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The minimal set of genetic information necessary and sufficient to sustain a functioning cell
contains not only trans-acting genes, but also cis-acting chromosomal regions that cannot
be complemented by plasmids carrying these regions. In Escherichia coli (E. coli), only one
chromosomal region, the origin of replication has been identified to be cis-acting. We constructed a
series of mutants with long-range deletions, and the chromosomal regions containing trans-acting
essential genes were deleted in the presence of plasmids complementing the deleted genes. The
deleted regions cover all regions of the chromosome except for the origin and terminus of
replication. The terminus affects cell growth, but is not essential. Our results indicate that the origin
of DNA replication is the only vital, unique cis-acting DNA sequence in the E. coli chromosome
necessary for survival.
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Introduction

The experimental identification of essential genes has been
carried out in some bacteria and yeast (Akerley et al, 2002;
Forsyth et al, 2002; Giaever et al, 2002; Gerdes et al, 2003;
Kobayashi et al, 2003; Baba et al, 2006; Glass et al, 2006). The
methods often used to disrupt genes to determine whether
they are essential or not included transposon mutagenesis and
targeted disruption by homologous recombination. Using
transposon mutagenesis, whole regions of chromosomes can
be examined; however, the results are inconclusive, because
not all regions are inactivated by random insertion. Targeted
disruption, which can identify essential genes expressed in the
diploid stage or expressed conditionally, is a suitable method
to show whether annotated genes are essential. But intergenic
regions have not been investigated. Although most essential
trans-acting genes have been identified through gene disrup-
tion studies, the necessity of the intergenic regions has not
been sufficiently clarified. For example, some genetic informa-
tion in the intergenic regions is transcribed, whereas other
genetic information is not. The former sites are trans-acting,
and the latter sites are cis-acting.
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In bacteria, chromosomes are generally uni-replicons; there-
fore, the origin of replication (oriC) is cis-acting and essential.
In Escherichia coli, other cis-acting sites have also been
reported. The dif is a cis-acting site, which is important for
cell proliferation (Sherratt, 2003). This site was identified
because a mutant with a very large deletion around the
replication terminus (terC) grew slowly, and the chromosomal
region responsible for this growth defect was identified and
termed deletion-induced filamentation or dif (Kuempel et al,
1991). This dif site was eventually shown to be a site for
recombination catalyzed by the XerC-XerD recombinase,
which resolves chromosome multimers resulting from homo-
logous recombination between replicated sister chromosomes.
Although this site affects cell growth, its deletion leads to
a relatively minor growth defect (Cui et al, 2007). Another
cis-acting site, migS, was identified as being responsible for
the polar movement of oriC, but this site was not essential for
cell growth (Yamaichi and Niki, 2004).

To understand the essential genetic information of prokar-
yotic chromosomes, a genomic survey of cis-acting essential
regions is necessary. An efficient way to identify essential
factors, particularly cis-acting chromosome regions, is thought
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to be the systematic construction of large-scale chromosomal
deletions. If unique and essential cis-acting regions are on a
chromosome, the deletion mutants of these regions are no
longer viable even in the presence of complementing plasmids.
Previously, we constructed long-range deletions of the E. coli
chromosome, which led to the reduction of the genome size
(Hashimoto et al, 2005; Kato and Hashimoto (in press)). First,
we constructed 75 deletions (medium-scale deletions (MD)) in
regions lacking the essential genes, which were identified
through a survey of the published literature, using the E. coli
homologous recombination system. We then constructed a
second series of deletions (large-scale deletions (LD)) and
combined them to construct an engineered strain lacking
29.7% of the parental chromosome. In this study, we
constructed deletion mutants for other chromosomal regions,
particularly those containing essential genes, to identify
additional essential cis-acting chromosome regions, while
maintaining the viability of the mutants with complementing
plasmids expressing the deleted genes.

Results and discussion

First, for the chromosomal regions that were not deleted
during the construction of the first MD series, the identified
essential genes were cloned and the chromosomal regions
containing these genes were deleted. We cloned the essential
genes into mini-F plasmid vectors (Supplementary Figure 1
and Supplementary Information) either in vitro using restric-

tion digestion and ligation methods or in vivo using the red
recombination system (Supplementary Figure 2 and Supple-
mentary Table I). Seven and 34 MDs were obtained in the
absence and presence of the complementing plasmids,
respectively. We also constructed one new LD. However, we
did not succeed in constructing MD and LD deletions for the
entire chromosome. Second, we investigated whether or not
there were any essential cis-acting chromosome regions in the
regions not deleted in the MD and LD. Therefore, we developed
a system of moving chromosome regions into mini-F plasmids
in vivo using the yeast FLP-FRT site-specific recombination
system 1 (FLP-FRT1) (see Kato and Hashimoto, in press, for
details). Figure 1 shows the improved system 2 (FLP-FRT2),
which is essentially the same as FLP-FRT1. Using this system,
30 additional chromosome deletions were constructed, in-
dicating that these regions have no essential cis-acting
chromosome regions. Third, for these regions and the other
regions that were not deleted, small-scale deletions (SD) were
constructed using lambda (A)-phage and the red recombina-
tion system (see Kato and Hashimoto, in press, for details.).
Two hundred thirty-eight and 116 small-scale deletions (SD)
were obtained using these methods in the absence and
presence of complementing plasmids, respectively. Fourth,
we tried to construct the deletions again for the other
undeleted regions using improved systems. We obtained
5 and 15 deletions with system 2 (FLP-FRT2) and system 3
(FLP-FRT3), respectively. In total, 551 chromosome deletions
mutations covering all of the E. coli genome, except for oriC
and terC were constructed (Figures 2 and 3 and Supplementary
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Figure 1 The FRT2 system. A schematic drawing of the transfer of a chromosomal region to a mini-F plasmid with the FRT2 system. The chromosomal region to be
deleted is represented by the bold line. The two chromosomal regions (A and B) flanking the region to be deleted are cloned into two kinds of suicide vectors. One is a
mini-F plasmid, which has an FRT site and is replication defective at 42°C. The other is a R6K derivative, which has an FRT site and is replication defective due to the
absence the pir gene necessary for replication. In step 1, the suicide plasmid carrying B is introduced into an E. coli strain. The chloramphenicol-resistant (Cm")
colonies are isolated, representing step 1 recombinants in which the plasmid is integrated into the chromosome by homologous recombination. Next, the other suicide
plasmid carrying A is introduced into step 1 recombinants, and the ampicillin-resistant (Ap7) transformants are obtained at 42°C, representing step 2 recombinants.
To inhibit homologous recombination beyond this stage, recA is disrupted by P1 transduction. In step 3, the FLP-plasmid, which is replication defective at 35°C,
is introduced into step 2 recombinants, and the expression of the FLP recombinase is induced, resulting in simultaneous plasmid excision and chromosome deletion.
To obtain a strain that did not carry the FLP-plasmid, cells were incubated at 35°C, at which point the FLP-plasmid does not replicate, but the miniF ts replicon
remains functional.
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Figure2 Summary of the E. coli chromosome deletions. Deleted and complemented regions are drawn using a linear chromosome map. Horizontal lines represent
chromosomes, and upper boxes and lower boxes indicate deleted and complemented regions, respectively. MD, LD, SD, and FRT represent the systems used to
construct the deletions and ¢ indicates the presence of a complementing plasmid. Numbers in parentheses indicate the number of deletion mutations constructed using
each system. Depictions of cells containing deletion mutations are provided to show markers inserted into the deleted chromosome regions and plasmids. For details and
methods, see Supplementary information; Hashimoto et al, 2005, Kato and Hashimoto, in press.

Table I; see the profiling of E. coli chromosome (PEC) database
(http://www.shigen.nig.ac.jp/ecoli/pec/index.jsp) for details).

The terC region does not contain a site that affects
cell growth, other than dif (Kuempel et al, 1991); therefore,
the results of this work indicate that there are no unique,
cis-acting, and essential regions other than oriC. Eukaryotic
chromosomes are multireplicons, and thus each origin of
replication is not necessarily essential. Apart from the origin of
replication, other cis-acting chromosome regions in eukaryotic
cells include telomeric sequences, which are necessary for
chromosome maintenance and centromeric regions, which are
required for stable segregation of eukaryotic chromosomes.
The centromere is a unique region in each chromosome: in
theory, two centromeres on one chromosome can pull apart
the chromosomal DNA between two daughter cells during
mitosis (Mann and Davis, 1983). In prokaryotic cells, the
mechanism underlying bacterial chromosome segregation is
not understood. So far, a prokaryotic centromere has not been
identified and it is not known if one exists. Low-copy number
bacterial plasmids have their own partition systems, in which
a cis-acting DNA region plays an essential role (Hayes and
Barilla, 2006). But unlike eukaryotic centromeres, a plasmid
carrying two copies of the cis-acting sequence is structurally
stable. It is not known whether a eukaryote-like centromere
functions in chromosome segregation in prokaryotes. Here, we
did not identify any cis-acting and essential sites other than
oriC. Because oriC and dif regions are not thought to contain a
site for chromosome stability (Kogoma and Meyenburg, 1983;
Ogura and Hiraga, 1983; Tecklenburg et al, 1995), our results
suggest that a potential cis-acting site for chromosome

© 2007 EMBO and Nature Publishing Group

segregation may be dispensable or redundant. Alternatively,
prokaryotic cell sequences equivalent to the eukaryotic
centromere may not exist. Global reorganization of chromo-
somes triggered by a loss of this cohesion resembles eukaryotic
prometaphase (Sunako et al, 2001; Bates and Kleckner, 2005).
It is suggested that the bacterial mechanism of chromosome
segregation is a primordial one to which microtubule-based
processes were added later.

Our results also show that all of the trans-acting essential
genes were cloned on the complementing plasmids; however,
the cloned genes (501 genes) are not necessarily essential.
Baba et al (2006) reported 303 trans-acting essential genes
by targeted disruption, but 35 of them were not cloned on
our complementing plasmids, indicating that these genes
are nonessential (‘Class A’ in the Supplementary Table II).
The discrepancy between the two studies may be due to a
difference in the strains and culture conditions used. For
example, the culture media Antibiotic medium 3 (this work)
contains a glucose, but LB (Baba et al, 2006) does not.
Alternatively, it may be ascribed to the difference between a
single gene knockout (Baba et al, 2006) and a large-scale
deletion of genes (this work). For example, the anti-toxin genes
yefM and chpR, which were identified as essential genes of the
toxin-antitoxin system (Baba et al, 2006), were deleted with
the toxin genes yoeB and mazF, respectively, in our study. In
addition, the dicA gene encoding a repressor of a cell division
inhibitor was deleted in our study with the dicB, the inhibitor
gene, whereas the dicA gene disruptant was not obtained in a
previous study (Baba et al, 2006). Furthermore, we identified
25 genes (‘Class B’) and 15 genes encoding small RNA
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Figure 3 E. coli chromosome deletions. Deleted and complemented regions of each deletion mutant are shown using a linear chromosome map. Thick black
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mutants and are indicated at the bottom of the Figure. The names of MD and LD deletions are shown below the thin lines. The gene names are shown above the line as a
reference for the map locations. The black and red gene names indicate genes that are deleted and complemented, respectively. Details of deletions are shown in the
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(‘Class C’) as essential genes and 2 genes as nonessential
genes, which were determined from the results of our gene
disruption experiments (J Kato, unpublished data, 2006) and
other reports (We listed the relevant PMID number in the
Supplementary Table II). In total, we identified 303 essential
genes (Supplementary Table II). Sequence comparison of these
essential genes with those of Bacillus subtilis (271 genes)
revealed that 177 were conserved between these two genera
(Supplementary Table II; Kobayashi et al, 2003). When
functionally classified, genes involved in translation, protein
translocation, and lipid synthesis were well conserved,
whereas those involved in cell wall and membrane synthesis
were not (Supplementary Table II), which may reflect
structural differences in the cell wall and membrane.

In our study, 50 chromosome regions were moved to a mini-F
plasmid using the FLP-FRT systems. Forty-six of them were
found to contain essential gene(s), whereas 2 regions had no
essential genes and were deleted without complementing
plasmids. The other two regions (OCL30 and OCL34) did not
contain any essential genes, but these regions were essential
and therefore were not deleted without the complementing
plasmids. In these regions, there may be the functionally
redundant genes; one of which may be at least essential. Thirty
chromosome regions were first moved to a mini-F plasmid
using system 1 (FLP-FRT1). When we tried to move the other 20
regions to the plasmids using the improved system 2, (FLP-
FRT2), 5 regions were moved, but the other 15 regions were not.
For the regions affected by these deletions, the chromosomes
and plasmids of the strains obtained at each step of system 2
(FLP-FRT2) were analyzed. The results indicated that the
chromosomal regions flanked by two FRT sites had been excised
after induction of the FLP recombinase, but the resultant
plasmids were not stably maintained even in the wild-type
strain using the mini-F temperature-sensitive replicon. Analyses
of some of the excised plasmids suggested a rearrangement of
the plasmid structure (data not shown). Unexpected recombi-
nation between the cloned chromosomal regions and a mini-F
plasmid may cause instability of the excised plasmids. There-
fore, we developed an improved system, termed system 3 (FLP-
FRT3), in which the excised chromosome region was main-
tained by an R6K replicon. This finally allowed us to construct
the remaining 15 deletion mutations.

Developments in synthetic biology have made it possible to
reduce the size of the genome of E. coli K-12 (Kolisnychenko et al,
2002; Yu et al, 2002; Hashimoto et al, 2005; Posfai et al, 2006),
and recent work indicates that genome reduction can have
unanticipated benefits (Posfai et al, 2006). To further engineer E.
coli and to make useful improvements for industry and
therapeutics, such as facilitating the production of metabolites
and proteins, it is important to understand both the cis- and
trans-acting essential genetic information. Further analyses are
necessary to experimentally clarify the minimal set of genetic
information necessary and sufficient to sustain a functioning cell.

Materials and methods

Strains and media

All E. coli strains used are derivatives of MG1655. The MD series was
constructed in MG1655 rpsL polA12. The LD and SD deletion series

© 2007 EMBO and Nature Publishing Group
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were built using MG1655 rsh3 (red:tet (A(recC ptr recB recD) :: Plac-red)
rpsL hsdR:Ap), which was constructed using KM22 (Murphy, 1998).
MG1655 rpsL was used to combine LD deletion units. Antibiotic
Medium 3 (Becton Dickinson, USA) was used for all experiments
except for those involving sacB selection, for which LB (-N) Suc was
used (LB broth with 10% sucrose and lacking NaCl). The approximate
formula per liter of the Antibiotic Medium 3 is beef extract 1.5 g, yeast
extract 1.5g, peptone 5.0g, dextrose 1.0g, sodium chloride 3.5g,
dipotassium phosphate 3.68 g, and monopotassium phosphate 1.32 g.

Construction of the complementing plasmids

Complementing plasmids were constructed in vitro or in vivo. In vitro,
chromosome regions were amplified by PCR using primers flanked by
restriction sites, digested with restriction enzymes, and ligated into
mini-F vectors (Supplementary Figure 1 and Supplementary Informa-
tion) with T4 DNA ligase. In vivo (Supplementary Figure 2), DNA
fragments to be cloned were prepared and flanked by two DNA
fragments, ‘KmN’ and ‘mF’, by two successive PCR reactions and
introduced into the E. coli strain with the red gene of A-phage and a
mini-F vector, mFCm4-2. Introduced fragments were cloned into the
mini-F vector by red recombination, resultin§ in kanamycin-resistant
(Km®) and chloramphenicol-sensitive (Cm®) complementing plas-
mids.

MD mutant construction

The MD series was constructed with the E. coli homologous
recombination system using ColEl-related plasmids and the polA
mutant (Hashimoto et al, 2005; Kato and Hashimoto, in press). The
vector 664BSCK2-4 has two positive selection markers (Cm® and
Km®), two negative selection markers (rpsL™ streptomycin-sensitive
(Sm®) and sacB*), and multicloning sites flanking the Km® marker.
Both chromosomal regions flanking the targeted region were cloned
into 664BSCK2-4, and the resulting plasmid introduced into MG1655
psL polA12. ACm® transformant, in which the plasmid was integrated
by homologous recombination between the cloned region and the
same region on the chromosome, was selected at 42°C. After
incubation at 30°C, a Sm® Km® Cm® colony, in which the plasmid
was excised by another homologous recombination between the other
cloned chromosomal region and the same region on the chromosome,
was isolated and deletions were confirmed by PCR.

SD mutant construction

The SD system has been described previously (Kato and Hashimoto, in
press). Briefly, a linear DNA fragment encoding the Cm® gene was
generated by PCR using oligonucleotide primers with a 40-base-pair
region of homology to regions flanking the targeted deletion. The
frequency of recombination was low using primers containing a 40-
base-pair region of homology, but improved upon attachment of an
approximately 1-kb region of homology to either end of the Cm"® gene.
Fragments were introduced into the E. coli strain MG1655 red by
electroporation and Cm® recombinants were isolated. Deletions were
confirmed by PCR analysis.

LD mutant construction

The LD series was constructed by the ‘CRS cassette method’ using the
red gene-mediated A-phage homologous recombination system and
linear DNA fragments (Hashimoto et al, 2005; Kato and Hashimoto, in
press). The CRS cassette is approximately 5 kb and bears one positive
selection marker, Cm®, and two negative selection markers, rpsL*
(Sm®) and sacB*. A DNA fragment in which chromosomal regions
flanking the region to be deleted were joined to the ends of the CRS
cassette was introduced into MG1655 rsh3. Cm® colonies were selected
and deletions confirmed by PCR. To remove the CRS cassette, a DNA
fragment in which the same flanking chromosomal regions were
directly joined to each other was introduced into Cm® colonies. Sm®
and sucrose-resistant colonies were selected and deletions confirmed
by PCR.
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FLP-FRT mutant construction

The FLP-FRT2 system is shown in Figure 1 (for details, see Kato and
Hashimoto, in press). In our FLP-FRT 1 prototype system, A-Km and B-
Km DNA fragments, which contain the Km® gene joined to two (A and
B) chromosomal regions flanking the region to be deleted, were
prepared by PCR using 664BSCK2-4 derivative plasmids used to
construct MD deletions described above. The A-Km DNA fragment was
inserted into a mini-F plasmid, mini-FtsFA (suicide plasmid A with a
Cm® marker), which is replication-defective at 42°C, and the B-Km
DNA fragment was inserted into a R6K-related plasmid, pSG76SA
(suicide plasmid B with an Ap® marker), which lacks pir necessary for
replication (Posfai et al, 1994; Kato and Hashimoto, in press). First,
pSG76SA carrying B-Km was introduced into the wild-type strain
MG1655 and the Km® recombinants in which the plasmid was
integrated by homologous recombination were isolated. Second, the
plasmid mini-FtsFA carrying A-Km was introduced into Km® colonies
obtained as described, and Cm® colonies were obtained. Third, recA
was disrupted by P1 transduction to inhibit homologous recombina-
tion beyond this stage. The FLP-containing plasmid (recombinase
plasmid) was introduced and recombinase expression was induced,
resulting in plasmid excision and chromosome deletion. To obtain a
strain lacking the FLP-plasmid, cells were incubated at 35°C, at which
the FLP-plasmid does not replicate but the miniF ts replicon remains
functional.

The FRT2 system introduces improvements to the FRT1 system
(Kato and Hashimoto, in press). Briefly, the two chromosomal regions
(A and B) flanking the targeted region were joined to the Cm® gene to
create A-Cm and B-Cm by PCR. A-Cm was inserted into mini-FtsFAK,
and B-Cm into pSG76SA. pSG76SA carrying B-Cm was introduced into
the wild-type strain MG1655. Cm® colonies in which the plasmid was
integrated were isolated. Next, mini-FtsFAK carrying A-Cm was
introduced into the Cm® recombinants, and the ampicillin-resistant
(Ap®) recombinants were isolated at 42°C. To inhibit homologous
recombination beyond this stage, recA was disrupted by P1 transduc-
tion. The FLP-plasmid was introduced into Cm"® Ap® recombinants and
plasmid excision and chromosome deletion was induced. In the FRT3
system, the plasmid 184 Km pir, encoding a functional copy of pir, was
co-introduced with the FLP-plasmid, and the excised plasmid was
maintained with the R6K replicon in addition to the miniF ts replicon
(Kato and Hashimoto, in press). In all other aspects, the FRT3 system
was the same as the FRT2 system.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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