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PRC2 is thought to be the histone methyltransferase

(HMTase) responsible for H3-K27 trimethylation at

Polycomb target genes. Here we report the biochemical

purification and characterization of a distinct form of

Drosophila PRC2 that contains the Polycomb group protein

polycomblike (Pcl). Like PRC2, Pcl-PRC2 is an H3-K27-

specific HMTase that mono-, di- and trimethylates H3-K27

in nucleosomes in vitro. Analysis of Drosophila mutants

that lack Pcl unexpectedly reveals that Pcl-PRC2 is re-

quired to generate high levels of H3-K27 trimethylation at

Polycomb target genes but is dispensable for the genome-

wide H3-K27 mono- and dimethylation that is generated

by PRC2. In Pcl mutants, Polycomb target genes become

derepressed even though H3-K27 trimethylation at these

genes is only reduced and not abolished, and even though

targeting of the Polycomb protein complexes PhoRC and

PRC1 to Polycomb response elements is not affected. Pcl-

PRC2 is thus the HMTase that generates the high levels of

H3-K27 trimethylation in Polycomb target genes that are

needed to maintain a Polycomb-repressed chromatin state.
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Introduction

Genetic studies in Drosophila first identified Polycomb group

(PcG) genes as regulators that are required for the long-term

repression of HOX genes during development (reviewed in

Ringrose and Paro, 2004). To date, 17 different genes in

Drosophila are classified as PcG members because mutations

in these genes cause misexpression of HOX genes (reviewed

in Schwartz and Pirrotta, 2007). All Drosophila PcG genes are

also conserved in mammals and at least some of them are

also conserved in plants (reviewed in Brock and Fisher, 2005;

Köhler and Makarevich, 2006; Schwartz and Pirrotta, 2007).

In all these organisms, PcG gene products function as re-

pressors of HOX and/or other regulatory genes that control

specific developmental programs (reviewed in Sparmann and

van Lohuizen, 2006). Moreover, recent studies that analyzed

genome-wide binding of PcG proteins in Drosophila and in

mammalian cells identified a large number of target sites, and

thus a whole new set of genes that potentially is subject to

PcG repression (Boyer et al, 2006; Lee et al, 2006; Negre et al,

2006; Schwartz et al, 2006; Tolhuis et al, 2006).

Biochemical purification and characterization of PcG pro-

tein complexes has advanced our understanding of the PcG

system. To date, three distinct PcG protein complexes have

been isolated from Drosophila: PhoRC (Klymenko et al,

2006), PRC1 (Shao et al, 1999; Levine et al, 2002) and PRC2

(Cao et al, 2002; Czermin et al, 2002; Kuzmichev et al, 2002;

Müller et al, 2002). The composition and activities of these

different complexes and current views on the mechanisms by

which these complexes might repress transcription of target

genes have been discussed in recent review articles (Müller

and Kassis, 2006; Schuettengruber et al, 2007; Schwartz and

Pirrotta, 2007).
Biochemically purified Drosophila PRC2 contains the three

PcG proteins Enhancer of zeste (E(z)), Suppressor of zeste 12

(Su(z)12) and Extra sex combs (Esc) and, in addition,

Nurf55, a protein that is present in many different chromatin

complexes (Czermin et al, 2002; Müller et al, 2002).

Drosophila PRC2 and the homologue mammalian complex

are histone methyltransferases (HMTases) that specifically

methylate H3-K27 in nucleosomes (Cao et al, 2002;

Czermin et al, 2002; Kuzmichev et al, 2002; Müller et al,

2002). Chromatin immunoprecipitation (X-ChIP) analyses in

Drosophila showed that PRC2 binds in a localized manner at

Polycomb response elements (PREs) of target genes, but that

H3-K27 trimethylation is present across the whole upstream

control, promoter and coding region of these genes (Kahn

et al, 2006; Mohd-Sarip et al, 2006; Papp and Müller, 2006;

Schwartz et al, 2006). Studies that compared the inactive and

active state of the HOX gene Ubx in developing Drosophila

found that PRC2 is constitutively bound at PREs and, surpris-

ingly, that the whole upstream control region is constitutively

trimethylated at H3-K27 (Papp and Müller, 2006). However,

presence or absence of H3-K27 trimethylation in the Ubx

promoter and coding region correlates tightly with the gene

being repressed or active, respectively (Papp and Müller,

2006). H3-K27 trimethylation is thus a distinctive mark of

PcG-repressed chromatin.
Analysis of E(z) mutants suggests that E(z) is also respon-

sible for the genome-wide H3-K27 mono- and dimethylation

that has been reported to be present on more than 50% of H3
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in Drosophila (Ebert et al, 2004). However, biochemical

analyses showed that E(z) protein alone does not bind to

nucleosomes and is virtually inactive as an enzyme; E(z)

needs to associate with Su(z)12 and Nurf55 for nucleosome

binding and with Esc for enzymatic activity (Czermin et al,

2002; Müller et al, 2002; Ketel et al, 2005; Nekrasov et al,

2005). This implies that the genome-wide H3-K27 mono- and

dimethylation is generated by PRC2 or another E(z)-contain-

ing complex that is able to interact in a non-targeted manner

with nucleosomes across the whole genome. Conversely, this

raises the question whether H3-K27 trimethylation at PcG

target genes is simply a consequence of PRC2 being targeted

to PREs or whether additional features such as post-transla-

tional modifications or associated factors are required.

Previous studies reported that the PcG protein

Polycomblike (Pcl) interacts with E(z) in GST pull-down,

yeast two-hybrid and co-immunoprecipitation assays

(O’Connell et al, 2001; Tie et al, 2003). Like most other PcG

proteins, Pcl has also been found to be bound at PREs in

Drosophila (Tie et al., 2003; Papp and Müller, 2006).

However, to date, no Pcl-containing complexes have been

purified and the role of Pcl in PcG repression has remained

enigmatic. In this study we report the biochemical purifica-

tion of Pcl complexes. We show that Pcl exists in a stable

complex with PRC2. Our analyses demonstrate that this Pcl

complex plays a critical role in generating high levels of

repressive H3-K27 trimethylation at PcG target genes.

Results

Biochemical purification identifies Pcl-PRC2 as a distinct

PcG protein complex

We used a tandem affinity purification (TAP) strategy (Rigaut

et al, 1999) to purify Pcl protein complexes from Drosophila

embryos. To this end, we first generated transgenic

Drosophila strains that express a TAP-tagged Pcl fusion

protein (TAP-Pcl) under the control of the Drosophila a-

tubulin promoter. Using a genetic rescue assay, we found

that this TAP-Pcl fusion protein is functional and can sub-

stitute for endogenous Pcl. Specifically, animals that are

homozygous for Pcl21M22, a protein-negative allele of Pcl

(see below), die at the end of embryogenesis but are rescued

into viable and fertile adults if they carry the transgene

expressing TAP-Pcl protein (see Materials and methods).

Following the TAP procedure, we purified proteins asso-

ciated with TAP-Pcl from nuclear extracts that we prepared

from TAP-Pcl transformant embryos. The purified material

was separated on SDS-polyacrylamide gels and silver staining

of the gel revealed five protein bands that consistently co-

purified with TAP-Pcl (Figure 1). Sequencing of peptides from

these bands by nanoelectrospray tandem mass spectrometry

identified these proteins as the PRC2 components E(z),

Su(z)12, Nurf-55, Esc and, in addition, heat-shock cognate

protein HSC70 (Figure 1; Supplementary Figure S1A). LC-

MS/MS analysis of total purified material confirmed that

these polypeptides are the main co-purifying proteins

(Supplementary Figure S1B). The observation that PRC2

components E(z), Su(z)12, Esc and Nurf-55 co-purify with

Pcl suggests that Pcl and PRC2 constitute a specific form of

PRC2 that we name Pcl-PRC2.

To confirm the association of Pcl with PRC2, we also used

the TAP-tag strategy to purify proteins associated with TAP-

E(z) protein in Drosophila embryos. Mass spectrometry and

western blot analyses revealed that Pcl protein indeed co-

purifies with TAP-tagged E(z), albeit clearly at substoichio-

metric amounts compared to the PRC2 core components

(Figure 2; Supplementary Figure S1). In contrast, we

note that the material purified either with TAP-Pcl or with

TAP-E(z) did not contain detectable amounts of the PhoRC

component Pho, the PRC1 component Pc, or HDAC1/RPD3

(Figures 1 and 2; Supplementary Figure S1), three proteins

that have been reported to interact with PRC2 subunits in in

vitro binding or co-immunoprecipitation assays (Poux et al,

2001; Tie et al, 2001, 2003; Wang et al, 2004). Together, these

results further strengthen the view that Pcl-PRC2 is a stable

biochemical entity. One possible explanation for the presence

of substoichiometric amounts of Pcl in the TAP-E(z) purifica-

tion would be that Pcl-PRC2 is a distinct form of PRC2 and

that only a fraction of PRC2 in the cell is associated with Pcl.

An alternative possibility would be that Pcl is a less tightly

associated component of PRC2 that tends to dissociate from

the complex during biochemical purification. In this context,

it is interesting to note that the Hsc70-4 protein is present in

Figure 1 TAP of Pcl protein complexes from Drosophila embryonic
nuclear extracts. Protein complexes purified from wild-type (wt)
and TAP-Pcl; Pclþ /þ embryos. Purified material was separated on a
4–12% polyacrylamide gel and visualized by silver staining; ‘M’
indicates molecular weight marker. Input material for mock pur-
ification from wild-type embryos, and for purification from trans-
genic embryos was normalized by protein concentration and
equivalent amounts of material eluted from calmodulin affinity
resin was loaded. Complexes were eluted with EGTA under non-
denaturing conditions. Approximately 0.67 pmol of Pcl–PRC2 com-
plex is loaded, this amount was determined by comparing with
mass spectrometry analysis of defined amounts of purified recom-
binant Pcl, E(z) and Su(z)12 (not shown, see Figure 3). Indicated
proteins consistently co-purified with CBP-Pcl in several indepen-
dent experiments and were identified by microsequencing; CBP in
fusion proteins refers to the calmodulin-binding moiety of the TAP-
tag. Note presence of PRC2 subunits Su(z)12, E(z), NURF55 and Esc
in TAP-Pcl lane; Esc stains poorly and runs as a diffuse band, but
is identified by multiple peptides like the other proteins
(Supplementary Figure S1). See Supplementary Figure S1 for in-
formation on additional proteins identified by mass spectrometry.
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the material purified with either TAP-Pcl or TAP-E(z). Hsc70-

4 has also been reported to co-purify with both Drosophila

and human PRC1 (Saurin et al, 2001; Levine et al, 2002). At

present it is not known whether Hsc70-4 is required for

assembly, stability or function of Pcl-PRC2, PRC2 and PRC1,

and further studies will be needed to address these questions

but, intriguingly, Hsc70-4 and Pc also interact in genetic

assays (Mollaaghababa et al, 2001).

Finally, we explored how Pcl physically interacts with

PRC2 subunits. To this end, we used baculovirus expression

vectors to coexpress Flag-tagged Pcl with individual PRC2

core components in Sf9 cells, and then used the Flag-epitope

for affinity purification from Sf9 cell extracts. We could thus

reconstitute a stable dimeric Pcl–E(z) complex (Supple-

mentary Figure S2), consistent with previous studies that

reported physical interactions between Pcl and E(z) in GST

pull-down assays (O’Connell et al., 2001; Tie et al., 2003).

Interestingly, the baculovirus reconstitution assay revealed

that Pcl also forms a stable complex with Nurf55 and, albeit

less efficiently, also with Su(z)12 (Supplementary Figure S2).

In contrast, purification from cells coexpressing Flag-Pcl

and Esc resulted in the isolation of Flag-Pcl protein only

(Supplementary Figure S2). Together, these data suggest

that Pcl associates with PRC2 though interactions with E(z),

Nurf55 and Su(z)12.

Pcl-PRC2 and PRC2 are H3-K27-specific HMTases

We next compared the HMTase activity of Pcl-PRC2 with the

activity of PRC2. For these experiments we used recombinant

tetrameric PRC2 (rPRC2) that we reconstituted as previously

described (Müller et al, 2002; Nekrasov et al, 2005). Attempts

to generate recombinant Pcl-PRC2 of comparable quality with

stoichiometric quantities of the five components have been

unsuccessful, and we therefore used Pcl-PRC2 purified from

Drosophila for these assays. As substrate in the HMTase

reactions we used reconstituted recombinant mononucleo-

somes that contained either wild-type histone H3 or mutant

forms of H3, in which lysine 9 (H3K9A) or lysine 27 (H3K27A),

or both (H3K9A/K27A) had been mutated to alanine. Pcl-PRC2

and rPRC2 both methylated histone H3 at K27. This specifi-

city is demonstrated by the finding that mononucleosomes

containing wild-type H3 or H3K9A are efficiently methylated

by either complex, but that no methylation is observed

on mononucleosomes containing H3K27A or H3K9A/K27A

(Figure 3A). However, purified Pcl-PRC2 appears to be more

active than rPRC2 because three-fold molar excess of rPRC2

was needed to obtain comparable H3-K27 methylation

signals (Figure 3A). At present it is not known whether this

relatively higher HMTase activity of Pcl-PRC2 is due to

inclusion of Pcl, because it could also be due to post-transla-

tional modifications that are present on other subunits of

natively purified Pcl-PRC2 but are missing on rPRC2. Mass

spectrometry analysis of the H3 protein band isolated from

mononucleosomes after HMTase assays independently

confirmed H3-K27 as the site being methylated, and it

revealed that Pcl-PRC2 and rPRC2 both trimethylate H3-K27

(Figure 3B). Interestingly, reaction with either complex

generated comparable summed intensities of mono-, di- and

trimethylated H3-K27, suggesting that both complexes

are comparably efficient in generating the different

methylated states of H3-K27 (Figure 3B). Taken together,

these data suggest that Pcl-PRC2 and PRC2 are both H3-

K27-specific HMTases that methylate H3-K27 in nucleosomes

in vitro.

Pcl-PRC2 is needed for high levels of H3-K27

trimethylation at PcG target genes in Drosophila

To study the role of Pcl-PRC2 in relation to that of PRC2, we

next analyzed Drosophila mutants that lack Pcl protein. For

these studies we used the loss-of-function allele Pcl22M21 that

we recently isolated (see Materials and methods). Pcl22M21

appears to be a protein-negative allele because no Pcl protein

is detected in extracts prepared form 16- to 18-h-old Pcl22M21

homozygous embryos (Figure 4A). Importantly, the levels of

Figure 2 TAP of E(z) protein complexes from Drosophila embryo-
nic nuclear extracts. (A) Protein complexes purified from wild-type
(wt) and TAP-E(z); E(z)þ /þ embryos. Purified material was sepa-
rated on a 4–12% polyacrylamide gel and visualized by silver
staining. Input material for mock purification from wild-type em-
bryos and for purification from transgenic embryos was normalized
by protein concentration and equivalent amounts of material eluted
from calmodulin affinity resin was loaded; complexes were eluted
by boiling of calmodulin resin in SDS buffer. Indicated proteins
consistently co-purified with CBP-E(z) in several independent ex-
periments and were identified by microsequencing; CBP in fusion
proteins refers to the calmodulin-binding moiety of the TAP-tag.
PRC2 subunits Su(z)12, Nurf55 and the weak Pcl band in TAP-E(z)
lane were all identified by multiple peptides (Supplementary Figure
S1) in excised gel bands; Esc was not detected on the gel. See
Supplementary Figure S1 for information on additional proteins
identified by mass spectrometry. (B) Western blot analysis of total
embryonic nuclear extract input material (IN, lanes 1 and 2) from
wild-type (wt) and TAP-E(z) transgenic embryos, and material
eluted from calmodulin affinity resin (E, lanes 3 and 4) after
purification. All panels come from the same batch of input material,
and eluates were all from the same batch of material purified from
wild-type and TAP-E(z) embryos, respectively; the same ratio of
input versus eluate material was loaded in all cases. CBP-E(z) (red
asterisk), TAP-E(z) (blue asterisk) and endogenous E(z) (black
asterisk) are indicated; in lane 2, TAP-E(z) is also detected by
other antibodies due to protein A tag. Compare the relative enrich-
ment of E(z), Su(z)12 and Pcl in lane 4. For unknown reasons,
Su(z)12 and Pcl in lane 4 migrate with slightly higher mobility. Note
the lack of signals for HDAC, Pc and Pho in lane 4.
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Su(z)12 and E(z) protein in such Pcl22M21 homozygous em-

bryos are indistinguishable from those observed in wild-type

embryos (Figure 4A); other PRC2 subunits are thus stable in

the absence of Pcl protein. This suggests that Pcl22M21 mutants

specifically lack the function of Pcl-PRC2 but retain normal

levels of PRC2.

Figure 3 HMTase activity of Pcl-PRC2 and PRC2 in vitro. (A) Molecular weight marker (lanes 1 and 14) and HMTase reactions (lanes 2–13)
performed with 2 pmol recombinant PRC2 (lanes 2–5), no complex (‘mock’, lanes 6–9) or 0.67 pmol Pcl-PRC2 (lanes 10–13), [14C]-SAM (lanes
2–13) and 2.8 pmol wild-type (wt) or mutant (H3-K9A, H3K27A and H3-K9A/K27A) mononucleosomes as indicated, were resolved on a 20%
SDS–polyacrylamide gel. The gel was stained with Coomassie (top) and exposed for autoradiography (below). Note that Pcl-PRC2 and PRC2
both specifically methylate H3-K27 (compare lanes 2–5 with 10–13), no methylation is observed on nucleosomes with H3 containing the K27A
mutation. (B) Mass spectrometry analysis of H3 following HMTase reactions with Pcl-PRC2 (top) or PRC2 (bottom). HMTase reactions were
performed as in lanes 2 and 10 in panel A except that non-radioactive SAM was used and reactions were allowed to proceed for 12 h; excised H3
bands were digested and analyzed by reverse-phase chromatography and quantitative mass spectrometry. Chromatography separated modified
and unmodified H3KSAPATGGVK peptides by only B95 s. Therefore a single mass spectrum can show ions of unmodified and all methylation
states of H3KSAPATGGVK peptides during their elution. The right lane shows the ion volumes (thompson*sec) of unmodified and modified
H3KSAPATGGVK peptides after HMTase reaction. The ion volume is the summed ion intensity of a peptide over its elution time (Fraterman et al,
2007). Note that Pcl-PRC2 and PRC2 generate comparable ion volumes of mono-, di- and trimethylated H3-K27 in this assay. The error bars
indicate the standard deviation of a duplicate analysis.
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We then tested whether Pcl might be required for H3-K27

methylation in vivo. In a first set of experiments we generated

clones of Pcl homozygous mutant cells in imaginal discs of

developing Drosophila larvae and analyzed the global level of

H3-K27 mono- and trimethylation in the mutant cells by

immunostaining wing discs with antibodies against

H3-K27me1 and H3-K27me3, respectively. Antibodies against

H3-K27me2 gave strong staining signals in the cytoplasm of

imaginal disc cells and this precluded the analysis of H3-K27

dimethylation in these experiments (data not shown). In

parallel to analyzing Pcl mutant clones, we also analyzed

wing discs with clones of cells that were homozygous for null

mutations in E(z) or Su(z)12, respectively. In all these

experiments, discs were analyzed 96 h after clone induction

and the clones of mutant cells were identified by absence of a

GFP-expressing marker gene. In E(z) or Su(z)12 mutant

Figure 4 Pcl is needed for high levels of H3-K27 trimethylation in Drosophila. (A) Western blot analysis of extracts from 16- to 18-h-old wild-
type (wt) and Pcl22M21 homozygous (Pcl�/�) embryos, probed with antibodies against the indicated proteins; the anti-tubulin (a-Tub) Western
blot provides control for loading of equal amounts of extract. Note that in Pcl�/� embryos, no Pcl protein is detected, but that Su(z)12 and E(z)
protein levels are comparable to wt embryos. (B) Wing imaginal discs with clones of cells that are homozygous for E(z)731 (E(z)), Su(z)124

(Su(z)12), or Pcl21M22 (Pcl), stained with antibodies against H3-K27me3 (red signal, left column) or H3-K27me1 (red signal, right column). In
each case, clones of mutant cells are marked by the absence of GFP signal (green) and discs were analyzed 96 h after clone induction. Su(z)12
and E(z) mutant clones show complete loss of H3-K27me3 and H3-K27me1 signals (arrowheads). Pcl mutant clones also show a clear reduction
of H3-K27me3 levels (arrowheads), but H3-K27me1 levels are unaffected (empty arrowheads) and are comparable to those in neighboring
wild-type cells. Representative clones (white frame) are shown at higher magnification (C) Western blot analysis of extracts from imaginal disc
and CNS tissues from second instar larvae (larval extract, left column) or from 16- to 18-h-old embryos (embryo extract, right column) of
the following genotypes: wild-type (wt), Su(z)124/Su(z)124 (Su(z)12�/�), E(z)731/E(z)731 (E(z)�/�), Pcl22M21/Pcl22M21 (Pcl�/�). Recombinant
histone octamer (rec. oct.) reconstituted from Xenopus histones expressed in Escherichia coli served as additional control for H3-K27me
antibody specificity. In each case, the membrane was simultaneously probed with the antibody against the indicated H3-K27 methylation state
and with an antibody against unmodified histone H4, to control for equal extract loading and Western blot processing. Note that in E(z)�/� and
Su(z)12�/� larvae, H3-K27me3 Western blot signals are comparable to those observed in wt larvae and only H3-K27me1 and H3-K27me2
signals are detectably reduced. In Pcl�/� embryos, H3-K27me1, H3-K27me2 and H3-K27me3 Western blot signals are comparable to those
observed in wt embryos.

Polycomblike and H3-K27 trimethylation
M Nekrasov et al

The EMBO Journal VOL 26 | NO 18 | 2007 &2007 European Molecular Biology Organization4082



clones in wing discs, H3-K27me3 and H3-K27me1 signals are

reduced to undetectable levels (Figure 4B). The loss of H3-

K27me3 and H3-K27me1 signals in cells lacking these two

PRC2 core components is consistent with earlier reports that

showed that all H3-K27 methylation in Drosophila depends

on E(z), the catalytic subunit of PRC2 (Ebert et al, 2004; Ketel

et al, 2005; Papp and Müller, 2006). Unexpectedly, we found

that H3-K27me3 levels are also reduced in Pcl mutant clones.

Although the reduction is not as severe as in E(z) or Su(z)12

mutant clones, it is consistent in all discs examined

(Figure 4B). In striking contrast, the level of H3-K27me1

signal in Pcl mutant clones is not diminished and is indis-

tinguishable from that of wild-type cells (Figure 4B). Taken

together, these results suggest that, in Drosophila, Pcl-PRC2 is

required for H3-K27 trimethylation, but is apparently not

required for H3-K27 mono-methylation.

In an independent set of experiments, we compared the

levels of total H3-K27me1, H3-K27me2 and H3-K27me3 in

wild-type, E(z), Su(z)12 and Pcl mutant animals by Western

blot analysis. Like other PcG genes, E(z), Su(z)12 and Pcl are

all expressed in the female germline, and wild-type products,

deposited into the egg by the mother, rescue the homozygous

mutant embryos to a certain extent (Breen and Duncan, 1986;

Jones and Gelbart, 1990; Soto et al, 1995; Birve et al, 2001).

E(z) and Su(z)12 homozygotes thus develop even into larvae,

whereas Pcl homozygotes die at the end of embryogenesis.

The imaginal disc tissues in E(z) or Su(z)12 homozygous

second instar larvae are only poorly developed, and the cells

stop proliferating but, remarkably, they still contain substan-

tial levels of H3-K27me1, H3-K27me2 and H3-K27me3.

Compared with wild-type control larvae, we only found H3-

K27me1 and H3-K27me2 signals to be detectably reduced in

these mutants (Figure 4C). This strongly suggests that H3-

K27 methylation and in particular H3-K27 trimethylation that

was generated by maternally deposited PRC2 or Pcl-PRC2 in

the early embryo persists into the larval stages. Similarly, in

16- to 18-h-old Pcl22M21 homozygous embryos, H3-K27me1,

H3-K27me2 and H3-K27me3 Western blot signals are indis-

tinguishable from those in wild-type embryos (Figure 4C),

even though maternally deposited Pcl protein is no longer

detected in Pcl22M21 homozygotes at this stage (Figure 4A).

The inability to detect changes in H3-K27 methylation levels

in Pcl mutants in this assay could have different reasons. Like

in the case of E(z) or Su(z)12 homozygotes, it is possible that

the H3-K27me3 signals present in Pcl mutant embryos repre-

sent H3 molecules that were methylated early in embryogen-

esis by maternally deposited Pcl–PRC2 complexes.

Alternatively, it could be that Pcl is not required for H3-K27

methylation in embryos and, finally, it is possible that H3-

K27me3 levels are not globally reduced in Pcl mutant em-

bryos but are perhaps only reduced at particular target genes.

To distinguish between these possibilities, we performed

X-ChIP assays to monitor the levels of H3-K27me3, H3-

K27me2 and H3-K27me1 at PcG target genes in wild-type

and in Pcl22M21 homozygous embryos. Recent X-ChIP on chip

studies in tissue culture cells and in Drosophila embryos

identified a number of genes to which PRC2, PRC1 and

PhoRC components are bound and that also contain chroma-

tin that is trimethylated at H3-K27 (Negre et al, 2006;

Schwartz et al, 2006, Tolhuis et al, 2006; K Oktaba and J

Müller, unpublished). Among those, we used the

Ultrabithorax (Ubx), Abdominal-B (Abd-B), engrailed (en),

wingless (wg), sloppy paired 1 (slp1), caudal (cad), pannier

(pnr), Distall-less (Dll) and bagpipe (bap) genes for our

analysis. We thus prepared chromatin from 16- to 18-h-old

wild-type or Pcl22M21 homozygous embryos and performed X-

ChIP assays with antibodies against H3-K27me3, H3-K27me2

or H3-K27me1, and also with antibodies against unmodified

H3. Unmodified H3 X-ChIP served as a critical control for the

ability to detect nucleosomes at the different chromosomal

regions and as reference for comparing the levels of H3-K27

methylation in wild-type and in Pcl mutant embryos. In

addition we also monitored binding of the three PcG protein

complexes PhoRC, PRC1 and PRC2 by performing X-ChIP

reactions with antibodies against the PhoRC component Pho,

the PRC1 component Ph and the PRC2 component Su(z)12.

Real-time quantitative PCR was used to measure the abun-

dance of specific genomic DNA sequences in the immuno-

precipitates. At each PcG target gene, we monitored presence

of H3, presence of the different methylated states of H3-K27

and binding of the three PcG proteins at (i) the PREs that we

had identified by Pho X-ChIP-on-chip in embryos (K Oktaba

and J Müller, unpublished) and (ii) at one or more other

regions within the transcribed portion of the gene (Figure 5).

Two sequences located in two distinct intergenic regions

elsewhere in euchromatin served as controls (Figure 5).

Comparison of the H3-K27me3, H3-K27me2 and H3-

K27me1 profiles between wild-type and Pcl mutant embryos

revealed that the levels of these three modifications are very

differently affected in the absence of Pcl. In particular, Pcl

mutants show a 2- to 3-fold reduction of H3-K27me3 signals

in most regions of the nine target genes and this reduction is

accompanied by a 2- to 4-fold increase of H3-K27me1 and

H3-K27me2 signals at these regions (Figure 5). Several spe-

cific aspects of these observations should be noted. First,

trimethylation of H3-K27 in target gene chromatin is only

reduced but not abolished in Pcl mutants, and although the

reduction is seven-fold in the region of the iab-7 PRE in Abd-B

or in the coding region of pnr, H3-K27me3 levels are not

detectably reduced at the Dll gene (Figure 5). Together with

the observation that global H3-K27me3 levels are not detec-

tably reduced in Pcl mutant embryos (Figure 4C), but that

they are clearly reduced in Pcl mutant clones in imaginal discs

(Figure 4B), this suggests that Pcl-PRC2 is required to gen-

erate high levels of H3-K27 trimethylation at many but not all

PcG target genes in embryos, but probably becomes required

for this methylation at most target genes during larval devel-

opment. Second, in wild-type animals, H3-K27me1 and H3-

K27me2 X-ChIP signals at target genes are lower than in the

control regions 1 and 2 but they reach comparable levels in

Pcl mutant embryos (Figure 5). This suggests that in wild-

type animals, nucleosomes in PcG target gene chromatin are

extensively trimethylated at H3-K27 and that in the absence

of Pcl, these nucleosomes are mono- and dimethylated simi-

lar to the rest of the genome. Third, in Pcl mutants, H3-

K27me1 and H3-K27me2 X-ChIP signals are also two-fold

increased at control regions 1 and 2 (Figure 5). One possible

explanation for this effect could be that in the absence of Pcl,

a larger proportion of ‘free’ PRC2 becomes available for

the untargeted genome-wide mono- and dimethylation of

H3-K27.

One possible explanation for the reduced H3-K27 trimethy-

lation at PcG target genes in Pcl mutants could be that Pcl is

required for anchoring of PRC2 at PREs. In X-ChIP assays with
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antibodies against E(z), we were unable to detect E(z) at

PREs in wild-type embryos, but antibodies against Su(z)12

revealed enrichment of Su(z)12 at the PREs of all nine genes

in wild-type embryos (Figure 5). We note that the Su(z)12 X-

ChIP signals at HOX gene PREs in embryos are substantially

lower than in imaginal discs (Papp and Müller, 2006), and, at

all PREs, the signals were lower than the Pho or Ph X-ChIP

signals in embryos (Figure 5). Nevertheless, we found that
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Su(z)12 X-ChIP signals at most PREs are slightly reduced in

Pcl mutant embryos compared with wild-type embryos even

though at most PREs the reduction was within the experi-

mental error and binding of Su(z)12 was still higher than in

the control regions 1 and 2 (Figure 5). It thus appears that

PRC2 binding at PREs is reduced but not abolished in the

absence of Pcl. In contrast, Pho and Ph X-ChIP signals are

indistinguishable in Pcl mutant and wild-type embryos

(Figure 5). Binding of PhoRC and PRC1 to PREs thus seems

to be unaffected in the absence of Pcl protein. This observa-

tion is consistent with earlier findings that suggest that Pho

directly or indirectly targets PRC1 to PREs, independently of

H3-K27 trimethylation (Mohd-Sarip et al, 2005, 2006;

Klymenko et al, 2006).

Finally, we asked how the lack of Pcl protein and the

concomitant reduction of H3-K27 trimethylation affect repres-

sion of these target genes. To this end we compared the

expression patterns of Ubx, Abd-B, en, wg, cad and Dll in

wild-type and in Pcl mutant embryos by staining embryos

with antibodies against their protein products. Pcl mutant

embryos show widespread misexpression of Ubx and Abd-B,

whereas en is only misexpressed in a few rare cells, and we

have been unable to detect misexpression of cad, wg or Dll in

these mutant embryos (Figure 5). Similar misexpression

phenotypes were observed in embryos homozygous for

other PcG mutations: only Ubx and Abd-B show widespread

misexpression, en and cad are only misexpressed in a few

rare cells, and wg and Dll show no detectable misexpression

(McKeon and Brock, 1991; Moazed and O’Farrell, 1992;

Simon et al, 1992; J Müller, unpublished observations).

Intriguingly, this was also true for embryos that were homo-

zygous for the temperature-sensitive allele E(z)61 and had

been reared at the restrictive temperature and therefore

lacked detectable levels of K27 di- and trimethylation (data

not shown; Cao et al, 2002; Ketel et al, 2005). Taken together,

these observations suggest the following: first, in Pcl mu-

tants, H3-K27 trimethylation levels are evidently also reduced

in the chromatin of target genes that are not becoming widely

misexpressed in the embryo and it also occurs in upstream

control regions. This suggests that the reduction of H3-

K27me3 levels is probably directly due to the lack of Pcl

and/or the reduction of PRC2 binding at target genes, and is

not a secondary consequence of these target genes becoming

transcriptionally active. Second, in Pcl and other PcG mu-

tants, not all target genes show the widespread misexpression

that is observed in the case of HOX genes. This suggests that

removal of PcG function alone does not result in transcrip-

tional activation of these target genes, but that specific

transcriptional activators are needed in order for these

genes to become activated in cells outside of their normal

expression domains. Consistent with this, we find that even

though en is only subtly misexpressed in Pcl mutant embryos,

during larval stages, en shows widespread misexpression in

Pcl mutant clones in imaginal discs (Supplementary Figure

S3). Similarly, we find that cad, Dll and wg become misex-

pressed in PcG mutant clones in imaginal discs (Beuchle et al,

2001, and data not shown). This suggests that although high

levels of H3-K27 trimethylation may not yet be critical during

embryonic development, they appear to become critical for

repression of these target genes during larval development.

Discussion

In this study, we show that Pcl-PRC2 is a distinct form of the

PRC2 HMTase, with a critical role in H3-K27 trimethylation at

PcG target genes. In the following sections we shall discuss in

turn the main conclusions that can be drawn from the data

reported here.

Biochemically purified Pcl complexes contain Pcl together

with the four core subunits of PRC2. In contrast, our bio-

chemically purified E(z) complexes contain only substoichio-

metric amounts of Pcl and the previously described

purifications of PRC2 failed to reveal Pcl in the purified

material (Cao et al, 2002; Czermin et al, 2002; Müller et al,

2002; Kuzmichev et al, 2002). Moreover, fractionation of

crude nuclear extracts by gel filtration indicated that Pcl

and PRC2 components Esc, E(z) and Su(z)12 co-fractionate

in high-molecular-weight assemblies, but that the bulk of

Figure 5 Pcl is required for repression and H3-K27 trimethylation at PcG target genes. (Top) Wild-type (wt, top row) and Pcl22M21 homozygous
(Pcl�/�, bottom row) embryos stained with antibodies against Ubx, Abd-B, Engrailed (En), Wingless (Wg), Caudal (Cad) and Distal-less (Dll)
proteins. In Pcl�/� embryos, Ubx and Abd-B are misexpressed outside of their normal expression domains; arrowheads mark anterior margin of
ps5 and ps10 that correspond to the anterior boundary of the Ubx and Abd-B expression domain in wt animals, respectively. Expression of En is
essentially normal in Pcl�/� animals and only very few En-positive cells that are not visible here are present in addition to the wild-type En
expression pattern in the posterior compartment of every segment (cf. Moazed and O’Farrell, 1992). The complex expression pattern of Wg,
expression of Cad at the posterior end of the embryo (arrowhead) and Dll expression in the head and thorax (arrowheads) are all normal in
Pcl�/� animals and no misexpression is detected. The slightly reduced levels of Dll expression in the imaginal disc primordia in thoracic
segments (arrowheads) in Pcl�/� animals is likely due to downregulation by misexpressed BX-C proteins (Vachon et al, 1992). (Bottom). X-
ChIP analysis in wild-type (wt, purple bars) and Pcl mutant (Pcl�/�, yellow bars) embryos, respectively. Each bar shows the result from at least
three independent immunoprecipitation reactions on independently prepared batches of chromatin, performed with the indicated antibodies
against H3-K27me3, H3-K27me2, H3-K27me1, unmodified H3, Su(z)12, Pho or Ph; X-ChIP signal levels are presented as percentage of input
chromatin precipitated for each region. The location of PREs (blue boxes) and other regions with respect to the transcription start sites are
indicated in kilobases, see Supplementary Figure S4 for information on exact location of PCR primer pairs. Note that at each region, H3 X-ChIP
signals are comparably high in wt and Pcl mutant embryos. The comparably lower H3-X-ChIP signal at each PREs in both wt and Pcl mutant
embryos suggests inefficient detection of nucleosomes or, more likely, reduced nucleosome occupancy at PREs, as previously observed at Ubx
(Kahn et al, 2006; Mohd-Sarip et al, 2006; Papp and Müller, 2006). In wt animals, H3-K27me3 X-ChIP signals are enriched at all target genes
compared to control regions 1 and 2. Note that in Pcl mutant embryos, H3-K27me3 signals are at least two-fold lower in each region; only at Dll,
H3-K27me3 signals are unaltered. In wild-type embryos, H3-K27me1 and H3-K27me2 signals at target genes are overall lower than in control
regions 1 and 2. Note that in Pcl mutants H3-K27me1 and H3-K27me2 signals are strongly increased at target genes and that they are also
increased at control regions 1 and 2 (see text for details). Note the specific enrichment of Su(z)12, Pho and Ph at PREs. In Pcl mutant embryos,
binding of Pho and Ph is undiminished compared to wild-type embryos but Su(z)12 binding is reduced. Note that Su(z)12 X-ChIP signals at the
bxd PRE in Pcl mutants are still higher than in control regions 1 and 2. Compared to X-ChIP assays in imaginal discs (Papp and Müller, 2006),
we find that in embryos a smaller fraction of input material is precipitated with Pho, Ph and, in particular, with Su(z)12 antibodies. It is
possible that the intrinsically different fixation procedure is responsible for a lower crosslinking efficiency in embryos compared with discs.
Asterisks (*) indicate regions where X-ChIP signals were not measured.
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these other PRC2 components is present in lower-molecular-

weight fractions that do not contain Pcl (O’Connell et al,

2001; Tie et al, 2003). Taken together, these observations

suggest that only a fraction of PRC2 is associated with Pcl and

that Pcl-PRC2 is a distinct complex.

Previous X-ChIP studies showed that Pcl and Su(z)12

colocalize at Ubx and Abd-B PREs (Papp and Müller, 2006).

This suggests that Pcl-PRC2 is bound at these PREs. Here, the

analysis of Drosophila mutants that lack Pcl protein and

therefore lack Pcl-PRC2, allowed us to obtain insight into

the function of this complex. Our results provide strong

evidence that Pcl-PRC2 is needed to generate high levels of

H3-K27 trimethylation in the chromatin of PcG target genes.

Unlike in E(z) or Su(z)12 mutants, removal of Pcl in embryos

or in imaginal discs only reduces but does not eliminate H3-

K27 trimethylation. Nevertheless, repression of several PcG

target genes is abolished in Pcl mutants. This suggests that

not only the mere presence of H3-K27me3, but presence of

high levels of H3-K27me3 is crucial for maintaining these PcG

target genes in the repressed state. Previous studies on the

Ubx gene suggested that presence of H3-K27 trimethylation in

the promoter and coding region is critical for PcG repression

(Papp and Müller, 2006). One possibility would be that it is

the overall density of H3-K27me3-marked nucleosomes

across the promoter and coding region that determines

whether a PcG target gene is repressed. Another possibility

would be that even though a whole chromatin domain

becomes trimethylated at H3-K27, only a few H3-K27me3-

marked nucleosomes at a particular position (e.g., around the

transcription start site) are actually required for repression,

and failure to maintain this trimethylation results in loss of

repression.

The observation that Su(z)12 binding and H3-K27 tri-

methylation are reduced but not lost in the absence of Pcl

is consistent with the idea that Pcl might help anchoring

PRC2 to PREs, but it also suggests that at least some PRC2

must be targeted to PREs independently of Pcl. It seems likely

that the residual H3-K27 trimethylation present in Pcl mutant

embryos and in Pcl mutant clones in imaginal discs is

generated by PRC2 that is bound at PREs independently of

Pcl. In this context it is important to note that we found that

not only Pcl-PRC2 but also PRC2 is able to trimethylate H3-

K27 in recombinant nucleosomes in vitro. Apart from the

suggested role in tethering of PRC2 to PREs, it is possible that

Pcl also functions in a post-recruitment step to help PRC2

generate high levels of H3-K27 trimethylation at target genes.

For example, the tudor domain and PHD fingers of PRE-

bound Pcl might interact with modified nucleosomes in the

promoter and coding region of target genes to ensure that

they become trimethylated at H3-K27 by the associated

PRE-tethered PRC2.

Finally, we found no evidence that Pcl-PRC2 would be

required for the genome-wide H3-K27 mono- and dimethyla-

tion. Our X-ChIP analyses suggest that H3-K27 mono- and

dimethylation across the genome might even slightly increase

in the absence of Pcl (Figure 5). In contrast, there is a loss of

all H3-K27 methylation in either E(z) or Suz)12 mutants

(Ebert et al, 2004; Figure 4B). This suggests that PRC2 or

another E(z)-containing complex generates the genome-wide

H3-K27 mono- and dimethylation. The experiments in Pcl

mutants thus allowed us to dissect the role of different H3-

K27 methylation states in Drosophila. The selective reduction

of H3-K27me3 levels, and the concomitant loss of repression

of PcG target genes in Pcl mutants, provides compelling

evidence that only the trimethylated state of H3-K27 is

functional in PcG repression in Drosophila. Pcl-PRC2 is

evidently critically needed to generate the high levels of

H3-K27 trimethylation that are required to maintain a

Polycomb-repressed chromatin state.

Materials and methods

Tandem affinity purification
The a-tubulin-TAP-Pcl and a-tubulin-TAP-E(z) transgenes in the
Drosophila transformation vector CaSpeR have the following
structure: a 2.6-kb fragment of the a-tubulin 1 gene, containing
promoter and 50 untranslated region sequences (Struhl and Basler,
1993) linked to the N-terminal TAP tag (Rigaut et al, 1999), followed
by Pcl or E(z) cDNA fragments that contain the ORF of Pcl
(Pcl1�1043) or E(z) (E(z)1�760), respectively (plasmid maps are
available on request). Rescue function of the a-tubulin-TAP-Pcl and
a-tubulin-TAP-E(z) transgenes was tested by introducing the
transgene into a Pcl22M21/Pcl22M21 or E(z)731/E(z)63 mutant back-
ground, respectively. Specifically, in the case of Pcl, we recombined
a copy of the a-tubulin-TAP-Pcl transgene onto an FRT40 FRT42D
yþPcl22M21 chromosome and found that yw; a-tubulin-TAP-Pcl
FRT40 FRT42D yþPcl22M21/a-tubulin-TAP-Pcl FRT40 FRT42D yþ

Pcl22M21 animals are wild type in appearance, viable and fertile.
Similarly, we found that the a-tubulin-TAP-E(z) transgene rescues
animals that are trans-heterozygous for two protein-negative E(z)-
null alleles (Müller et al, 2002); w; a-tubulin-TAP-E(z);
E(z)731FRT2A/E(z)63FRT2A animals are wild type in appearance,
viable and fertile. TAP was performed from embryonic nuclear
extracts as previously described (Klymenko et al, 2006); see
Supplementary Figure S6 for detailed information.

Mass spectrometry
A detailed list of peptide sequences obtained from mass spectro-
metry analysis of the protein bands shown in Figure 1 is available in
Supplementary Figure S1. For quantitative mass spectrometry of
modified peptides, the samples were separated on a nano-flow 1D-
plus Eksigent (Eksigent, Dublin, CA) HPLC system coupled to a
qStar Pulsar i quadrupole time-of-flight MS (Applied Biosystems,
Darmstadt, Germany). The resulting MASCOT search result file and
the generic mass spectrometry data of each sample were parsed
using MSQuant in a no-label setting (Kratchmarova et al, 2005). The
quantitation result (peptide ion volumes in thompson � sec) for each
peptide was presented in a diagram (Figure 3B). The presented data
was an average of a duplicate analysis. To minimize differences
between the samples, the ion volume of all modified and
unmodified peptides was summed and normalized (Fraterman
et al, 2007).

Immunostaining of discs and embryos
Staining of imaginal discs and embryos was performed as described
(Beuchle et al, 2001).

X-ChIP assays
X-ChIP on wt and Pcl�/� embryos was performed as described in
Klymenko et al (2006). Pcl22M21/Pcl22M21 embryos were collected
from an FRT40 FRT42D yþPcl22M21/CyO ubi-nGFP strain by selecting
for GFP-negative embryos using an embryo sorter (COPASTM

SELECT, Union Biometrica). Primers used for amplification are
listed in Supplementary Figure S4.

Antibodies
All antibodies used in this study are listed in Supplementary
Figure S5.

Protein expression and purification
Recombinant PRC2 complex was expressed and purified as
described in Nekrasov et al (2005).

HMTase assay and mononucleosome assembly
Assays were performed as described (Nekrasov et al, 2005).
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Embryonic extract preparation
For Western blot experiments shown in Figure 4, embryos were
dechorionated and taken up in ice-cold PBS buffer containing
0.01% Triton. Embryos were homogenized with a glass dounce
homogenizer, lysate was cleared at 400 g for to pellet the embryonic
carcasses. Supernatant was centrifuged at 1100 g and the pellet was
resuspended in SDS–Laemmli buffer. For Western blots on larval
extracts, imaginal disc and CNS tissues were dissected from wild-
type or mutant larvae and resuspended in SDS–Laemmli buffer.

Fly strains and alleles
The following strains were used in this study:
1. w; FRT40 FRT42D yþPcl22M21/SM6B
2. w; E(z)731FRT2A/TM6C
3. w; E(z)63FRT2A/TM6C
4. w; Su(z)1214FRT2A/TM6C
5. y w hs-flp; hs-nGFP FRT2A
6. y w hs-flp; FRT42D hs-nGFP

Pcl22M21 was isolated in a screen for new PcG mutation; details
for the screen will be described elsewhere (Gaytán de Ayala Alonso
et al, 2007). In brief, Pcl22M21 was induced with EMS on an FRT40
FRT42D yþ chromosome; complementation tests with PclD5

revealed that Pcl22M21 is an allele of Pcl. Sequence analysis revealed

a single nucleotide exchange in Pcl22M21, changing the codon E701
from GAG into a premature stop codon (TAG).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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