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Abstract
In the late 1980s, the finding that the dentate gyrus contains more granule cells in the male than in
the female of certain mouse strains provided the first indication that the dentate gyrus is a significant
target for the effects of sex steroids during development. Gonadal hormones also play a crucial role
in shaping the function and morphology of the adult brain. Besides reproduction-related processes,
sex steroids participate in higher brain operations such as cognition and mood, in which the
hippocampus is a critical mediator. Being part of the hippocampal formation, the dentate gyrus is
naturally involved in these mechanisms and as such, this structure is also a critical target for the
activational effects of sex steroids. These activational effects are the results of three major types of
steroid-mediated actions. Sex steroids modulate the function of dentate neurons under normal
conditions. In addition, recent research suggests that hormone-induced cellular plasticity may play
a larger role than previously thought, particularly in the dentate gyrus. Specifically, the regulation
of dentate gyrus neurogenesis and synaptic remodeling by sex steroids received increasing attention
lately. Finally, the dentate gyrus is influenced by gonadal hormones in the context of cellular injury,
and the work in this area demonstrates that gonadal hormones have neuroprotective potential. The
expression of estrogen, progestin and androgen receptors in the dentate gyrus suggests that sex
steroids, which could be of gonadal origin and/or synthesized locally in the dentate gyrus, may act
directly on dentate cells. In addition, gonadal hormones could also influence the dentate gyrus
indirectly, by subcortical hormone-sensitive structures such as the cholinergic septohippocampal
system. Importantly, these three sex steroid-related themes, functional effects in the normal dentate
gyrus, mechanisms involving neurogenesis and synaptic remodeling, as well as neuroprotection, have
substantial implications for understanding normal cognitive function, with clinical importance for
epilepsy, Alzheimer's disease and mental disorders.
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Introduction
In 1989, Wimer and Wimer (1989) reported that in certain mouse strains, the dentate gyrus
contains more granule cells in the male than in the female. A few years later, the dentate granule
cell layer was shown to be larger in males relative to females, both in adult and prepubescent
rats, which is well correlated with performance in spatial memory tasks (Roof and Havens,
1992;Roof, 1993). Later, in the hilus of the dentate gyrus, the number of synapses formed by
mossy fibers, the axons of dentate granule cells, was demonstrated to be higher in male rats
than in females, consistent with the idea that more granule cells in males provide a more robust
input to CA3 pyramidal neurons (Parducz and Garcia-Segura, 1993). Using rigorous stereology
techniques, however, two studies performed later have found no sexual dimorphism in the
volume of the dentate granule cell layer in Sprague-Dawley (Isgor and Sengelaub, 1998) and
Long-Evans rats (Jones and Watson, 2005). Paying particular attention to rodent strains in this
respect is emphasized by another mouse study, demonstrating that the overall volume of the
dentate granule cell layer in A/J mice is larger in males than in females, while there is no such
sexual dimorphism in C57Bl/6J mice (Tabibnia et al., 1999). These key developments in our
understanding of sex differences in the dentate gyrus were followed by other examples of sexual
dimorphism in certain aspects of dentate gyrus function and morphology. For example, female
rats produce more newly-born cells than males in the dentate gyrus, but not in the subventricular
zone (Tanapat et al., 1999).

Expression of proteins regulated by estrogen, such as brain-derived neurotrophic factor
(BDNF) (Sohrabji et al., 1995), also differs in males vs. females. Using immunocytochemistry,
it appears that the mossy fibers contain the vast majority of BDNF protein (Conner et al.,
1997). When a proestrous or estrous female rat with high estrogen levels was compared to a
metestrous female, ovariectomized female, or male, which have low estrogen blood
concentrations, BDNF protein expression in the mossy fibers was relatively low (Scharfman
et al., 2003). These studies are consistent with BDNF expression in mossy fiber-containing
micropunches of CA3 assayed by ELISA, demonstrating a higher level of BDNF in the female
relative to the male rat (Franklin and Perrot-Sinal, 2006).

The finding that prepubescent female rats injected neonatally with testosterone develop a male-
like dentate gyrus and perform better in the Morris water maze (Roof, 1993) suggests that the
“gender” of the dentate gyrus and many other sexually dimorphic brain functions and structures
could be readily manipulated via the hormonal milieu. The window during which these
hormonal manipulations can affect dentate gyrus morphology seems to be restricted to the first
few postnatal days (Roof, 1993), because no morphological responses to sex steroid treatment
in the rat dentate gyrus were found before or after this period (Isgor and Sengelaub, 1998). The
findings of Roof (1993) support the so-called “aromatization hypothesis”, i.e., the brain is
masculinized by estrogen that is produced by aromatase from testosterone, which is readily
available in the developing male but not in the female (Naftolin et al., 1975). Also consistent
with this hypothesis, estrogen receptor (ER) mRNA levels in the dentate gyrus increase
significantly between birth and postnatal day 4, and then decline by postnatal day 10, while
adult male rat ER mRNA levels are similar to those found in newborn and postnatal day 10
animals (O'Keefe et al., 1995). On the other hand, it has been reported that the dentate granule
cell layer is significantly larger in testicular feminization mutant (Tfm) male rats than in wild-
type females (Jones and Watson, 2005). Because Tfm rats express a dysfunctional androgen
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receptor (AR), this finding implicates the AR in the development of the dentate gyrus, which
contradicts the aromatization hypothesis. It should be noted, however, that Tfm rats retain a
considerable portion of AR activity, whereas the dentate granule cell layer is not sexually
dimorphic in Tfm mice with complete deletion of AR function (Tabibnia et al., 1999).

Sex Steroids and Dentate Physiology
The findings of sexual dimorphism strongly suggest that sex steroids, and their receptors, are
important regulators of dentate gyrus organization, and emphasize their important role in
development. The rest of this review, however, will focus on more recent and exciting research
on the activational effects of gonadal hormones in the adult brain. In adulthood, sex steroids
participate not only in reproduction-related central actions, but also in higher brain functions
such as cognition and mood regulation (Korol and Kolo, 2002;Seidman, 2003;Steiner et al.,
2003;MacLusky et al., 2006). Because the hippocampal formation plays an essential role in
declarative, spatial, and contextual memory, as well as in the regulation of mood and the
hypothalamic-pituitary-adrenal axis, this limbic structure is a critical target of hormone action
(McEwen and Alves, 1999;McEwen, 2003). As a part of the hippocampal formation, it is highly
likely that the dentate gyrus also plays an important role in cognitive function and mood
regulation. Although research has made progress in associating hippocampal subregions with
specific functional roles in complex topics such as cognition and mood, proving that any
specific aspect of these behaviors is dependent on the dentate gyrus has been more difficult,
probably because complex hippocampal operations require uncompromised signal flow
throughout the entire hippocampal formation, rather than only in select areas.

Electrophysiological studies may provide the most specific insights into the ways sex steroids
influence the adult dentate gyrus. Working with rat hippocampal slices in the presence or
absence of 17β-estradiol, Kim and colleagues (2006) have reported that 17β-estradiol
significantly potentiates the amplitude and slope of field excitatory postsynaptic potentials in
dentate gyrus directly, as well as in CA3 following mossy fiber stimulation. Repetitive hilar
stimuli frequently evoke multiple population spikes in CA3 at proestrus and estrus, but only
rarely at other cycle stages, and never in slices of ovariectomized rats (Scharfman et al.,
2003). This hyperexcitability in CA3 at proestrus was blocked by exposure to the high-affinity
neurotrophin receptor antagonist K252a, or by an antagonist of the α7 nicotinic cholinergic
receptor, whereas it was induced at metestrus by the addition of BDNF to hippocampal slices
(Scharfman et al., 2003). These findings indicate that an estrogen-induced interaction of BDNF
and α7 nicotinic receptors is important for estrous cycle-related changes in CA3 and dentate
gyrus (Scharfman et al., 2003).

Considering androgen, intrahippocampal microinjection of neither dehydroepiandrosterone-
sulfate (DHEAS) nor trilostane, an inhibitor of the enzyme that metabolizes DHEAS, alters
dentate field excitatory postsynaptic potential slopes or population spike amplitudes, but
increases the amplitude of a late component of the postsynaptic potential. Both DHEAS and
trilostane abolishes GABA-mediated paired-pulse inhibition. In addition, both DHEAS and
trilostane markedly increases the spontaneous firing rate of dentate hilar interneurons and
synchronizes their firing during hippocampal theta rhythm induced by tail-pinch (Steffensen,
1995).

Many studies indicate that sex steroid-induced electrophysiological changes may be due to
modulation of dentate glutamate and GABA receptors. Indeed, ovariectomy in rats decreases
[3H] glutamate binding to N-methyl-D-aspartate (NMDA) receptors in the dentate gyrus, while
hormone replacement with estradiol, tamoxifen, or raloxifene prevents this decrease (Cyr et
al., 2000;Cyr et al., 2001). On the other hand, [3H] MK-801 binding shows that the density of
noncompetitive NMDA antagonist sites is significantly increased in the dentate gyrus of
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ovariectomized compared to sham-operated rats (El-Bakri et al., 2004). 17β-estradiol returns
[3H] MK-801 binding to the normal levels, while progesterone has no effect (Weiland,
1992;El-Bakri et al., 2004). In addition, estradiol treatment of ovariectomized rats significantly
increases NMDA R1 subunit protein levels in granule cell somata, in comparison with non-
treated animals, without concomitant changes in the corresponding mRNA hybridization signal
(Gazzaley et al., 1996). Regarding other receptor types, ovarian steroids have no effect on the
density of kainate or α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)
receptors (Weiland, 1992;Cyr et al., 2000), while estradiol-benzoate increases [3H] muscimol
binding in the dentate gyrus (Schumacher et al., 1989). In situ hybridization showed that
progesterone suppresses mRNA levels of the α1 GABAA receptor subunit in the dentate gyrus
of animals that were pretreated with estradiol (Weiland and Orchinik, 1995). Finally, there is
a significant negative correlation between testosterone levels and the mRNA level for the α1
GABAA receptor subunit (Orchinik et al., 1995).

Sex Steroids and Dentate Plasticity
Although numerous findings support the view that molecular mechanisms, including receptor
changes, play a critical role in alterations of neuronal activity and functional plasticity (see
above), recent evidence suggests that sex steroids may also influence long-term potentiation
(Lynch, 2004) and learning/memory via mediating aspects of structural plasticity, such as
neurogenesis and synaptic remodeling (Kandel, 2001;Kasai et al., 2003).

Sex steroids and neurogenesis
Due to the recent confirmation that neurogenesis continues throughout the lifespan in the adult
dentate gyrus (Altman and Das, 1965), the subgranular zone, where progenitors are primarily
generated, has drawn considerable attention. Translational implications are one reason: dentate
neurogenesis may be a critical factor in the pathophysiology of depression and in the
mechanism of antidepressant action (Santarelli et al., 2003). The first indication that sex
steroids may influence adult neurogenesis came from Tanapat and colleagues (1999), who
demonstrated that female rats produce more newly-born cells than males in the dentate gyrus
(but not in the subventricular zone). They have also reported a fluctuation in cell proliferation
during the estrous cycle: females produce more newly-born cells during proestrus (when
estrogen levels are highest) compared with estrus and diestrus. Ovariectomy diminishes, while
acute treatment with estrogen rapidly increases, cell proliferation in ovariectomized rats, an
effect that is reversed by the administration of progesterone (Tanapat et al., 1999;Falconer and
Galea, 2003;Tanapat et al., 2005). Both the prolonged absence of ovarian hormones and chronic
treatment decreases the potential of estrogen to stimulate cell proliferation (Tanapat et al.,
2005), suggesting that both dose-response and temporal characteristics of estrogen treatment
may critically influence its neurogenic efficacy. Indeed, Ormerod and colleagues (2003) have
reported that relative to vehicle-treated rats, the number of new cells increases following a 4-
hr exposure but decreases following a 48-hr exposure to estrogen in ovariectomized animals.
This decrease at 48 hr is abolished by adrenalectomy, suggesting a role of adrenal activity
(Ormerod et al., 2003).

In addition to being effective under normal conditions, estrogen is capable of influencing
neurogenic potential when neurogenesis is examined in other contexts. For example, a strong
reduction in cell proliferation occurs in the dentate gyrus and subventricular zone of mice
sacrificed 20 days after streptozotocin administration, which induces a diabetic state. This
reduction is completely relieved by 10 days of estradiol pellet implantation, which increases
the circulating estrogen levels 30-fold (Saravia et al., 2006). In addition, there is a striking
effect of aging on cell proliferation that appears to be influenced by estradiol. Perez-Martin
and colleagues (2005) have reported that treatment of 22-month-old ovariectomized animals
for 10 weeks with a weekly subcutaneous injection of estradiolvalerianate, or with soy extract
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added to the drinking water, reverses the age-associated decline in dentate granule cell
production (Perez-Martin et al., 2005). Similarly, estrogen also normalizes the deficient granule
cell proliferation in the dentate gyrus of aging mice (De Nicola et al., 2006).

Several studies have provided insight into the mechanisms underlying the influence of estrogen
on neurogenesis. Mazzucco and colleagues (2006) have shown that both diarylpropionitrile,
an ERβ agonist, and propyl-pyrazole triol, an ERα agonist, significantly enhances cell
proliferation in the dentate gyrus of female rats. Other findings suggest that ERs are involved
in the induction of adult neurogenesis by an interaction with insulin-like growth factor-1
(IGF-1), as estradiol and IGF-1 have a cooperative effect to promote neurogenesis (Perez-
Martin et al., 2003). Administration of IGF-1 significantly increases dentate neurogenesis
compared to rats treated with vehicle; and rats treated with both IGF-1 and estradiol show a
higher level of cell proliferation than rats treated with IGF-1 or estradiol alone (Perez-Martin
et al., 2003).

Serotonin has also been linked to the effect of estradiol on dentate neurogenesis. Administration
of 5-hydroxytryptophan, a precursor to serotonin, restores cell proliferation that was decreased
by ovariectomy, whereas estradiol is unable to reverse this change in ovariectomized rats
treated with p-chlorophenylalanine, an inhibitor of serotonin synthesis (Banasr et al., 2001).
These data implicate the central serotonergic system in the mediation of estrogen effects on
dentate neurogenesis. Indeed, several studies indicate that estrogen influences the dentate
serotonergic system (Bowman et al., 2002). In case of 5-HT1A receptors, estradiol treatment
reduces 5-HT1A gene expression in the dentate gyrus (Birzniece et al., 2001), while
ovariectomy increases 5-HT1A receptor stimulation, which is reversed by estradiol (Le Saux
and Di Paolo, 2005).

Besides the plethora of data with respect of estrogen and neurogenesis, there are almost no
published work that address the neurogenic effect of androgen except an initial study in
songbird suggesting that testosterone promotes neurogenesis (Louissaint et al., 2002). Another
study has demonstrated that in a neuronal stem cell culture stimulated with epidermal growth
factor, nandrolone, a synthetic androgen reduces cell proliferation (Brannvall et al., 2005). The
decrease is abolished by flutamide, an AR antagonist. Nandrolone also reduces new cell
production in the dentate gyrus, an effect observed in both female and male rats (Brannvall et
al., 2005). For more details on gonadal hormone modulation of hippocampal neurogenesis in
the adult, some excellent reviews are available (Gould et al., 2000;Galea et al., 2006). For more
details on adult neurogenesis and its role in mood regulation, we refer the reader to other
chapters within this volume.

Sex steroids and synaptic remodeling
In 1992, the discovery that estradiol mediates fluctuation in hippocampal CA1 spine synapse
density during the estrous cycle in the adult rat marked the beginning of a new era in the research
of sex steroids (Woolley and McEwen, 1992). Subsequent extensive work has shown that sex
steroids hold an unparalleled synaptogenic power in the adult hippocampus. For example,
hormone replacement induces changes on the order of 50-100% in the number of CA1 spine
synapses of rats (MacLusky et al., 2006;Parducz et al., 2006). This synaptogenic efficacy seems
to be rivaled only by antidepressant drugs (Hajszan et al., 2005). Moreover, estrogen-induced
remodeling of hippocampal spine synapses is remarkably rapid, similar to the time course
required for long-term potentiation induction (MacLusky et al., 2005). The temporal analogy
suggests that formation of spine synapses may be involved in sex steroid-modulated cognitive
functions. Indeed, a great deal of evidence has accumulated which suggests that rapid
remodeling and stabilization of small spines (and their associated synaptic contacts) may
represent a mechanism of memory formation and storage (Sorra and Harris, 2000;Kandel,
2001;Kasai et al., 2003).
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Unfortunately, several studies support the view that the dentate gyrus may miss this
“synaptogenic party”. Woolley and colleagues (1990) have reported no significant changes in
dendritic spine density across the estrous cycle in CA3 pyramidal cells or dentate granule cells
of the rat. Using a similar Golgi-impregnation technique, Gould and colleagues (1990) have
shown that ovariectomy or gonadal steroid replacement do not affect spine density of CA3
pyramidal cells or granule cells of the dentate gyrus. In a later study, Miranda and colleagues
(1999) have demonstrated that there may be effects in the dentate gyrus, but they are likely to
be dependent on age and the temporal pattern of estradiol replacement. In addition, Szymczak
and colleagues (2006) suggest that ERβ expression is negatively correlated with synapse
formation.

Another approach to the topic of synaptic remodeling is to address the expression of proteins
that are associated with the pre- or postsynaptic apparatus. This approach has also failed to
lead to a compelling body of evidence that hormonal fluctuations modulate dentate synaptic
remodeling. For example, immunoreactivity for spinophilin, a marker of dendritic spines, is
increased in the hilar region of the dentate gyrus, as well as in CA3, of ovariectomized rats
treated with estrogen for 2 days (Brake et al., 2001). However, levels of syntaxin and
synaptophysin (presynaptic proteins associated with the transmitter release machinery), as well
as spinophilin, are unaltered by hormone treatment in the dentate gyrus of rhesus monkeys
(Choi et al., 2003). Although young female rhesus monkeys show a trend toward an estrogen-
induced increase in immunoreactive spines in the dentate gyrus outer molecular layer, this
effect appears to be statistically insignificant (Hao et al., 2003).

Glia have also been associated with synaptic remodeling, as expansion of the dendritic tree
and spine growth may occur at the expense of shrinking glial, primarily astroglial volume. As
a result, presumably, abundance of astroglial processes and markers is negatively correlated
with dendritic spine density. However, the ways sex steroids alter dentate gyrus glia do not
appear to be consistent. Luquin and colleagues (1993) have shown that the surface density of
astroglial cells is positively influenced by estrogen and progesterone. The surface density of
astroglial cells was significantly increased over control values by 5 hr after the injection of
estrogen to ovariectomized rats, and as early as 1 hr after the administration of progesterone;
it reached maximal values by 24 hr and returned to control levels by 48 hr (Luquin et al.,
1993). In contrast, levels of glial fibrillary acidic protein (GFAP) intron 1, a molecular marker
of adult astrocytes, shows that GFAP transcription and mRNA are both decreased in the outer
molecular layer of the dentate gyrus on the afternoon of proestrus, when plasma estradiol levels
are highest (Stone et al., 1998b). In vitro, astrocytes show interesting bidirectional responses,
such that estrogen treatment increases GFAP transcription in monotypic astrocytic cultures but
decreases GFAP transcription in astrocytes cocultured with neurons (Stone et al., 1998b). In
mice, Lei and colleagues (2003) have reported similar findings, i.e., long-term 17β-estradiol
treatment in aged female mice significantly lowered the number of astrocytes in the dentate
gyrus and CA1 compared with placebo.

What maybe in the cause of such variable findings? Besides confounding variables such as the
age of animals, strain, dose and temporal characteristics of hormone treatment, and/or the
dentate area examined, the chosen methodological approach alone may be critical. What
measures most reliably the remodeling of synaptic connections, i.e., synaptogenesis or loss of
synapses, is debatable. Above, we list several light microscopic approaches, such as Golgi-
based estimation of dendritic spine density and histochemical detection of pre- and/or
postsynaptic marker molecules, which are widely applied, mainly due to their relative
methodological simplicity. However, it is impossible to decide at the light microscopic level
what proportion of the measured molecular synaptic markers is actually associated with
synapses, and what proportion represents extrasynaptic molecules that are processed and/or
stored in different cellular compartments. Therefore, levels of synaptic marker molecules may
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and do change without alterations in the number of synapses (Li et al., 2004). Although Golgi-
based estimation of dendritic spine density is a less controversial approach, it also has several
limitations. The most important is that spines may or may not form synapses, and the Golgi
method is incapable of differentiating between spines that have synapses and spines that do
not. Thus, similar to synaptic marker molecules, measures of dendritic spines do not necessarily
reflect the true number of spine synapses.

The most important point in this debate is that the number of actual spine synapses is more
relevant to the functional status of neurons than the number of dendritic spines or the levels of
any molecular markers. Thus, when the true number of synapses is questioned, one should
count synapses themselves using electron microscopic stereological techniques, because the
above-discussed light microscopic markers are not reliable. Treating ovariectomized rats with
10 μg/day subcutaneous estradiol-bezoate for 2 days, a similar schedule that has been used in
previous studies (Gould et al., 1990), estrogen increased the number of spine synapses in the
CA1 stratum radiatum by 71.6% over oil-treated control values, by 50.1% in the CA3 stratum
radiatum, and by 99.1% in the molecular layer of the dentate gyrus (Figure 1). It is noteworthy
that the number of granule cell spine synapses in the dentate gyrus doubles after estrogen
administration.

Neuroprotective Effects
Due to the vulnerability of some types of neurons in the dentate gyrus to insults, this area is a
common subject of neurodegenerative/neuroprotective experiments. The work summarized
below is focused around two topics for which neuroprotection is particularly germane: epilepsy
and Alzheimer's disease.

Effects of estrogen on seizures vary, depending on the experimental approach, and many other
factors. Estrogen may increase neuronal excitability and thus mediate proconvulsant effects
that have been reported in the past, but reviews of the clinical and animal data show that
estrogen may also have no effect or even anticonvulsant effects (Scharfman et al., 2003;Hajszan
and MacLusky, 2006;Veliskova, 2006). The protective role of estrogen in seizure-induced
damage is more straightforward. Severe seizures have been shown to trigger excitotoxic cell
death in the hilus of the dentate gyrus, and patients with temporal lobe epilepsy often exhibit
neuronal loss in the hilus also (Margerison and Corsellis, 1966). Kainic acid is commonly used
as a convulsant to elicit severe seizures (status epilepticus) and excitotoxic damage in the
dentate gyrus of rats (Ben-Ari and Cossart, 2000). Estrogen administration is capable of
preventing kainic acid-induced degeneration (Azcoitia et al., 1998;Veliskova et al., 2000).
Estrogen may also mediate the protective actions of other steroids. For example, the
neurosteroids pregnenolone and DHEA showed a dose-dependent protective effect of hilar
neurons against kainic acid. The administration of the aromatase inhibitor fadrozole, that blocks
the conversion of these steroids into estrogen, prevented this effect (Veiga et al., 2003).
Interestingly, 2-methoxyestradiol, an estradiol metabolite, induced significant neuronal loss in
the hilus, detected 96 hr after the treatment with this steroid. This finding suggests that
endogenous metabolism of 17β-estradiol to 2-methoxyestradiol may counterbalance the
neuroprotective effects of estrogen (Picazo et al., 2003).

Regarding mechanisms for the neuroprotective effects of estrogen in studies of seizure-induced
neuronal damage, Veliskova and colleagues (2000) as well as Haynes and colleagues (2003)
suggest that intracellular ERs mediate the neuroprotective effect of estrogen, because
tamoxifen pretreatment effectively abolished estrogen-induced neuroprotection. An
interaction of ER and IGF-1 receptor signaling may also be important (Azcoitia et al.,
1999a). Furthermore, GABAB receptors are likely to play a role, because there was a loss of
GABAB receptor-mediated inhibition after kainic acid-induced status epilepticus in the rat
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dentate gyrus, and pretreatment with estrogen could prevent it (Velisek and Veliskova,
2002).

Other steroids besides estrogen are also likely to reduce seizure-induced damage, and the
progesterone metabolite 3α],5α-tetrahyroprogesterone (allopregnanolone) has been shown to
be one example. Blocking progesterone's metabolism to 3α,5α-tetrahyroprogesterone reduced
progesterone's protective effects in the dentate gyrus (Rhodes et al., 2004). In the kainate model,
3α,5α-tetrahyroprogesterone was able to protect the hilus from kainic acid (Ciriza et al.,
2004). Another metabolite was also effective: 5α-hydroxyprogesterone (Ciriza et al., 2004).

Other models of injury, which use adrenalectomy to examine neuronal loss in the dentate gyrus,
focus on the granule cells, because adrenalectomy selectively kills granule cells (see chapter
by M. Joels in this volume). In this model, estradiol treatment reduced pyknotic cell number
compared to vehicle administration (Frye, 2001). Interestingly, a synthetic glucocorticoid,
dexamethasone can also induce apoptosis in the dentate gyrus, and pretreatment with estrogen
substantially attenuated the dexamethasone-induced neuronal damage (Haynes et al., 2003).
Colchicine, a microtubule polymerization inhibitor, also selectively kills granule cells, an effect
that is increased by ovariectomy and ameliorated by 17β-estradiol (Liu et al., 2001).

Regarding other sex steroids, treatment of female or male rats with progesterone or its
metabolites, 5α-dihydroprogesterone and 3α,5α-tetrahyroprogesterone similarly reduced the
total number of adrenalectomy-induced pyknotic cells in the dentate gyrus compared with
vehicle administration. In case of androgen, testosterone and its metabolites, 5α-
dihydrotestosterone and 5α-androstane-3α,17β-diol significantly reduced the number of
pyknotic cells in the dentate gyrus compared to vehicle-administered, adrenalectomized female
rats (Frye and McCormick, 2000a,b).

Estrogen also has been found to play a critical neuroprotective role in Azlheimer's disease.
Unilateral entorhinal cortex lesion (ECX) is frequently used as a model of Alzheimer's disease-
like deafferentation in the dentate gyrus. ECX elicits sprouting in the molecular layer, which
is affected by gonadectomy and hormone replacement, but only in female rats: ovariectomy
reduces fiber outgrowth and estrogen restores it (Stone et al., 2000). However, testosterone
replacement had no effect on sprouting in castrated ECX males (Morse et al., 1986). Sprouting
in hippocampal cultures of C57Bl/6J mice was increased by 75% after treatment with 17β-
estradiol, which was blocked by an antagonist of nuclear receptors, tamoxifen (Teter et al.,
1999). In intact female mice in vivo, lesions of the lateral part of the entorhinal cortex increased
axonal sprouting in the outer one-third of the molecular layer of the dentate gyrus.
Ovariectomized mice receiving high and moderate estrogen supplementation displayed the
same sprouting response. In ovariectomized non-treated mice, however, the sprouting response
was significantly reduced (to nearly nothing) (Kadish and van Groen, 2002). Finally, Stone
and colleagues (1998a) have shown that in wild-type ECX mice, ovariectomy decreases
commissural/associational sprouting to the inner molecular layer of the dentate gyrus, which
is reversed by estradiol replacement. In ECX apolipoprotein E-knockout mice, however,
estradiol did not enhance sprouting, suggesting that sprouting may be stimulated by estrogen
through its up-regulation of apolipoprotein E expression, leading to increased recycling of
membrane lipids for use by sprouting neurons (Stone et al., 1998a). Estrogen and
apolipoprotein E may therefore interact in their modulation of both Alzheimer's disease risk
and recovery from neuronal injury.

Mediation of Sex Steroid Effects
Effects of sex steroids in the dentate gyrus depend on the location of their action, and the sites
of steroid synthesis. Below we discuss the distribution of receptors, which is summarized in
Figure 2. Sex steroids are capable of acting directly on granule cells, as well as indirectly via
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non-granule cells within the dentate gyrus (interneurons, mossy cells). The influence of sex
steroids could also be mediated by subcortical, hormone-sensitive structures, such as the
septohippocampal cholinergic neurons. Sites of sex steroid synthesis are usually thought to be
peripheral, but local synthesis is also possible, and is discussed further below.

Distribution of ERα in the dentate gyrus
Estrogen binding, as well as mRNA and immunoreactivity for ERα, have been detected in
nuclei of scattered GABAergic interneurons, located predominantly in the subgranular region
of the dentate gyrus (Loy et al., 1988;Shughrue et al., 1997;Weiland et al., 1997;Perlman et
al., 2005). Nuclear ERα-immunoreactive interneurons co-express neuropeptide Y, calbindin-
D28k and calretinin, but not cholecystokinin or parvalbumin (Nakamura and McEwen,
2005). In addition to nuclear receptors, ultrastructural studies have revealed ERα at several
extranuclear sites in the dentate gyrus (Milner et al., 2001). Specifically, ERα-
immunoreactivity is affiliated with the cytoplasmic plasmalemma of select hilar interneurons
and with endosomes of a few granule cell perikarya. Moreover, ERα-labeled profiles are
dispersed throughout the dentate gyrus. Approximately half of these labeled profiles are
unmyelinated axons and axon terminals that contain numerous small, synaptic vesicles. ERα-
labeled terminals form both symmetric and asymmetric synapses on dendritic shafts and spines,
suggesting that ERα-positive axons arise from sources in addition to inhibitory interneurons.
Dual labeling revealed that ERα-immunoreactivity is contained in axons and terminals labeled
with vesicular acetylcholine transporter (Towart et al., 2003), suggesting that estrogen could
rapidly and directly affect the local release and/or uptake of acetylcholine. About one-quarter
of the ERα-immunoreactive profiles are dendritic spines, many originating from granule cells.
In dendritic spines, ERα-immunoreactivity is often associated with the spine apparatus,
suggesting that estrogen might act locally through ERα to influence protein synthesis during
synaptic remodeling. The remaining one-quarter of ERα-labeled profiles are from glial origin
that resemble astrocytes and are often located near the spines of granule cells. Vesicular
acetylcholine transporter-containing terminals often abut ERα-positive presynaptic and glial
profiles and unlabeled terminals that contact ERα-immunoreactive spines (Towart et al.,
2003), suggesting that acetylcholine release might play a critical role in estrogen-modulated
structural plasticity. Collectively, these results imply that ERα may serve as both a genomic
and non-genomic transducer of estrogen action in the dentate gyrus.

Distribution of ER β in the dentate gyrus
The cellular and subcellular locations of ERβ-immunoreactivity in the dentate gyrus are similar
yet distinct from ERα. In monkey, dense ERβ hybridization signal has been seen in the dentate
gyrus, CA1, CA2, CA3, CA4, and the prosubiculum/subiculum areas of the hippocampus
(Gundlah et al., 2000). In rodents, cells in or near the dentate granule cell layer transiently
express high levels of estrogen binding and ERα protein in the nucleus during the first two
postnatal weeks (O'Keefe et al., 1995;Solum and Handa, 2001). In adult rats and mice, ERβ
mRNA and protein has been found in the perikarya of granule cells as well as cells in the dentate
subgranular layer (Li et al., 1997;Shughrue et al., 1997;Mitra et al., 2003;Milner et al., 2005).
Szymczak and colleagues (2006) have found that ERβ mRNA and protein are displayed in
high levels in the estrus and in low levels in the proestrus phase. Recently, robust mRNA
expression for both the α and β subtypes of ERs has been found in proliferating and
differentiating cells of neuronal phenotype in the subgranular zone of the dentate gyrus (Isgor
and Watson, 2005). Furthermore, ERβ-immunoreactive glia has been observed in the hilus of
the dentate gyrus of male and female rats. ERβ-immunoreactivity has been localized in glial
processes and perikarya and, in some cases, in glial cell nuclei. Double immunocytochemical
labeling of ERβ and the specific astroglial marker, GFAP revealed that the ERβ-
immunoreactive glial cells are astrocytes (Azcoitia et al., 1999b). Ultrastructural analysis
showed ERβ-immunoreactivity at several extranuclear sites in the dentate gyrus (Milner et al.,
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2005). ERβ-immunoreactivity is affiliated with cytoplasmic organelles, especially
endomembranes and mitochondria, and with the membranes primarily of granule cell perikarya
and proximal dendrites. Recent studies revealed that neuronal perikarya and dendrites labeled
with doublecortin, a marker of newly-generated cells, also contain extranuclear ERβ-
immunoreactivity in both the adult and neonatal dentate gyrus (Herrick et al., 2006). ERβ-
labeled dendritic shafts and spines have mostly been found in the molecular layer. In dendritic
processes, ERβ-immunoreactivity is near the perisynaptic zone adjacent to synapses formed
by unlabeled terminals. The ERβ protein can also be found in preterminal axons and axon
terminals, associated with clusters of small, synaptic vesicles. ERβ-labeled axons are
particularly dense in the hilus and outer molecular layer, forming both asymmetric and
symmetric synapses with dendrites. Finally, ERβ-immunoreactivity has been detected in glial
profiles throughout the dentate gyrus, some of which appose doublecortin-labeled perikarya
and dendrites (Herrick et al., 2006). These results suggest that ERβ may serve primarily as a
non-genomic transducer of estrogen actions in the dentate gyrus.

Distribution of progestin receptor (PR) in the dentate gyrus
Cells containing PR mRNA have been detected in the dentate subgranular zone (Hagihara et
al., 1992). By light microscopy, nuclear PR-immunoreactivity is undetectable in the dentate
gyrus; however, ultrastructural analysis revealed that the PR protein is found at several
extranuclear sites (Waters et al., 2005). In the molecular layer and hilus, PR-immunoreactivity
is present in dendritic spines, closely associated with the postsynaptic density. The PR protein
is expressed in axons and axon terminals that contain small synaptic vesicles. PR-positive
terminals and en passant axonal boutons form synapses with dendritic spines. PR-
immunoreactivity has also been found in glia, many resembling astrocytes and some forming
presumed gap junctions with other astrocytic profiles. The considerable lack of nuclear PR
labeling may indicate that progesterone uses non-genomic signaling mechanism in the dentate
gyrus to directly affect dendritic spine morphology and synaptic plasticity.

Distribution of AR in the dentate gyrus
Previous light microscopic studies have shown that AR mRNA, immunoreactivity and binding
are present in pyramidal cell nuclei but not granule cells (Commins and Yahr, 1985;Sar et al.,
1990;Simerly et al., 1990;Kerr et al., 1995). However, AR-immunoreactivity is present in
disperse, punctuate processes that are most dense in the pyramidal cell layer and diffusely
distributed in the mossy fiber pathway (Tabori et al., 2005). Electron microscopic analysis
revealed AR-immunoreactivity at several extranuclear sites in the dentate gyrus. AR labeling
has been found in dendritic spines, many arising from granule cell dendrites. AR is affiliated
with clusters of small, synaptic vesicles within preterminal axons and axon terminals, the
majority of these being in the central hilus. AR-immunoreactive preterminal axons are most
prominent in the CA3 stratum lucidum. AR-labeled terminals exclusively form asymmetric
synapses. Throughout the dentate gyrus, AR-immunoreactivity has also been detected in
astrocytic profiles; many of them apposing terminals that synapse on unlabeled dendritic spines
or forming gap junctions with other AR-positive or unlabeled astrocytes (Tabori et al., 2005).
Together, these results suggest that ARs may serve as both a genomic and non-genomic
transducer of androgen action in the dentate gyrus.

Role of local steroid synthesis
Recent studies (Rune et al., 2006) suggest that locally synthesized steroids may contribute to
hippocampal activational effects. Using slice cultures, Rune and colleagues have reported that
the number of dentate proliferative cells decreases, whereas the number of apoptotic cells
increases dose-dependently, in response to reduced estradiol release into the medium after
treatment with letrozole, an aromatase enzyme inhibitor (Fester et al., 2006). This also holds
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true for cell cultures transfected with siRNA against steroidogenic acute regulatory protein
(StAR). StAR transports cholesterol to the inner mitochondrial membrane, where it is
converted by the cytochrome P-450 enzyme complex, and as such, it is the first step in the
cascade of estrogen synthesis. Application of estradiol to the medium had no effect on
proliferation and apoptosis, whereas the anti-proliferative and pro-apoptotic effects of StAR
knockdown and letrozole administration were restored by treatment of the cultures with
estradiol (Fester et al., 2006). The data of Rune and colleagues is also supported by other
studies. In situ hybridization revealed that StAR and aromatase are highly expressed in neuronal
cells of the dentate gyrus. In addition, StAR- and aromatase-positive cells are strictly correlated
with steroidogenic factor-1, a regulator of steroid biosynthesis, as shown by computer-assisted
confocal microscopy in double labeling experiments (Wehrenberg et al., 2001). Similarly,
Hojo and colleagues (2004) have reported in a rather comprehensive study that in the granule
cells of the adult male rat dentate gyrus, significant localization is seen for both cytochromes
P45017α (dehydroepiandrosterone synthase) and P450 aromatase by means of
immunohistochemical staining of slices. Only a weak immunoreaction of these P450s has been
observed in astrocytes and oligodendrocytes (Hojo et al., 2004). More importantly, stimulation
of hippocampal neurons with NMDA induced a significant net production of estradiol. The
analysis of radioactive metabolites demonstrated the conversion from [3H] pregnenolone to
[3H] estradiol through dehydroepiandrosterone and testosterone. This activity was abolished
by the application of specific inhibitors of cytochrome P450s (Hojo et al., 2004). In summary,
although these findings seem compelling, considering the fact that the majority of the above-
mentioned data have been obtained from cultures, which may be quite different from conditions
in vivo, one should exercise caution in interpreting such results.

Subcortical mediation of sex steroid effects
In addition to direct effects of sex steroids on dentate cells, indirect actions may influence the
dentate gyrus. We already mentioned above that the raphe serotonergic system mediates the
dentate neurogenic effect of estrogen (Banasr et al., 2001). Consistent with this line of
argument, raphe serotonergic neurons express ERα (Leranth et al., 1999). Another structure
that appears to be critical is the septohippocampal cholinergic system. Septal cholinergic
neurons express nuclear ERs (Shughrue et al., 2000) and hippocampal cholinergic axons and
terminals contain extranuclear ERα (Towart et al., 2003). Moreover, estrogen affects
septohippocampal cholinergic neurons both genomically and nongenomically (Gibbs and
Aggarwal, 1998;Rudick et al., 2003). Androgen also can influence the expression of
cholinergic markers in the dentate gyrus. Specifically, gonadectomy reduced the density of
choline acetyltransferase immunoreactive fibers in the dentate gyrus, which was reversed by
the addition of testosterone propionate (Nakamura et al., 2002). Although there is no direct
data from the dentate gyrus, elsewhere in the hippocampus estrogen modulates the inhibition
by specific GABAergic interneurons, which is partially dependent on input from basal
forebrain cholinergic neurons (Rudick et al., 2003). More evidence is available for the
cholinergic role in dentate neurogenesis. Selective neurotoxic lesion of the forebrain
cholinergic input with 192 IgG-saporin reduced dentate cell proliferation (Mohapel et al.,
2005). Conversely, systemic administration of the cholinergic agonist physostigmine increased
dentate neurogenesis. The neurogenic effect of acetylcholine appears to involve nicotinic
receptors containing the β2 subunit (Harrist et al., 2004), as well as m2, m3 and m4 muscarinic
receptors (Ma et al., 2000;Mohapel et al., 2005). Consistent with these findings, ovariectomy
upregulated m4 receptors in the dentate gyrus, whereas estrogen treatment restored m4 binding
to the level of the sham group (El-Bakri et al., 2002). However, other results suggest no
septohippocampal involvement in the synaptogenic action of estrogen, because rats that
received estrogen implants into the medial septum did not exhibit changes in astroglial process
density in the dentate gyrus (Lam and Leranth, 2003).
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Concluding Remarks
The studies discussed in this review clearly demonstrate that both the organization and
functioning of the dentate gyrus is a significant target of sex steroids. The gonadal hormone
modulation of physiological activity, neurogenesis, synaptic remodeling, and
neurodegeneration/neuroprotection mechanisms are likely to be relevant to higher brain
functions such as cognition and mood, in addition to their clinical implications in epilepsy,
Alzheimer's disease and mental disorders. Relative to hippocampal subfield CA1, however,
the role of gonadal hormones in the dentate gyrus has not received substantial attention. In
particular, our understanding of androgen effects on the dentate gyrus is extremely limited
relative to estrogen. The available data suggest potent, complex, and potentially important
effects, however, and therefore merit more attention in the future.
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Figure 1.
Effects of ovariectomy and estrogen replacement on the number of hippocampal spine
synapses. Young adult female Sprague-Dawley rats (250 g) were ovariectomized and one week
later, they received either 10 μg/rat/day estradiol-benzoate (EB, solid columns) or 200 μl/rat/
day sesame oil vehicle (Oil, open columns) subcutaneously for two days. Two days after the
last injection, the animals were sacrificed by transcardial perfusion of fixative, and their brains
were processed for electron microscopic stereological analysis. Spine synapses were counted
in the CA1 and CA3 strata radiata, and in the molecular layer of the dentate gyrus (DG).
*Significantly different from the corresponding Oil group (t-test, p<0.001 in CA1 and DG,
p<0.01 in CA3).
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Figure 2.
Subcellular localization of estrogen (ER), androgen (AR) and progestin (PR) receptors
in the dentate gyrus. A subset of GABAergic interneurons contains nuclear ERα (dark pink).
Granule cells, newly born cells (identified by DCX) and some GABAergic interneurons contain
cytosolic and plasma membrane-associated ERβ (blue). Dendritic spines, many originating
from granule cells contain ERα, ERβ, AR (dark green) and PR (purple). A few dendritic spines
in the hilus, likely originating from mossy cells, contain ERα and ERβ. ERα, ERβ, AR and PR
are found in axons and axon terminals. Some ERα-containing terminals are cholinergic
(acetylcholine, orange); some ERβ-containing terminals resemble monoaminergic boutons.
Lot of astrocytes (stars), mostly in the molecular layer, also contain ERα, ERβ, AR and PR.
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