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We have utilized transposon mutagenesis to obtain insertional mutations in Providencia stuarii that activate
the chromosomal aac(2')-a gene. Two closely linked mini-Tn5Cm insertions were obtained in a locus
designated aarA, and a single insertion was obtained in a separate locus, aarC. Nucleotide sequence analysis,
complementation studies, and localization of the sites of mini-TnSCm insertion have allowed the identification
of the aarA coding region. The deduced AarA protein had a molecular mass of 31,086 kDa and displayed
characteristics of an integral membrane protein. A strain deleted for the aarA gene by allelic exchange showed
at least a fourfold increase in the accumulation of aac(2')-la mRNA and an eightfold increase in aminoglyco-
side resistance. Mutations in aarA were pleiotrophic and also resulted in loss of pigmentation and a deficiency
in cell separation during division.

Chromosomal antibiotic resistance genes intrinsic to a given
organism are often subject to complex regulatory control. The
inducible 3-lactamase encoded by the ampC gene and found in
members of the family Enterobacteriaceae is controlled by at
least four gene products. In this system, ampR functions as a
positive activator by binding to the ampC promoter region (2,
17). The ampD and ampE genes act as negative regulators of
ampC expression (11, 16). Regulation by the ampD gene
product may be indirect, since ampD mutants have an altered
peptidoglycan composition, which may affect ampC expression
(29). A fourth gene, ampG, which is necessary for ampC
induction, encodes a putative trans membrane protein and may
be involved in signal transduction (15, 18).
A second example of regulated antibiotic resistance occurs

in the multiple antibiotic resistance locus (mar) in Escherichia
coli. This operon, composed of three open reading frames,
marR, marA, and marB, affects a regulon controlling resistance
to a variety of unrelated antibiotics, such as tetracycline,
chloramphenicol, and quinolones (4, 9). The marA gene prod-
uct is a transcriptional activator and may serve to activate
genes involved in the Mar phenotype (3, 7a). The marR gene
appears to encode a repressor of the marRA4B operon, and the
function of the marB gene has yet to be determined (3).
Expression of the Mar phenotype may result, in part, from the
marA-dependent activation of micF. This decreases the
amount of OmpF porin and subsequent antibiotic uptake (4,
5). It has also been demonstrated that the SoxRS system can
also activate micF, resulting in increased resistance to some
antibiotics (2a).

Expression of chromosomal aminoglycoside acetyltrans-
ferase genes in certain organisms is also subject to complex
regulation. In Serratia marcescens, the aac(6')-Ic gene is ex-
pressed at low levels in wild-type strains. Activation of this
gene to confer high-level aminoglycoside resistance occurs at
the transcriptional level (26).
We have recently characterized a chromosomally encoded

aminoglycoside acetyltransferase, aac(2')-Ia, in Providencia
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stuartii (25). Although, the aac(6')-Ic gene in S. marcescens and
the aac(2')-Ia gene in P. stuartii appear to be universally
present in each species (24, 26), the putative cellular function
of these genes is unknown. Possibly, they have a housekeeping
function and are not present for the sole purpose of protection
against aminoglycosides. Expression of aac(2')-la occurs at low
levels in wild-type P. stuartii and is not inducible by aminogly-
cosides; however, a trans-acting negative regulator, defined by
the aar3 allele has been identified (25). Isolation of the aar
gene by complementation has been hampered by the inability
to introduce DNA into P. stuartii at high frequency. To
circumvent this problem, we have utilized transposon mu-
tagenesis to identify trans-acting negative regulators of aac(2')-
Ia.

Identification of aarA. All strains and plasmids used in this
study are listed in Table 1. To identify genes that regulate
aac(2')-la in trans, a genetic screen was utilized to identify
transposon (mini-Tn5Cm) insertions that increased aac(2')-la
expression both from the chromosomal copy and from a
plasmid-encoded aac(2')-lacZ transcriptional fusion. Introduc-
tion of mini-TnSCm into the P. stuartii chromosome was
achieved by a conjugal mating with E. coli S17.1 Xpir/pUT::
mini-TnSCm (6). Wild-type P. stuartii PR50 containing a
plasmid-encoded aac(2')-lacZ fusion (pSCH4500.lac) (Table
1) forms white colonies on media containing X-Gal (5-bromo-
4-chloro-3-indolyl-13-D-galactopyranoside) because of the low
levels of aac(2')-la transcription. Three independent mini-
Tn5Cm insertional libraries were constructed in PR50
(pSCH4500.lac) and screened for blue colonies on Luria-
Bertani (LB) plates containing X-Gal. A total of 9 blue
colonies of approximately 30,000 colonies screened were iden-
tified. These blue colonies were then tested for gentamicin
resistance at 20 jig/ml, which represents a fivefold increase
over the MIC for wild-type PR50 and would indicate increased
expression of the chromosomal aac(2')-Ia gene. Three strains
with this phenotype were analyzed and designated PR50.A1,
PR50.A6, and PR50.B3, each with gentamicin MICs that were
32 Rig/ml, an eightfold increase over that of the wild type. To
determine the site of mini-TnSCm insertion in these mutants,
chromosomal DNA was prepared as previously described (1)
and digested with ClaI, which does not cut within mini-Tn5Cm.
These DNAs were then probed with a 3.6-kb EcoRI fragment
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TABLE 1. Bacterial strains and plasmids

Strain or plasmid Genotype and relevant markers Source or reference

Strains
E. coli

XL1-Blue recAl endAl hyrA96 thi-1 hsdRl7 supE44 relA Alac-pro [F'proAB lacIq lacZAM15 TnJO Stratagene
S17.1 Xpir thi pro hsdR recA Xpir 28
SM10 xpir thi thr leu tonA lacY supE recA RP4-2-Tc::Mu Kmr Xpir 20

P. stuartii
PR50 Wild type 25
PR50.A1 PR50 aarCl::mini-Tn5Cm This study
PR50.A6 PR50 aarA1::mini-Tn5Cm This study
PR50.B3 PR50 aarA2::mini-TnSCm This study
PR51 PR50 AaarA3 This study

Plasmids
pBluescript SK(-) High-copy-number vector Apr Stratagene
pSCH4500 pBluescript derivative with 1.3-kb Sau3A fragment containing aac(2')-Ia 25
pKNG101 R6K-derived suicide plasmid containing Strr and sacB 12
pSCH4500.1ac pSCH4500 with promoterless lacZ cassette inserted at NdeI site within aac(2')-Ia This study
pQF50 Promoter probe vector for construction of lacZ transcriptional fusions 7
pR400 Derivative of pQF50 containing the aac(2')-la promoter region from -233 to +223 fused 25

to lacZ
pR401 Derivative of pQF50 containing the aac(2')-la promoter region from -233 to This study

approximately +570 fused to lacZ
pSK.aarA pBluescript SK(-)::3.0-kb ClaI fragment containing aarA This study
pSK.aarA AH/X A HpaIIXhoI deletion derivative of pSK.aarA This study
pSK.aarA AE/N pSK.aarA containing an in-frame Eco47III-NarI deletion within aarA This study
pADV1 pKNG101::SalI-XbaI fragment from pSK.aarA AE/N This study

internal to mini-TnSCm (6). Two of the mutants, designated
PR50.A6 and PR50.B3, contained a single hybridizing frag-
ment of 6.6 kb, suggesting that mini-TnSCm had inserted into
the same ClaI fragment in these isolates (data not shown).
Additional Southern blots demonstrated that mini-Tn5Cm had
inserted in separate locations within this common ClaI frag-
ment (data not shown). The insertional mutations in strains
PR50.A6 and PR50.B3 that increased aac(2')-Ia expression
were designated aarAl and aarA2 respectively, and these
strains were used for further study. The third mutant,
PR50.A1, contained two mini-Tn5Cm insertions, identified by
two hybridizing fragments in excess of 12 kb, and the mutant
allele which increased aac(2')-la expression was designated
aarCl, on the basis of the inability of aarA to complement this
mutation (see below).

Cloning and DNA sequence analysis of aarA. The wild-type
aarA gene was cloned in a two-step process. First, a chromo-
somal fragment containing the aarA::mini-Tn5Cm insertion
and flanking DNA was isolated from PR50.B3 by digesting
chromosomal DNA with ClaI followed by ligation to ClaI-
digested pBluescript SK(-) (Stratagene). This ligation was
used to transform E. coli XL1, and cells were plated on LB
agar containing chloramphenicol (20 jig/ml) to select for
recombinants which had acquired the mini-TnSCm insertion
along with flanking P. stuartii chromosomal DNA. As expected,
chloramphenicol-resistant transformants contained a 6.6-kb
ClaI fragment. Restriction mapping of this cloned fragment
showed that the insert contained 2.2 and 0.8 kb of P. stuartii
DNA flanking the Tn5Cm element. The 0.8-kb fragment was
then used as a probe in colony hybridizations to isolate the
wild-type version of aarA from PR50 by ligation of 2- to 4-kb
ClaI fragments into pBluescript SK(-). Plasmid pSK.aarA,
containing a 3.0-kb ClaI fragment encoding aarA was isolated
in this manner.
To confirnd that pSK.aarA contained a functional aarA gene,

this plasmid was introduced by electroporation (25) into
PR50.A6 and PR50.B3, both containing mini-Tn5Cm inser-
tions within the aarA locus. The level of gentamicin resistance
was decreased from 32 to 2 ,ug/ml in cells containing pSK.aarA,
relative to the 32 ,ug/ml seen in cells transformed with the
control vector pBluescript SK(-). This complementation re-
sulted in gentamicin resistance levels that were slightly below
the wild-type level of 4 ,ug/ml, which could be the result of a
gene dosage effect. This verified that pSK.aarA contained a
functional aarA gene and that both PR50.A6 and PR50.B3
contained mini-TnSCm insertions which affected aarA func-
tion. Plasmid pSK.aarA was unable to complement PR50.A1
(aarCl::mini-TnSCm) (data not shown).

Nucleotide sequence of aarA. The nucleotide sequence of
the 3.0-kb ClaI fragment within pSK.aarA was determined by
using previously described procedures (10, 25). The insert in
pSK.aarA consisted of 3,016 nucleotides and contained three
large open reading frames. To localize the potential aarA
coding region, we used Southern blot analysis to determine the
approximate site of the mini-TnSCm insertions in PR50.A6
and PR50.B3, and the insertions were localized to positions
700 and 800, respectively, as indicated in Fig. 1. Both insertions
were located within an open reading frame of 846 nucleotides.
To test whether this 846-bp open reading frame encoded aarA,
subclones of pSK.aarA were constructed and then tested for
their ability to complement the aarA::mini-TnSCm mutation in
PR50.B3. Introduction of pSK.aarA AH/X into PR50.B3 re-
sulted in a reduction of gentamicin resistance levels from 32 to
2 ,ug/ml (Fig. 1), indicating complementation of the aarA::
mini-TnSCm mutation. Introduction of the control plasmid
pBluescript SK(-) did not change the gentamicin resistance
levels of PR50.B3, which remained at 32 ,ug/ml. Introduction
of pSK.aarA AE/N, containing an in-frame 585-bp deletion
between the Eco47III and NarI sites within the 846-bp open
reading frame (Fig. 1 and 2), did not complement the aarA
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FIG. 1. Identification of aarA coding region. Plasmid pSKIaarA and several deletion derivatives are shown, and the closed areas represent DNA
present in each of the plasmids. The location and orientation of three potential open reading frames are shown as open areas within pSKaarA.
Arrowheads denote the sites of the mini-TnSCm insertion in the aarA mutants.

mutation in PR50.B3, which retained a gentamicin resistance
level of 32tug/ml. These results strongly suggested that the
846-bp open reading frame encoded aarA. Figure 2 displays
the nucleotide sequence of the 1,340-bp insert within pS-
K.aarA AH/X containing the 846-bp aarA open reading frame.

Properties of the AarA protein. The deduced AarA protein
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FIG. 2. Nucleotide sequence of aarA. The nucleotide sequence of a
1,340-bp fragment containing aarA is shown. In addition, relevant
restriction sites are indicated above the corresponding nucleotide
sequence. The deduced amino acid sequence of the AarA protein is
shown below its corresponding nucleotide sequence, and potential
membrane spanning regions are indicated by a dashed line below the
corresponding amino acids.

was 31,086 kDa and a search of both the National Biomedical
Research Foundation-Protein Identification Resource and
Swiss-Prot databases identified a region of AarA with 27%
identity over a stretch of 78 amino acids to the GlpG protein of
E. coli. The function of GlpG has been reported as unknown
(31). No other significant homologies to AarA were identified.
The Kyte-Doolittle hydropathy profile of the AarA protein
demonstrated that it was extremely hydrophobic with potential
transmembrane domains present between amino acids 15 to 40
and 135 to 170 (Fig. 2).

Effects of aarA deletion on aac(2')-Ia expression. An un-
marked, in-frame 585-bp deletion of the chromosomal aarA
gene was constructed by allelic replacement by using plasmid
pADV1, a pKNG101 (12) derivative containing P. stuartii
DNA corresponding to the insert in pSKaarA AE/N (Fig. 1).
In addition, pADV1 contains a mobilization region of RK2,
the sacB gene which confers sucrose sensitivity (8, 27), and an

R6K origin of replication that will allow replication only in
strains providing thepir gene product (IT protein) in trans (14).
Integration of pADV1 into the P. stuartii chromosome was

achieved by a filter mating between P. stuartii PR50 containing
pR400 [aac(2')-lacZ] (25) and E. coli SM10 Xpir (20) contain-
ing pADV1. Since pADV1 cannot replicate in P. stuartii,
selection for integration at the aarA locus was achieved by
plating the mating mixture on LB media containing strepto-
mycin (75 jig/ml), along with ampicillin (400 ;ig/ml) to main-
tain pR400 and tetracycline (15 jig/ml) to counterselect the E.
coli donor. Integration of pADVI at the aarA locus results in
a duplication of aarA, one copy of the wild type and one copy
containing the desired deletion. Resolution of the aarA dupli-
cation by a second crossover event was achieved by plating on
LB agar plates without NaCl but containing ampicillin and 5%
sucrose. Sucrose-resistant survivors were obtained at a fre-
quency of 7.1 10-2. Sucrose-resistant colonies containing the
aarA deletion were identified at a frequency of 10.7% (14 of
131) as blue colonies on media containing X-Gal, which
indicated activation of the aac(2')-lacZ fusion by loss of aarA.
Several colonies with this phenotype were cured of pR400 by
growing in the absence of ampicillin, and Southern blot
analysis was used to verify the correct deletion in strain PR51
(data not shown).
The aarA deletion in PR51 resulted in an eightfold increase

in gentamicin resistance levels (32 jig/ml), relative to levels in
wild-type PR50 (4 jig/ml). Introduction of pSK.aarA AH/K,
containing only the aarA gene, into PR51 resulted in comple-
mentation, with a reduction of gentamicin resistance to 2
jig/ml. Therefore, the increased aac(2')-Ia expression resulted

pSK.aarA

pSK.aarA AH/X

pSK.aerA AE/N
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FIG. 3. Effect of aarA deletion on aac(2')-Ia mRNA accumulation.
Total RNA (10 jig) prepared from PR50 (lane 1) and PR51 (lane 2)
was annealed to 0.6 pmol of the oligonucleotide 5'-GCGAAATCGT
CATGCGAAAAATCG-3' and extended with avian myeloblastosis
virus reverse transcriptase as described previously (25), with the
exception that extensions were carried out with unlabelled primer in
the presence of 20 p.Ci of t-3S-dATP at 480C for 30 min. Lanes G, A,
T, and C represents a dideoxy sequence ladder prepared by using the
same primer and pSCH4500 (25) containing the cloned aac(2')-Ia
gene. Reaction products were run on 6% acrylamide gels containing 8
M urea.

from loss of aarA function and was not due to polarity. To
determine if transcriptional changes in aac(2')-Ia accounted
for the increased gentamicin resistance levels observed in the
aarA deletion mutant, we examined the levels of aac(2')-Ia
mRNA by primer extension analysis. The results shown in Fig.
3 demonstrated increased accumulation of aac(2')-Ia mRNA
in PR51 (AaarA), relative to that in PR50 (wild type).
To further quantitate this increase in aac(2')-la expression,

we measured the accumulation of ,B-galactosidase from an
aac(2')-lacZ fusion, present on plasmid pR401, a pQF50 (7)
derivative containing an 800-bp fragment of the aac(2')-la
promoter region fused to lacZ. In wild-type PR50 containing
pR401, ,B-galactosidase activity was measured at 9.4 ± 0.38 U,
as defined by Miller (19). In PR51 (pR401), this activity was
measured at 32.7 ± 1.3 U, representing a 3.5-fold increase
relative to that of the wild type.

Pleiotropic effects associated with loss of aarA. PR51 con-
taining the aarA deletion displayed several prominent pheno-
types. First, a secreted yellow pigment seen in wild-type cells
was absent or greatly reduced in the aarA mutant. Second,
aarA mutants displayed a change in cell morphology relative to
that of the wild type. In Fig. 4, the phenotype of PR51 is
compared with that of wild-type PR50. The aarA deletion
resulted in cells which appear to be a defective in the ability to
separate during division, resulting in paired cells along with
chains of cells. Introduction of pSKaarA AX/H, containing
only the aarA coding region, restored both pigment production
and normal cell morphology to PR51, confirming that these
phenotypes resulted from loss of aarA and were not due to
polar effects.

Concluding remarks. In a search for trans-acting negative
regulators of aac(2')-Ia, we have identified the aarA gene. The
increased accumulation of aac(2')-la mRNA in an aarA back-
ground and the increased ,B-galactosidase accumulation from
an aac(2')-lacZ fusion suggest that aarA acts at the transcrip-
tional level, although changes in mRNA stability have not been
ruled out. The cloned aarA gene was unable to complement
the previously isolated aar3 mutation (25), suggesting that at

PR50 wild-type

PR51 A aarA

FIG. 4. Cell morphology of P. stuartii wild-type PR50 and (B) PR51
AaarA cells. In both cases, cells were taken from LB plates at an early
stage of growth.

least two gene products negatively regulate aac(2')-la expres-
sion in P. stuartii.

Analysis of AarA demonstrated that it was very hydropho-
bic, with at least two potential transmembrane domains. This
suggests the possibility that AarA is an integral membrane
protein, which may act as a transcriptional regulator. Other
examples of membrane-associated transcriptional regulators
include the activators CadC (30), ToxR (21), and LuxR (13)
and the transcriptional repressor PutA (23). However, it
should be stressed that the putative membrane location of
AarA and its ability to bind DNA have not been experimen-
tally verified. Alternatively, regulation by AarA may be indi-
rect, perhaps by AarA serving to transport a small ligand that
interacts with a repressor.

Perhaps the most interesting phenotype of aarA mutants is
their altered cell morphology. Relative to the rod-shaped cells
of wild-type PR50, the aarA deletion resulted in cells that were
connected together by remnants of septal material, suggesting
a defect in the final stages of septation and subsequent cell
separation. This chaining phenotype of aarA mutants is similar
in appearance to envA mutants of E. coli (22). One explanation
for this similarity is that aac(2')-Ia overexpression may antag-
onize the function of an EnvA homolog in P. stuartii. Experi-
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ments are currently in progress to determine if the altered
morphology of aarA mutants is the direct result of aac(2')-la
overexpression or if this phenotype is the result of changes on
other genes, such as envA.

Nucleotide sequence accession number. The aarA sequence
has been assigned GenBank accession no. L28755.
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