, lyophilized and further purified by semi-preparative C8 reversed-phase HPLC.

Analytical methods
Protein purity and/or ligation reaction progress were monitored by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) using either a 4–20% or fixed 16%
acrylamide slab gel. Gels were stained with Amido Black 10B. Matrix-assisted laser desorption
ionization time-of-flight (MALDI-TOF) mass spectrometry was performed on a Bruker
Daltronics autoflex LRF as described previously [33].

Expressed protein ligation (EPL)
Ligation reactions employed purified apoE(1-111)-MESNA and Asp1Cys apoLp-III(1-91).
Unless otherwise stated, fragments were dissolved in 20 mM NaH2PO4, pH=7.2, 150 mM
NaCl (PBS) supplemented with 5 % (w/v) MESNA at a final concentration of 5 mg/mL and
incubated at 37 °C for 24 h in a final volume of 50 μL. In other experiments, specified reaction
parameters were varied as described in the text. Quantification of ligation product yield was
performed using ImageJ gel quantification software for Macintosh [34,35]. Percent ligation
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was calculated from densitometric analysis of stained bands corresponding to apoE(1-111),
apoLp-III(1-91) and hybrid apolipoprotein, respectively, as follows: % ligation = [hybrid /
(apoE(1-111) + apoLp-III(1-91) + hybrid)] × 100%.

Results and Discussion
Fragment production and characterization

A diagram depicting recombinant apolipoprotein fragment generation and EPL strategy is
shown in Figure 1. ApoE(1-111)-MESNA was generated from MESNA induced, intein-
mediated cleavage of an apoE·intein·CDB fusion protein. Replacing the commonly used thiol
reducing agent dithiothreitol (DTT) with MESNA resulted in a stable adduct that remained
covalently bound to the carboxy terminus of alanine 111. Ultimately, the MESNA moiety
serves as a leaving group during EPL [8,10,36]. SDS-PAGE analysis verified that the column
eluate was highly enriched in apoE(1-111) (Figure 2, panel A) while HPLC analysis gave rise
to a single major peak and mass spectrometry yielded a molecular mass = 13,193. The
molecular mass increment over that calculated from the amino acid composition of this protein
fragment (13,024) is consistent with the presence of a MESNA adduct (MW = 164.2 Da).

The EPL substrate fragment containing a reactive N-terminal cysteine (Asp1Cys apoLp-III
(1-91)) was expressed in E. coli as a pelB leader peptide fusion protein. The expressed fusion
protein was directed to the perisplasmic space where endogenous leader peptidase cleavage
generated the desired apoLp-III fragment, which escaped the bacteria and accumulated in the
culture medium [25]. ApoLp-III(1-91) was isolated from the culture supernatant by a
combination of gel permeation chromatography and reversed phase HPLC (Figure 2, panel B).
Mass spectrometry of the isolated fragment yielded a molecular mass of 10,083, in good
agreement with the calculated mass of 10,091 for Asp1Cys apoLp-III(1-91), confirming pelB
leader peptide cleavage. Final protein yield was ~30–50 mg/L.

Expressed protein ligation
To determine the suitability of apoE(1-111)-MESNA and Asp1Cys apoLp-III(1-91) protein
fragments for EPL, incubations were conducted as a function of time (Figure 3). SDS-PAGE
analysis revealed a time-dependent accumulation of the expected 23 kDa hybrid apolipoprotein
product over the course of 48 h. Appearance of the hybrid apolipoprotein was correlated with
a loss of apoE(1-111)-MESNA and apoLp-III(1-91), consistent with a substrate-product
relationship. Whereas EPL reactions often require inclusion of chaotropic agents or detergents
to maintain substrate fragment solubility [7,37,38], apoE(1-111)-MESNA and apoLp-III(1-91)
fragments (as well as the hybrid apolipoprotein product) remain fully soluble in phosphate
buffered solution at the millimolar concentrations employed. This finding is in agreement with
the known high solubility of intact apoE-N-terminal domain and full-length apoLp-III [29,
39]. Based on SDS-PAGE and mass spectrometry analysis, we estimate that, after 48 h, ligation
product yield is ~30%. The observed time dependent increase in hybrid apolipoprotein product
is in agreement with previous reports that indicate EPL product formation, depending on the
size and protein fragment composition, is maximal between 5 and 48 h [31,37,40].

In an effort to optimize EPL reaction parameters using this system, further experiments were
performed to assess the effect of ligation reaction temperature, pH and thiol agent concentration
(Figure 4). While most studies suggest EPL product formation is optimal at 37 °C, isolated
reports suggest that room temperature or 4 °C, with longer incubation times, improves product
yield [36,40,41]. Whereas hybrid apolipoprotein product formation was low at 4 °C, increasing
the temperature to 22 ° C resulted in a dramatic increase in product formation (panel A). Further
increases in reaction temperature gave rise to incremental increases in hybrid apolipoprotein
product formation.
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Using a Tris-maleate buffer system, the effect of solution pH on EPL product formation was
examined (panel B). Hybrid apolipoprotein formation was lowest at pH 6.0 and increased
steadily with increasing solution pH, reaching a maximum at pH 9.0. The observed decrease
in product formation at pH 9.5 suggests a slightly basic pH may be optimal for this EPL
reaction. Others have reported that pH, which affects the chemoselectivity of peptide bond
formation during ligation, is optimal within a range centered at pH = 8.0 [17].

Studies reporting variable ligation efficiencies using different thiol cofactors stress that choice
of thiol agent is critical for ligation reactions [6,7,42], independent of the thiol employed during
intein-mediated fusion protein cleavage. Comparison of ligation efficiency in incubations
supplemented with different thiol agents including DTT, MESNA, thiophenol and 1,2-
ethanedithiol were examined for hybrid apolipoprotein EPL (panel C). As previously
documented, DTT resulted in low ligation efficiency, reportedly due to instability of the DTT
adduct as a function of time [41,43]. On the other hand, ligation reactions supplemented with
MESNA, thiophenol, 1,2-ethanedithiol or a combination of these agents increased hybrid
apolipoprotein product formation. The effect of MESNA concentration on product formation
was also evaluated (panel D). Compared to the control incubation in which added MESNA
was not present, similar product yields were observed between 1 % and 5 % MESNA. The data
confirm that MESNA is not only required as a chemical leaving group during EPL but also
facilitates ligation reaction progress, most likely by maintaining a reducing environment and
preventing unwanted oxidation or hydrolysis.

The effect of substrate concentration on ligation product yield was investigated by varying the
amount of either apoE(1-111) or apoLp-III(1-91) in EPL reactions (Figure 5). As expected, in
the absence of either substrate protein fragment, no reaction product was detected. When the
amount of either apoE(1-111)-MESNA or apoLp-III(1-91) starting substrate was increased
relative to the other fragment, a positive correlation with hybrid apolipoprotein product
formation was observed as equimolar protein concentrations were approached. However, when
the amount of apoE(1-111)-MESNA in the incubation was increased relative to apoLp-III
(1-91), maximal product formation was observed below equimolar concentration, indicating
that apoE(1-111)-MESNA concentration dependent ligation was saturable (panel A). This
suggests that apoE(1-111) is partially limiting with respect to ligation efficiency, perhaps due
to the presence of MESNA deficient substrate protein.

Summary and Conclusions
The increasing utilization of EPL methodologies for the design of specifically modified
proteins has demanded new techniques for manipulating and producing thioester and N-
terminal cysteine EPL reaction substrates. The present study employed a novel recombinant
system for facile production of an EPL-active, N-Cys protein fragment in high yield. The
system described represents an improvement over conventional in vitro protease catalyzed
reactions since cleavage occurs in vivo concurrent with protein expression. Using standard
protein isolation techniques, the desired apolipoprotein fragment was purified directly from a
bacterial culture supernatant without the need to modify or protect the active cysteine. Although
other proteins may not escape the bacteria following pelB leader peptide cleavage, localization
to the periplasmic space is known to increase protein folding efficiency [44,45]. Additionally,
pelB fusion protein expression is readily adaptable to growth in M9 minimal media, permitting
stable isotope enrichment for high-resolution structural and biophysical studies [7,38]. Thus,
the method described offers a valuable approach for generating EPL active, N-Cys protein
fragments for use in ligation reactions, simplifying downstream processing and increasing
yield. The establishment of methods to generate hybrid apolipoproteins provides new
opportunities for protein engineering and structure function analysis of this and other
biologically important protein families.
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DTT  
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expressed protein ligation

MESNA  
2-mercaptoethanesulfonic acid

N-cys  
amino-terminal cysteine
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Figure 1. Design strategy for EPL-mediated hybrid apolipoprotein production
Substrate protein fragments were generated as recombinant fusion proteins, cleaved to generate
the desired EPL active fragments and ligated to generate the product hybrid apolipoprotein. M
denotes 2-mercaptoethansulfonic acid (MESNA) used to induce intein-mediated cleavage of
the apoE · intein · CDB fusion protein.
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Figure 2. Characterization of EPL reaction substrate protein fragments
Panel A) apoE(1-111)-MESNA production, purification and analysis. Left; 4–20 %
acrylamide gradient SDS-PAGE analysis of fusion protein expression, cleavage and apoE
(1-111)-MESNA recovery. Lane 1) molecular weight standards; lane 2) bacterial cell lysate of
non-induced ER2566 E. coli cell cultures harboring the apoE-pET22b plasmid; lane 3) lysate
of cells induced with 1 mM IPTG; lane 4) chitin column wash flow through following
application of an induced cell culture preparation; lane 5) chitin column eluate after exposure
to buffer supplemented with 60 mM MESNA. Right; Analytical reversed-phase HPLC of chitin
column eluate recovered following exposure to MESNA. Inset: MALDI-TOF analysis of the
protein peak with an HPLC retention time = 50 min. Panel B) N-Cys apoLp-III(1-91)
production, purification and analysis. Left; 16% acrylamide SDS-PAGE analysis of pelB
fusion protein expression, cleavage and Asp1Cys apoLp-III(1-91) recovery. Lane 1) molecular
weight standards; lane 2) bacterial cell lysate of non-induced E. coli BL21cells harboring the
apoLp-III-pET22b plasmid; lane 3) lysate of cells induced with 2 mM IPTG; lane 4) M9
minimal media cell culture supernatant from induced bacterial cell cultures; Right) Analytical
reversed-phase HPLC of induced bacterial cell culture supernatant following Sephadex G-75
column chromatography; Inset: MALDI-TOF analysis of the major HPLC peak (retention time
= 48 min).
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Figure 3. Effect of incubation time on EPL-mediated hybrid apolipoprotein formation
Asp1Cys apoLp-III(1-91) and apoE(1-111)-MESNA were dissolved in PBS supplemented
with 5 % (w/v) MESNA (5 mg/mL final concentration) and incubated at 37 °C. Following
incubation, hybrid apolipoprotein production was assessed by 16% acrylamide SDS-PAGE
analysis. The gel was stained with Amido Black 10B.
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Figure 4. Effect of incubation parameters on EPL-mediated hybrid apolipoprotein production
Asp1Cys apoLp-III(1-91) and apoE(1-111)-MESNA were incubated for 48 h at 5 mg/mL final
concentration under specified conditions of temperature, buffer pH and thiol agent. Following
incubation, aliquots of the reaction mixture were subjected to SDS-PAGE and ligation product
formation assessed by densitometry of the stained gel using ImageJ software [30,31]. Panel
A) Incubations conducted in PBS supplemented with 5 % (w/v) MESNA at the indicated
temperatures; Panel B) incubations conducted at 37 ° in Tris-maleate buffer supplemented
with 5 % MESNA and adjusted to the indicated pH; Panel C) incubations as in panel A except
for substitution of the specified thiol agent(s) at 10% w/v; Panel D) as in Panel A except for
specified MESNA concentration. For panels C and D the control incubation was conducted
without added thiol agent. Values reported are the mean ± SEM of three independent
determinations.
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Figure 5. Effect of substrate protein fragment concentration on EPL product formation
Panel A) Specified concentrations of apoE(1-111)-MESNA and a fixed Asp1Cys apoLp-III
(1-91) concentration (2.5 mg/mL final) were incubated in PBS supplemented with 5 % (w/v)
MESNA at 37 °C for 24 h (25 μL final volume). Panel B) Specified concentrations of Asp1Cys
apoLp-III(1-91) and a fixed apoE(1-111)-MESNA concentration (2.5 mg/mL) were incubated
in PBS supplemented with 5 % (w/v) MESNA at 37 °C for 24 h (25 μL final volume). Following
incubation, an aliquot of the reaction mixture was subjected to SDS-PAGE and ligation product
formation assessed by densitometry of the stained gel using ImageJ software [30,31]. Values
reported are the mean ± SEM (n=3).
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