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ABSTRACT The recent rapid growth of protein sequence
databases is outpacing the capacity of researchers to biochem-
ically and structurally characterize new proteins. Accordingly,
new methods for recognition of motifs and homologies in
protein primary sequences may be useful in determining how
these proteins might function. We have applied such a method,
an iterative learning algorithm, to analyze possible coiled coil
domains in histidine kinase receptors. The potential coiled
coils have not yet been structurally characterized in any
histidine kinase, and they appear outside previously noted
kinase homology regions. The learning algorithm uses a
combination of established sequence patterns in known coiled
coil proteins and histidine kinase sequence data to learn to
recognize efficiently this coiled coil-like motif in the histidine
kinases. The common appearance of the structural motif in a
functionally important part of the receptors suggests hypoth-
eses for kinase regulation and signal transduction.

Bacteria are remarkably adept at sensing and adjusting to the
conditions in their immediate environments. Frequently, such
processes are mediated by two-component regulatory systems,
consisting of a histidine kinase sensor and an aspartic acid
receiver (1). Most often, the histidine kinase is a transmem-
brane receptor, with a periplasmic sensory domain and a
cytoplasmic kinase domain, and the receiver is a transcription
factor. Sensory inputs are coupled to gene expression by
regulation of kinase activity. Processes mediated by more
elaborate two-component systems include bacterial chemo-
taxis (2), in which chemoeffectors are sensed by a complex of
transmembrane chemoreceptor, CheW, and the cytoplasmic
histidine kinase CheA. The receiver protein CheY carries the
signal to the flagellar switch. Although most two-component
systems so far discovered are bacterial, they occur in archea
and eukaryotes as well (3, 4).

In those cases examined, histidine kinases have been found
to be dimers with autophosphorylation occurring in trans
between monomers (5). However, sensory regulation of this
process is not yet well understood. No structures have been
reported for any of the kinases, although a crystal structure of
the C-terminal phosphotransfer domain of ArcB (6) and NMR
structures of the phosphotransfer (7, 8) and CheY-binding (9,
10) domains of CheA have been determined. In a number of
systems, genetic studies identify a segment of the cytoplasmic
domain as critical for signal transmission (11–14). This region,
termed the ‘‘linker’’ domain, links the final transmembrane
domain to the kinase domain (Fig. 1A).

Histidine kinases are a highly diverse group of proteins,
ranging from '350 to well over 2,000 amino acids in length.

However, they can be recognized by several short blocks of
sequence similarity within an '250-residue core kinase do-
main (5). These have been designated the H , N , D , F , and
G blocks (5) (or H , N , G1 , F , and G2 blocks) (15) (Fig. 1B).
The sequences within the five blocks are somewhat variable, as
is their spacing within the protein. Occasionally, a block is
missing in a particular kinase sequence. Other than these
consensus motifs, no general sequence features have been
reported for this family of receptors. However, an intriguing
similarity recently has been noted between histidine kinase
consensus motifs and dimeric ATP-binding domains of topo-
isomerases (16).

We find that the cytoplasmic linker domains of many
histidine kinases appear to contain coiled coils, when evalu-
ated with algorithms developed to identify these motifs within
primary sequences.** It is intriguing that many of the pre-
dicted coiled coils would precede directly the histidine auto-
phosphorylation sites, terminating at the conserved proline
within the 16-residue H block consensus motif (Fig. 1C). Coils
in this position are predicted in only '30% of the sequences
examined by NEWCOILS (17) or PAIRCOIL (18). Nonetheless, it
is possible to identify heptad patterns in many of the remaining
kinase sequences by visual inspection. The coiled coil data-
bases used by NEWCOILS and PAIRCOIL include primarily
dimeric, parallel coils from a-fibrous proteins such as myosin.
Thus, these algorithms may not be optimal for identifying and
evaluating other types of coiled coil proteins (19).

We decided to apply an iterative learning algorithm (LEARN-
COIL)†† (24) to detect potential coiled coils in the histidine
kinases. The assumption was made that, despite limited se-
quence homology in the coiled coil region, there is likely to be
some structural and mechanistic similarity among the kinases
and, therefore, patterns that may not be readily apparent
through multiple sequence alignment. In the learning algo-
rithm, an initial evaluation of the kinase sequences is made by
using an ‘‘off-the-shelf’’ table of coiled coil probabilities.
Those sequences with likelihoods above 0 are selected by a
randomized procedure to update the probability table. This
process is repeated until the table converges. We find that,
after use of LEARNCOIL, 76% of kinases are predicted (likeli-
hood $0.5) as coiled coils, or coiled coil-like helical structures,
in the region preceding the H block. Evaluation of the se-
quences of proteins in the Protein Data Bank (release Feb-
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ruary 1994) yielded no likelihoods .0.31 for proteins known
not to contain coiled coils. We therefore propose addition of
this ‘‘coiled coil block’’ (CC block) to the list of histidine kinase
consensus motifs and further suggest how conformational
changes in this region might mediate signal transduction.

METHODS

A collection of 189 histidine kinase sequences was assembled
from online sequence databases by using the Entrez browser.‡‡
(CheA sequences were excluded.) Extremely close homologs
(those with 30 or more consecutive identical residues) were
allowed only once into the iteration test set, leaving 168
LEARNCOIL test sequences. Before using LEARNCOIL, se-
quences were evaluated for coiled coil motifs by using the
PAIRCOIL (18) and NEWCOILS (17) algorithms.

The LEARNCOIL program uses the pairwise correlation
scoring method of PAIRCOIL as a subroutine. This scoring
method computes scores for sliding sequence windows (gen-
erally 28 residues in length) by using estimates of pairwise and
singles probabilities (i.e., probabilities of finding each pair of
residues a given distance apart in a coiled coil and of finding
each residue at a particular heptad position in a coiled coil).
Once LEARNCOIL scores a window, the score is converted into
a likelihood. The initial database of two-stranded coiled coils
and the procedures for computing probabilities from fre-
quency tables, scoring, and computing likelihoods were as
described (18).

The LEARNCOIL program iteratively scans the test sequences
to build a new database of potential coiled coil regions. At the
start of each iteration, this new database contains no residues.
Once scores and likelihoods are computed, sequences are
selected for the new database with probabilities proportional
to their likelihoods. That is, a number is drawn uniformly at
random from the interval {0,1}, and if the number drawn is less
than or equal to the likelihood of a sequence (taken from the
highest scoring window), then the sequence is selected for the
new database. If a sequence is selected, only regions of the
sequence where the residues have likelihoods greater than or
equal to either the sequence likelihood (if ,0.5) or 0.5 are
included in the new database. Residues at the ends of scoring
windows are not included in the new database if consecutive
residue likelihoods drop by .0.1.

In the first iteration, probabilities are estimated from a
two-stranded coiled coil database (18). Then, at the end of an
iteration, estimates of the probabilities are updated by using
the new database. The probabilities are a weighted average of
those computed from the original database (weight 0.1) and

those computed from the current database (weight 0.9); these
updated probabilities affect the scoring of sequences in the
next iteration. In each iteration after the first, any sequence
included in the database from the previous iteration is re-
moved from the database (and the probabilities are adjusted)
before that sequence is scored.

This procedure repeats until the number of residues in the
database differs from the previous iteration by ,3%. In the
final iteration, regions that have likelihoods .0.5 are selected
for the final database. The algorithm was run five times on the
histidine kinase sequences, giving five final databases. Five to
seven iterations were required for convergence. Each residue
was then scored by taking an average of five probability scores
(each computed as described above), and final likelihoods
were derived. Scores from the five runs agreed closely in most
cases, but considerable variability was observed for some
sequences, particularly those of moderate likelihood (near
0.5). Finally, to check the robustness of the LEARNCOIL results,
a subset of the test sequences (142 sequences chosen at
random) was used to generate a second probability table; this
second table was used to evaluate the 26 excluded sequences.

RESULTS

The distribution of likelihoods for the kinase region preceding
the H block is shown in Fig. 2A. PAIRCOIL (18) and NEWCOILS
(17) fail to detect coiled coil motifs in the majority of cases.
Likelihoods of ,0.5 are calculated for 79% and 68% of the
kinases (PAIRCOIL and NEWCOILS, respectively), with '70% of
these negative sequences having a likelihood of 0. Much higher
likelihoods are seen in the LEARNCOIL distribution. Only 24%
of kinase sequences have calculated likelihoods ,0.5, with
nearly all of these falling at likelihood 0. Of those sequences
scoring 0, 9 of 35 have a proline within the region (not
tolerated in coiled coils by the prediction algorithms). As a
negative control, noncoiled coil sequences in the Protein Data
Bank (PDB-minus) (18) were evaluated with the final histidine
kinase table. No likelihoods .0.31 were obtained. However,
the model coiled coil peptide from yeast GCN4 is detected
with likelihood 0.7 (PAIRCOIL likelihood 5 1). This suggests
that the histidine kinase motif shares features with the coiled
coils in the original database. It is important to note that
exclusion of a subset of sequences from the iteration test set
does not significantly change the distribution of likelihoods. A
comparison of the original distribution to the distribution for
the smaller iteration test set and the distribution for the
excluded sequences is shown in Fig. 2B.

Additional regions in many of the kinases are predicted to
be coiled coils by NEWCOILS or by PAIRCOIL, often with
likelihoods that are comparable to, or higher than, those of the
target regions. An especially common pattern is seen in longer
kinases: the H block occurs some distance into the cytoplasmic
domain, yet a coiled coil motif also appears shortly after the
last predicted transmembrane segment (Fig. 1D). In some
cases, there are more than two coiled coil motifs preceding the
H block or an additional motif following it. These sequences
can contribute to the final database in the same way as do
sequences from the target regions. After running LEARNCOIL,
some of these additional high likelihood regions persist, and
others do not (data not shown). Of all sequences with LEARN-
COIL likelihoods $0.1 in any region, the highest likelihood
region occurs most often (93%) before the H block, suggesting
that this CC block is selectively recognized.

High likelihood CC block motifs occur broadly in the
histidine kinases, appearing in all reported eukaryotic pro-
teins, as well as in most of those from Escherichia coli and
Salmonella typhimurium. In addition, LEARNCOIL predicts this
coiled coil-like motif for the Caulobacter crescentus kinases
PleC and FlbE implicated in asymmetric cell division (25–27),
Bacillus subtilis sporulation phosphorelay sensors KinA and

‡‡www.ncbi.nlm.nih.gov/Entrez/. A list of histidine kinase sequences
used in this study may be obtained from A.G.C.

FIG. 1. Common domain arrangements in histidine kinases. (A)
Simple transmembrane histidine kinases with two membrane-
spanning segments (black boxes). The sensor component is periplas-
mic, and a cytoplasmic ‘‘linker’’ domain precedes the receptor kinase
domain. (B) Approximate spacing of conserved, short sequence motifs
characteristic of histidine kinases (5). The H block motif includes the
histidine autophosphorylation site. (C) Location of many high likeli-
hood coiled coils in the cytoplasmic linker domain before the H block
motif. (D) Common domain pattern in longer kinases. Two coiled coils
are predicted, occurring before the H block motif and shortly after the
final transmembrane segment.
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KinC (27, 28), the chromatic adaptation sensor RcaE (29), the
activator of Bordetella virulence BvgS (30), the heme-
containing oxygen sensor FixL (31), and the vancomycin
resistance sensors VanS and VanSB (32, 33) (data not shown).

An especially interesting and long studied group of bacterial
kinases includes the osmosensor EnvZ (34), the chemotaxis
protein CheA (2), and the phosphate and nitrogen regulatory
proteins PhoR and NtrB (35, 36). In general, these sequences
are not recognized as coiled coil proteins by using standard
methods, perhaps explaining why this motif has not been noted
previously. However, by using LEARNCOIL, the PhoR and EnvZ
likelihoods increase substantially, indicating that these se-
quences share features with the more obvious coiled coil
motifs of other kinases.

The phospho-accepting domain of the chemotaxis kinase
CheA is not recognized when evaluated with kinase-derived
probability tables (data not shown). CheA is a cytoplasmic
kinase, with a nonstandard H block motif located at the amino
terminus of the protein, well away from the other kinase
consensus motifs. Furthermore, NMR studies of the CheA
phosphotransfer domain reveal a 5-helix bundle rather than
the more extended structure of a coiled coil (7, 8). (For these
reasons, CheA sequences were excluded from the LEARNCOIL
iteration test set.)

LEARNCOIL does recognize NtrB sequences, although not
consistently: four sequences (plus two homologs not included
in the iteration test set) have calculated likelihoods .0.6, but
three have likelihood 0. One reason for this may be evolution-
ary distance; the three highly homologous, zero-likelihood
sequences (GenBank accession nos. Z37984, X71436, and
M14227) are from Proteobacteria, a subdivision organisms,
whereas the others are from g subdivision organisms (e.g., E.
coli). Alternatively, the explanation may be mechanistic. NtrB
is a soluble cytoplasmic kinase, whereas almost all members of
the test set are transmembrane kinases. Some structural details
may differ between the two classes, resulting in a somewhat
weaker prediction for NtrB.

Comparison of the LEARNCOIL-derived singles and pairwise
probabilities (18) to the initial coiled coil values suggests some
ways in which the new motif differs from typical two-stranded
coiled coils. The relative frequencies of the 20 amino acids in
the initial coiled coil database (18) and the iterated database
are shown in Fig. 3A. The most significant change is an overall
decrease in the abundance of lysine and glutamic acid in the
new database. Histidine, a relatively rare amino acid in coiled
coils (1.4%), occurs at higher frequency in the new motif
(2.9%) because of its absolute conservation in the H block
sequence. Comparison of the singles probabilities at the indi-
vidual heptad positions a–g reveals that residue distributions
change more at exterior heptad positions (see, e.g., Fig. 3B)
than at the interior hydrophobic positions a and d (Fig. 3C). An
especially interesting trend is seen for position g (Fig. 3B),
which is more hydrophobic in the new database. Comparison
of pairwise probabilities (data not shown) reveals that many
positive correlations for the histidine kinases can be traced to
homology in the H block region. In particular, pairs including
histidine at position f increase in probability, as do other pairs
within the single most frequent H block sequence
(FLANMSHELRT). Other positively correlated pairs have no
connection to the H block sequence but appear to be related
to trends in the singles probabilities. Examples include arginine
at sequential c positions and glutamine at sequential f posi-
tions; these pairs occur at significantly higher frequencies in
the histidine kinase motif.

DISCUSSION

The LEARNCOIL program is a general iterative method that
extends the two-stranded coiled coil prediction program PAIR-
COIL to the identification of other types of coiled coils.
Previously, the LEARNCOIL program successfully identified
three-stranded coiled coils (24).

Iterative approaches similar to LEARNCOIL have been ap-
plied to sequence alignment and motif recognition (16, 37–41).
Each method repeats two steps. First, a scoring algorithm is
used to scan a database of sequences for regions thought to
represent the motif of interest. Second, selected residues are
used to update the parameters of the scoring algorithm (e.g.,
a weight matrix, profile, or probability table). The updated
parameters change the regions identified in the next iteration,
and usually these two steps are repeated until convergence
occurs.

LEARNCOIL combines several strategies to achieve good
performance without identifying false-positive sequences (24).
First, instead of choosing all sequences that score above a
cutoff, LEARNCOIL adds a randomized selection step to deter-
mine which sequences are used to update the scoring param-
eters; empirically, this has proven more effective. Second,
LEARNCOIL calculates the new scoring parameters by taking a
weighted average of the original parameters and the param-
eters estimated from the sequences selected in the latest
iteration. In this manner, the initial scoring parameters have a
greater effect than in traditional Bayesian approaches. None of
the previously reported approaches uses weighting, and only

FIG. 2. Distribution of coiled coil likelihoods for 168 histidine
kinase sequences. The likelihoods are for the kinase region directly
preceding the H block. (A) Three prediction methods are compared:
LEARNCOIL (24) using the final probabilities obtained as described in
Methods (black), PAIRCOIL (18) (white), and NEWCOILS (17) (gray). (B)
Comparison of normalized LEARNCOIL likelihood distributions for the
entire histidine kinase test set (168 sequences, black), a subset run
separately as described in Methods (142 sequences, horizontal stripes),
and the sequences excluded from the subset (26 sequences, diagonal
stripes).
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one uses randomness (38). Finally, LEARNCOIL uses pairwise
frequency data, whereas all of the other approaches are based
on single frequency data. Pairwise interactions between hep-
tad repeat positions are important for distinguishing coiled
coils from false-positive sequences (18).

Using LEARNCOIL, we have identified a common but previ-
ously undescribed coiled coil-like motif (CC block) in the
histidine kinase family. The frequency of this motif is striking,
given the very high diversity of histidine kinase primary
sequences and domain arrangements. The CC block directly
precedes the conserved H block motif of the kinase domain
and often coincides with a cytoplasmic region termed the
‘‘linker’’ domain (Fig. 1). In some cases, these regions are
separated by intervening sequences, and there are two pre-
dicted motifs (Fig. 1D). Several lines of evidence indicate that
these regions are of functional importance in regulating signal
transduction (15).

Genetic studies in a number of systems have yielded mutant
histidine kinases with extreme, poorly regulated, or constitu-
tive signaling phenotypes. Many of these mutations cause
single amino acid substitutions in the linker regions of the
receptors. For example, glnL (NtrB) mutations that suppress
a defect in uridylylation of the NtrB ligand PII (12) map largely
(9 of 16) to the predicted coiled coil-like motif. Another two
mutations map to the 12 amino acids following the motif.
Single amino acid substitutions in the linker region of Borde-
tella pertussis BvgS cause constitutive expression of the viru-
lence regulon (13). These mutations map near the ends of the
161-amino acid linker region; BvgS has two prominent, high
likelihood scoring regions, one at each end of its linker (Fig.
1D). Finally, a mutation in the linker region of the yeast
osmosensor Sln1p activates expression of Mcm1-dependent
genes while conferring an osmosensitive phenotype (14); this
mutation occurs within the predicted coiled coil-like motif. It
is possible that these mutations alter the stability or structure
of an extended helical domain.

The importance of kinase linker regions is indicated further
in a genetic screen for inhibitory receptor subdomains. Ran-
dom carboxyl-terminal truncations of the vancomycin-
resistance sensor VanS yield a fragment spanning residues
95–174 that can inhibit VanS phosphorylation of PhoB in vivo,
possibly by disrupting receptor dimerization (42). It is intrigu-
ing that the H block ends at residue 174, and residues 120–160
are predicted to form a coiled coil (by all three methods used
here).

Comparisons between histidine kinases and bacterial che-
motaxis receptors have suggested strongly a common signaling
mechanism, despite the lack of a kinase domain in the latter.
Alignment of the linker regions of the nitrate sensor NarX and
the serine chemotaxis receptor Tsr revealed slight, but statis-
tically significant, homology (11). More important, it was
noted that signaling mutations in both genes mapped to these
linkers, in two cases causing the same changes in identical
residues (11). NarX and NarQ (a second E. coli nitrate sensor)
have unusual H block sequences with domains arranged as in
Fig. 1D. The NarX and NarQ linkers are predicted as coiled
coils before iteration, and their likelihoods increase upon
iteration, supporting the idea that the NarX/Q linkers are
equivalent to the CC blocks of other kinases.

Chimeric receptor experiments have demonstrated that
fusions between the chemotaxis receptors Tar and Trg and the
kinase domain of the osmosensor EnvZ can transmit signals in
response to chemoattractants (43, 44). Again, this suggests a
shared signaling mechanism between the two classes of pro-

for amino acids whose frequency changes most noticeably. (C) Amino
acid composition of the hydrophobic interior positions a (filled
squares) and d (open squares). Points for the more abundant amino
acids are labeled.

FIG. 3. Comparison of singles frequencies (see Methods) for the 20
amino acids before and after LEARNCOIL iteration (original frequency
and final average frequency, respectively). A diagonal line is indicated
for clarity. (A) Amino acid content at all heptad positions. Points for
histidine and for the more abundant amino acids (frequency .5%) are
labeled. (B) Amino acid composition of position g. Points are labeled
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teins. The point of fusion in these experiments is a conserved
methionine within the linker region. The homology between
EnvZ and chemoreceptor linker regions is rather limited, and
thus, it has been suggested that packing of side chains across
the fusion junction is unlikely (44). No coiled coils are pre-
dicted for EnvZ or chemotaxis receptor linkers by using
standard methods (17, 18). However, an amphipathic heptad
pattern does occur in these regions (45), and LEARNCOIL
identifies this motif as coiled coil-like in EnvZ. Such a struc-
ture is consistent with the proposal that an extended secondary
structural element is the critical feature shared by EnvZ and
the chemotaxis receptors (44, 46).

Thus far, we have been largely unsuccessful in using kinase-
derived tables to predict coiled coils in the chemotaxis recep-
tor linker regions.§§ This suggests that there are some differ-
ences in sequence patterns between the two types of receptors,
despite the indications that their linker regions are functionally
similar. Coiled coils previously have been predicted for the two
regulatory methylation domains of the chemotaxis receptors
(17, 47), the first of which immediately follows the linker.
LEARNCOIL evaluation of chemoreceptors alone (as described
for the kinases) predicts extended coiled coils that include the
linker region through the first methylation domain (data not
shown). A similar assignment of extended helical structure has
been made on the basis of multiple sequence alignment (48).

How might a coiled coil mediate signal transduction? An
obvious answer is that the coiled coil (or a coiled coil-like,
extended helical bundle) might form an oligomerization in-
terface between receptor monomers. A less obvious possibility
is that the coiled coil might be a structural relay. Both of these
appear to play a role in signaling by the aspartate chemotaxis
receptor (Tar). Soluble chimeric receptors have been made by
fusing dimeric coiled coil peptides to the cytoplasmic domain
of the aspartate receptor at the linker (53, 54). These receptors
can assemble with CheW and CheA into complexes capable of
phosphorylating CheY. When the coiled coil peptide is con-
nected either directly (53) or by a flexible tether (54) to the Tar
cytoplasmic domain, kinase activity is higher than observed in
the presence of monomeric cytoplasmic domain, demonstrat-
ing that dimerization is essential for full stimulatory activity.
Furthermore, when the coiled coil peptide is directly fused to
the presumably helical linker domain, stimulatory activity is
strongly dependent on the helical register between the two
(53). Centering the hydrophobic faces of the linker and the
peptide yields a receptor of moderate stimulatory activity.
Insertion of three or four amino acids at the junction point
yields nonactivating and highly activating receptors, respec-
tively (53). These insertions should shift the receptor interface
to either side of center at the point of fusion.

A mechanism for triggering interface shifts in coiled coils is
suggested by a recent analysis of myosin heptad patterns (55).
Myosins are structural proteins with extremely long coiled
coils that have conserved skips. The most common disconti-
nuities have been termed ‘‘stutters’’ and ‘‘stammers’’; these
correspond to deletions from the heptad repeat pattern of 3 or
4 residues (or insertion of 4 or 3 residues), respectively. Thus,
instead of the usual alternating 4–3 hydrophobic repeat, an
occasional 4–4 or 3–3 appears. These discontinuities would
result in an interface shift of one sevenfold helical wheel
position (e.g., position d to a, or '50°). Such shifting has been
observed directly in the crystal structure of the low pH form
of influenza hemagglutinin (TBHA2) (56). It has been pro-
posed that such shifts could occur gradually, without disrup-
tion of the helix, by a change in supercoiling about the dimer

axis; these gradual shifts would require an intermediate region
of relatively weak interhelical packing (55).

Analogously, one might imagine that a relatively unstable
coiled coil could be dynamically switched between alternate
interfaces by a small perturbation at one end. Such an interface
shift might be expected to cause significant reorientation of
kinase domains at the other end of the coiled coil, capable of
suppressing or stimulating phosphorylation (53). Indeed, re-
cent mutagenesis of EnvZ suggests that the linker region is
essential not for dimerization but for proper orientation of
receptor monomers within the dimer (45). The location of the
histidine autophosphorylation site near the end of a coiled
coil-like structure suggests that an interface perturbation
might control the exposure of the histidine to an ATP-binding
domain. Alternatively, the conserved H block residues might
form an active site whose structure and catalytic competence
are mediated by shifts in a coiled coil-like intersubunit inter-
face.
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