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Fluorescence blinking in nanocrystal quantum dots is known to
exhibit power-law dynamics, and several different mechanisms
have been proposed to explain this behavior. We have extended
the measurement of quantum-dot blinking by characterizing fluc-
tuations in the fluorescence of single dots over time scales from
microseconds to seconds. The power spectral density of these
fluctuations indicates a change in the power-law statistics that
occurs at a time scale of several milliseconds, providing an impor-
tant constraint on possible mechanisms for the blinking. In partic-
ular, the observations are consistent with the predictions of mod-
els wherein blinking is controlled by diffusion of the energies of
electron or hole trap states.
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igh-quality, monodisperse semiconductor nanocrystals can

be produced in large quantities by colloidal-synthesis tech-
niques (1). These nanocrystals, known as quantum dots (QDs),
can exhibit bright luminescence, whose wavelength is controlled
by the size of the nanocrystals (2). This property makes colloidal
QDs attractive candidates for several applications, including
light-emitting diodes (3), solid-state lasers (4), and biological
labeling (5, 6). Such applications, however, may be compromised
by fluctuations in the QD luminescence. In particular, individual
QDs emit light intermittently, switching irregularly between
bright (“on”) and dark (“off”) states (7). Widespread interest in
this blinking phenomenon was stimulated by the surprising
observation that the durations of bright and dark periods follow
power-law statistics (8, 9). Specifically, the blinking periods are
described by probability densities of the form

p(t) oc =), [1]

with a value of v between 0.4 and 1.0. The power-law behavior
holds regardless of sample temperature (9), QD size or compo-
sition (10), nanoparticle shape (11), or excitation intensity (12).

So far, though, experimental studies of QD blinking have been
limited in their temporal resolution. A resolution of 200 us was
achieved in one of the earliest measurements (8), and a small
number of later experimental studies have included analysis of
submicrosecond blinking dynamics (14, 16, 17, 41). The remain-
der of the quantitative characterizations have been restricted to
time scales of several milliseconds or longer. In this paper, we
report measurements of fluctuations in QD fluorescence on time
scales from microseconds to tens of seconds. We observe a
change in the fluctuation dynamics for time scales less than
several milliseconds.

This observation is consistent with the predictions of a class of
models where blinking is controlled by slow diffusion of the
energies of electron or hole trap states. In these models, the
fluorescence of a QD is quenched through the trapping of a
carrier, which occurs when the energy of the trap state fulfills a
resonance condition. The duration of the blinking periods is
determined by the diffusion of the energy of the QD-trap system
about this resonance condition. This diffusion-controlled mech-
anism predicts the existence of a critical time below which the
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power-law blinking statistics change, in agreement with our
measurements.

Measurements of Fluorescence Fluctuations

Blinking-Time Probability Densities. Most previous experimental
studies have characterized blinking statistics in terms of the
probability densities of bright and dark periods. We begin by
calculating these functions for our data, as a clear demonstration
of the power-law blinking statistics. Fluorescence measurements
are performed on CdSe/ZnS core-shell QDs, synthesized ac-
cording to established methods (13). The diameters of the QDs
were chosen such that the emission wavelength is 615 nm.
Photons emitted by single QDs are collected and detected, and
the time of each photon detection is recorded, as described in
supporting information (SI).

To calculate the blinking-time probability densities, the re-
corded photon arrival times are converted into a time series by
grouping the photon detection events into time bins of fixed
width, as illustrated in Fig. 1. The minimum bin size that can be
used is dictated by the need to clearly distinguish bright and dark
states. More specifically, the average number of detected pho-
tons per time bin must be significantly greater than unity, or it
will not be possible to differentiate between the detection of
photons emitted from the dot and background counts. This
minimum usable bin size thus depends on the emission rate from
the QD, the photon collection and detection efficiency, and the
background photon-count rate; for our experiment, a bin size of
at least 5 msec is necessary.

A threshold is applied to the binned data, with all signals above
the threshold taken to be on states, and all signals below the
threshold taken to be off states. Blinking-time histograms are
calculated from the thresholded data, as shown in Fig. 2. The
dark and bright periods both show power-law behavior over the
measured time scales, with exponents vor = 0.4 and vo, = 0.9,
respectively. Similar behavior was seen for several other dots.

Although some of our experimental probability densities show
a hint of a change of slope on millisecond time scales, identifi-
cation of any change in dynamics requires that the character-
ization be extended to significantly shorter times. Because of the
required time binning, though, we cannot use the probability
densities to investigate blinking dynamics on submillisecond time
scales.
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Fig. 1. Blinking of quantum dots and diffusion-controlled model. (a) Inten-
sity of fluorescence as a function of time measured from a single CdSe/ZnS
core-shell nanocrystal QD. The two tracings show the same data on different
time scales, grouped into time bins of 100 msec (Upper) and 5 msec (Lower).
(b) Schematic of the states involved in QD blinking. The dot is excited from a
lower-energy to a higher-energy state by absorption of a photon. If the dot is
in a bright state, relaxation occurs by photon emission; if it is in a dark state,
relaxation occurs by a nonradiative mechanism. Blinking corresponds to tran-
sitions between the bright and dark states.

Autocorrelation Function. The photon autocorrelation function,
defined as GA(1) = (i(1)i(t + 7)), where i(¢) is the rate at which
photons are counted experimentally, can be calculated directly
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Fig.2. Probability density of duration of blinking periods for the time trace
shown in Fig. 1, using 5-msec time bins. Filled squares indicate dark periods,
and open circles indicate bright periods. The absence of points for short bright
periods is due to the limited statistics for the finite duration of this data run.
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Fig. 3. Autocorrelation function of fluctuations in fluorescence measured
from three individual QDs. The correlation functions are normalized by the
mean intensity; however, due to the power-law probability density of blinking
periods, this mean depends on the duration of the experiment, and the
short-time values of the functions do not approach unity. Average count rates,
from top to bottom, are 5,200, 1,700, and 3,000 counts per sec.

from the photon counts without the need for additional binning,
as described in the SI. To allow comparison with theory, we
calculated the normalized correlation function, g®(1) =
GODI(ir(D)ia(1))-

Fig. 3 shows representative experimental correlation func-
tions. By inspection, it is clear that the correlations change slope
on the millisecond time scale. Interpretation is complicated,
however, by the nearly flat form of g?(7), which changes by only
a factor of ~2 over seven orders of magnitude of time delay. This
very gradual change has inhibited prior observation of short-
time dynamics, even though submillisecond correlation func-
tions have previously been reported (14).

Verberk and Orrit (15) have derived an expression for the
autocorrelation function that arises from the blinking-time
probability density of Eq. 1. However, the probability density
diverges at short times and is not normalizable, which necessi-
tates the imposition of arbitrary lower and upper limits of
integration in the derivation. The result is a correlation function
of the form g (7) = 1 — C7!~¥, where the constant C depends
on both these arbitrary limits. This dependence on arbitrary
parameters presents a difficulty in comparing the prediction to
experiment, particularly in determining whether there is a
minimum time scale below which the blinking-time probability
density of Eq. 1 does not hold.

We note that the slowly varying correlation function arises
because the probability density functions of bright and dark
periods are both power laws. Certain samples of QDs, consisting
only of CdSe cores, have been observed to exhibit power-law
blinking only for the dark periods, with exponential probability
density functions for the bright periods; in this case, the form of
the correlation function is expected to be g@(7) « =1 (15). For
these uncapped QDs, this power-law correlation function has
been observed experimentally to persist down to microsecond
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time scales, with no evidence for a change in dynamics on short
time scales (16, 17).

Power Spectral Density. The difficulties with interpreting the
correlation functions of fluorescence fluctuations can be
avoided by evaluating instead their power spectral density (18).
The power spectrum is defined as P(f) = |[I(f)|% where I(f) is
the Fourier transform of the photon count rate, i(¢), for fre-
quency f. As for the autocorrelation function, no additional
binning of the data is necessary to calculate the power spectrum.
The spectrum is formally equivalent to the Fourier transform of
the autocorrelation function G®(7), and thus provides, in
principle, the same statistical information. However, the ex-
pected power spectrum that arises from the blinking-time prob-
ability density of Eq. 1 has a particularly convenient form
(18-20):

0<v<l1

fV*Z’
-1<v<0- (2]

rn s

Although derivation of this function requires the imposition of
lower and upper time limits, #ni, and fmay, the resulting power
spectra apply for 1/fmax < f < 1/tmin. Within this frequency range,
P(f) depends on the time limits only through an overall arbitrary
proportionality constant. Moreover, a log—log plot of the power
spectrum should result in a straight line with an easily identifi-
able slope. For all previous observations of QD blinking, v is
between 0 and 1, and the first form in Eq. 2 is expected to apply.
As we show below, however, the diffusion-based theory gives
both forms in Eq. 2 in the short- and longer-time limits.

Eq. 2 holds exactly only if the on and off blinking periods are
described by the same power-law probability density. In most
cases, including the present data, they are described by two
separate power laws, with different exponents vy, and vos, as
illustrated in Fig. 2. In this case, the power spectrum is domi-
nated by the process that contributes the larger noise. For our
data, this is the on-time probability density, and Eq. 2 holds
approximately, with v equal to v, Evaluating the fluorescence
fluctuations in terms of their power spectrum, then, means losing
independent information about on and off times, as a tradeoff
for the ability to examine significantly shorter time scales.

Fig. 4 shows representative power spectra, calculated as
described in the SI. At the highest frequencies, the power spectra
are dominated by shot noise of photons from the QD and of
background counts. This noise limits the maximum frequency
that can be examined, a disadvantage compared with the auto-
correlation function. Nevertheless, the current data show a clear
change in the slope of the power spectra on millisecond time
scales.

This effect is quantified by separately fitting low- and high-
frequency parts of the power spectra according to Eq. 2.
Nonlinear least-squares fitting of the lower frequencies consis-
tently gives a slope of —1.1 = 0.1; this corresponds to a value of
v = 0.9, in agreement with the measured probability density of
bright periods. The higher-frequency parts of the power spectra,
on the other hand, have slopes of —2.1 * 0.15; according to Eq.
2, this would seem to imply a negative value of v. The crossover
point between the low-frequency and high-frequency regimes
can be estimated as the point where the two fitted curves
intersect, and it is found to lie in the range of 5-35 msec, with
significant variation from QD to QD.

Comparison to Models

Distributed-Trapping Models. The observed change in the statistics
of QD fluorescence fluctuations on time scales below 5-35 msec
is an important new piece of information that must be taken
into account when considering possible mechanisms for the
fluctuations.
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Fig.4. Power spectral density of fluctuations in fluorescence measured from
three individual QDs. Results are for the same time series as for Fig. 3. Solid
lines are fitted power laws to low-frequency and high-frequency portions of
the power spectra, and horizontal dashed lines are expected shot-noise levels.
Statistical errors are expected to be less than the size of the plotted points.

A popular model of QD blinking, due to Efros and Rosen (21),
proposes that a bright dot blinks off when it loses a charge to a
surface-trap state. The extra charge remaining behind in the dot
quenches fluorescence through rapid, nonradiative Auger re-
combination, and the dot blinks back on when the charge returns
from the trap and reneutralizes the QD. The key difficulty with
this model is that, if blinking could simply be described by
electron transfer at fixed rates to and from a single surface trap,
then the durations of bright and dark periods would follow
exponential probability densities. A static distribution of trap
states, with a corresponding distribution of electron-transfer
times, could explain the power-law statistics of off times, but
would still produce an exponential probability density of on
times (22).

It was proposed by Verberk ef al. (16) that the extended on
times could be produced by trapping of a hole on the QD shell;
this trapped hole does not quench luminescence, but prevents
further ionization of the QD by Coulomb blockade. An alter-
native proposal, by Kuno et al. (12, 22), is that the electron-
transfer rate could fluctuate rapidly because of environmentally
induced fluctuations in tunnel-barrier heights or widths. These
two models, however, imply a sensitivity of the blinking statistics
to the QD environment, in contradiction to subsequent exper-
imental observations (18). Moreover, these models cannot nat-
urally account for the present observation of modified blinking
statistics on submillisecond time scales.

Diffusion-Controlled Models. Models based on diffusion can ac-
count in a straightforward fashion for the change in statistics of
photon emission, as well as previous measurements of QD
blinking. A diffusion-based model was proposed by Shimizu et al.
(9), who suggested that the trap-state energy undergoes a
random walk, with charge transferred between the QD states and
the trap only when their energy levels align. The duration of a
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Fig. 5. Schematic of models for QD blinking. (a) Energy levels in the DCET
model. Transitions from |G) to |L*) or from |D) to |D*) are driven by incident
light. Transitions from |L*) to |G) are primarily radiative, whereas transitions
from |D*) to |D) are primarily nonradiative. (b) Free energies of energy levels
inthe DCET model, as a function of reaction coordinate Q. Transitions from |L*)
to |D) occur by electron transfer, at rate k;, when the system is at reaction
coordinate Q*. (¢) Schematic of trapping mechanism in the Auger-assisted
model. Holes are trapped in deep-band states through the promotion of an
electron in the conduction band (CB). (d) Schematic of the suggested
photo-assisted detrapping mechanism.

blinking period is thus given by the time that the trap energy
takes to diffuse away from and back to this resonance condition.
This first-passage time is known to yield a probability density
with a universal value of v = V2.

This idea of diffusion-controlled electron transfer (DCET)
was developed into a detailed model by Tang and Marcus (23),
illustrated schematically in Fig. 5a. It involves four states: the
ground and excited states, |G) and |L*), of a bright dot, and the
ground and excited states, |D) and |D*), of a dark dot, with |D)
lying slightly lower in energy than |L*). In the original DCET
model, |D) is assumed to correspond to a QD with an electron
trapped in a conduction-band-edge surface state, but the same
formalism also applies for a different charge-separated state,
such as a valence-band (VB)-edge trap. As depicted in Fig. 5b,
the transition between |D) and |L*) is controlled by slow diffusion
of the system along an energy-difference reaction coordinate, Q.
This coordinate converts the distribution on the many-
dimensional coordinate space, by statistical mechanics, into a
free-energy profile as a function of Q. The energy of the system
with the QD in state |L*)is taken to be quadratic in Q: E = kQ?/2,
where « is the curvature of the assumed energy parabola.
Likewise, in state |L*), E = k(Q — a)*2 + AG®, where A = ka?/2
is the reorganization energy and AG®° is the free-energy gap for
electron transfer; for simplicity, the same k is assumed for the
two parabolas. The transition between the two states |D) and |L*)
occurs at the crossing point Q% of these two energy curves.
Motion on these parabolas and transitions between them provide
the classical counterpart of quantum phonon-assisted transi-
tions. A validation of the usefulness of this approach is seen in
the fact that spectral diffusion, which is due to the diffusion of
the vertical energy difference between the parabolas for the |G)
and |L*) states, exhibits a nearly classical behavior at all but the
lowest temperatures (23). The model thus predicts a broadening
of single-QD emission lines that is consistent with experimental
observations.

In the DCET model, blinking events correspond to phonon-
assisted transitions, at the crossing point Q%, between electronic
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states of the entire QD. Time intervals between blinking events
are determined by diffusion along the reaction coordinate with
a sink at Q% The probability density for QD bright or dark
periods then takes the following limiting forms (23):

1
pt)y=——1"", <1, [31
\ Tt
k.
() = Z\Tt*“*”% > 1, [4]
Y T

where v = Y. If we approximate the rate constant for electron
transfer at the crossing point by k.(Q)8(Q — Q%) (24), then the
critical time ¢, is given by

_ 4kBT

Kt gigek: 31
where t4ifr is the relaxation time for motion on a parabolic energy
surface.’™ Values of v different from 0.5 can be obtained by
considering anomalous diffusion in a non-Debye dielectric me-
dium (26). Eq. 4 applies for times long compared with . but short
compared with the “saturation time,” 1/I" =~ (8tgigs]AkpT)/(A =
AG°®)?, where the positive sign is for bright periods and the
negative sign is for dark periods (23). For times comparable to
this saturation time, the probability density is approximately
p(t) =~ (V12N m)t~(1+7) exp(—T't). This exponential roll-off has
been observed in the distribution of bright periods for times on
the scale of several seconds to several minutes (9). Here, we
focus on short time scales, limiting our observations to time
scales shorter than this saturation time.

Certain of the characteristics of the DCET model of Tang and
Marcus (23) also apply to an alternative model of QD blinking,
developed by Frantsuzov and Marcus (27). In the latter model,
illustrated in Fig. 5c, it is assumed that there is a band of trap
states, with a sharp edge, deep in the band gap. The electron
transition in the conduction band from the lowest-lying state,
1S,, to a higher-lying state, 1P, may be in or out of resonance
with a transition of a hole from the VB to the band of trap states.
When the two transitions are not in resonance, the QD fluo-
resces upon absorption of a photon. When the two transitions are
in resonance, there is a continuous cycling from 1S, to 1P, and
from the VB to the trap, followed by a relaxation from 1P, to 1S,
and a phonon-assisted transition from the trap to the VB. This
process is assumed to be much faster than the radiative relax-
ation, so the QD is dark.

In this model, there is a diffusion of the 1S. to 1P, energy
difference ¢ into and out of resonance with the transition energy
&* between the VB and the band of trap states. The solution of
the standard first-passage-time problem for the diffusion equa-
tion, starting with e = ¢* at the initial time and with an absorbing
boundary at & = &*, gives rise to the ~3?2 probability density of
blinking times.

A modification of the Auger-assisted transition between light
and dark periods can be combined with the mathematical
formalism of the Tang-Marcus DCET model (Z. Zhu and
R.A.M., unpublished work). The various transitions can again be
described in terms of free-energy curves and their intersections.
For example, there is a free-energy parabola for the 1S, plus VB
states, one for the 1P, plus trap states, one for the unexcited

ttHere, k, corresponds to the value 27V2/h)(1/(9U12/0Q))that appears in the form of a term
(2mV*h)8(U 5(Q))[=(mV*/h) 8(Q)/(9U,,/0Q)]in equation 1c of ref. 25. In this equation, we
note that the difference of the slopes of the energy parabolas at their intersection,
9U12/0Q, equals ka, and the reorganization term X equals 2ka2. Using these results, one
sees that the present value of t. corresponds to the value given in the line following
equation 2b in the same reference.

Pelton et al.
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system, and so on. Resonance corresponds to the system being
near the intersection, or “avoided crossing,” of two curves.
Transitions between the parabolas from bright to dark states are
assumed to be Auger-assisted, and the boundary condition at the
intersection Q% is the “radiation boundary condition” used in ref.
27. In the event that the reverse transition also occurs (see
below), the resulting equations for the blinking-time probability
densities are formally similar to Eqgs. 3-5, except that the
transition rate, k., has a different, Auger-assisted, meaning.
Indeed, the power-law probability density of the blinking times
and the crossover at ¢ are natural consequences of any model of
one-dimensional diffusion with an absorbing sink. Differences
between alternative diffusion-based models enter into the mean-
ing of ¢, and its dependence on physical parameters.

The merits of using an Auger-assisted transition are several-
fold. The Auger coupling is relatively weak, so that small values
of k. are not unreasonable. The k, value for bright-to-dark
transitions can now be different from the k, for the dark-to-
bright transitions, because of a different mechanism for the
transitions. For example, as illustrated in Fig. 5d, a 1S, state can
be produced by the usual optical absorption to higher-energy
states and downward relaxation, with a transition en route from
1P, to 1S, in resonance with a hole transition from trap state to
VB state. In this case, the lifetime of the dark state would be
prolonged, and the transition would be sensitive to excitation
energy. This mechanism might apply only to long-lived traps, in
the millisecond rather than the nanosecond regime.

Autocorrelation Functions. The form of the blinking-time proba-
bility density predicted by the diffusion-based models removes
the need to apply arbitrary time bounds in the derivation of the
autocorrelation function. It is, in fact, possible to derive an
explicit expression for the autocorrelation function by using the
more general expression for the blinking-time probability den-
sity, of which Eqs. 3 and 4 are limiting forms. The Laplace
transform of this probability density is given in ref. 26 and can
be substituted into the general expression for the Laplace
transform, g®)(s), of the autocorrelation function (15, 28).
Considering times short compared with the saturation time, 1/T,
we obtain

1 sUT2

O~ [6]
s Tys"+ 2.7

where T’y is the mean duration of the bright periods. Limiting
forms for the inverse transform can then be determined:

.
gA(n =1-—

<<
o Tt 7]

v
c

Oy e — €1
=1 ta—y"

r>t, << [8]

However, a difficulty remains: to compare these predictions to
the experimental results, the measured correlation functions
must be normalized by the mean photon count rates. If the
duration of the experiment is not long compared with the
saturation time 1/I", this mean is not well defined, but increases
with the duration of the experiment (28—30). In other words, the
magnitude of g (7) depends on the total time for which data are
collected, if this time is less than 1/T" (14). Indeed, an accurate
quantitative estimate of the correlation function cannot be
obtained unless the duration of the experiment exceeds the
saturation time by at least two orders of magnitude (31).
Saturation times of several seconds to several minutes, depend-
ing on temperature and excitation power, have been observed for
bright periods (9), and saturation times of more than an hour
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have been inferred for dark periods from ensemble fluorescence-
decay measurements (32). Because our measurement times are
on the order of several minutes, we are unable to use g®(7) to
make a quantitative comparison to the predictions of the diffusion-
based theories.

Power Spectral Density and Critical Time. The difficulty with nor-
malization is removed if we again turn to the power spectral
density. Because the power spectrum is the Fourier transform of
the autocorrelation function, it can readily be obtained from the
Laplace transform, Eq. 6, by using the fact that g®(7) is
real-valued and symmetric about 7 = 0. Taking the appropriate
limits, we obtain

P(f)=f @ f<<ljt, f>T, 91
P(f) = f2

in agreement with the predictions of Eq. 2, above. As shown
above, and as illustrated in Fig. 4, the experimental data are in
excellent agreement with these expressions: experimental expo-
nents below and above the critical times, f., are —1.1 and —2.1,
respectively. By fitting Eqs. 9 and 10 to the low- and high-
frequency parts of the spectra, as shown in Fig. 4, and by taking
the intersection of the two fitted curves, we can obtain an
estimate of #.; this value is found to vary from dot to dot, within
the range of 5-35 msec. We have not observed any systematic
dependence of the results on the intensity of the illuminating
laser light, within the range considered (4-12 kW/cm?).

The significance of the critical time can be seen by examining
the physical interpretation of Egs. 3-5. We introduce the fact
that the classical amplitude, AQ, of vibrational motion on a
free-energy parabola at a temperature T satisfies k(AQ)? = kT,
and we note that the diffusion constant, D, for the motion along
Q is approximately equal to (AQ)?/2t4ier. From Eq. 5, it then
follows that

=1, [10]

kyTt.
kito=2 \/B: V2Dt . [11]

K giff

We can approximate the delta function 8(Q — Q%) in the
expression for the rate constant at the intersection crossing point
at time ¢ by a Gaussian of width V2 Dt.. Eq. 11 then corresponds
to a statement that ¢ is the time for the population, which has
expanded in this time to occupy a width V2 D¢, to largely
disappear into the “sink” at Q% forming in the process a
population gradient there, with an effective population at the
intersection of approximately zero. The power spectrum for high
frequencies, corresponding to times less than ., thus has the 1/
form characteristic of Brownian motion, whereas the power
spectrum at low frequencies has a power-law form, reflecting the
modified diffusion process after a concentration gradient has
developed.

The experimental value of 7. could be used to set a value of the
rate constant k;, according to Eq. 5, if one knew the relaxation
time, fqier. However, while fqi¢r is known at time scales of 10-100
sec from spectral diffusion data, many dynamical processes are
known to have a distribution of relaxation times, the values at
very short times being much smaller than the limiting value at
long times. [An example is the case of dielectric relaxation time
at high frequencies, as compared with the Debye limit at long
times (33).]

We can, however, attribute the significant dot-to-dot variation
in £, to variation in the physical parameters of Eq. 5, with the
most likely candidate being the transition rate, k.. There is
evidence for a wide range of trapping times in QDs, from
picoseconds to thousands of seconds (32, 34-36); those on
picosecond and nanosecond times will not contribute to the
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current data, but slower transitions may play a role. The trapping
times, and thus ¢, may be relatively slow for core—shell QDs,
because of the physical separation between the surface states and
states confined in the QDs. Furthermore, ¢, is likely to be
sensitive to the QD composition and preparation, and can thus
be significantly different for different samples. This sample-
specific character explains why previous measurements, both of
blinking-time distributions with 200-us time resolution (8) and
of correlation functions with nanosecond time resolution (14),
have not revealed the existence of .. Nonetheless, the observa-
tion of ¢, for our samples supports a diffusion-based process for
QD blinking, which may be generally applicable to a range of
samples.

Surface Traps. Although the diffusion-based models invoke par-
ticular mechanisms for fluorescence quenching, the same for-
malism should apply for other, related, mechanisms. Electro-
chemical experiments have shown that QD fluorescence is
quenched by injection of charges into trap states (37), and they
have also shown that QDs can fluoresce even if they contain an
extra confined charge (38). These results suggest that the
quenching of fluorescence may be a direct consequence of the
occupation of the surface trap by charges. If this is the case,
blinking can still correspond to electron transfer from the QD
into and out of those surface states, which is still controlled by
diffusion along a reaction coordinate. The direct quenching of
QD luminescence by charges in trap states would account for the
recently observed collective blinking of several closely packed
QDs (39): charging and neutralization of traps would cause the
blinking of all nearby dots. Multiple traps are likely to exist on
the surface of a QD, each with a different efficiency of quenching
QD luminescence. Hopping of carriers into and out of these
states will lead to switching between several different levels of
luminescence, with different corresponding recombination
rates; such a distribution of emissive states has recently been
inferred for single-dot luminescence data (40). Incorporating
multiple surface traps into the diffusion-based models will

Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706-8715.
Hines MA, Guyot-Sionnest P (1996) J Phys Chem 100:468—471.
Colvin VL, Schlamp MC, Alivisatos AP (1994) Nature 370:354-357.
Eisler H-G, Sundar VC, Bawendi MG, Walsh M, Smith HI, Klimov V (2002)
Appl Phys Lett 80:4614-4616.
5. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Science
281:2013-2016.
6. Chan WCW, Nie S (1998) Science 281:2016-2018.
7. Nirmal M, Dabbousi BO, Bawendi MG, Macklin JJ, Trautman JK, Harris TD,
Brus LE (1996) Nature 383:802-804.
8. Kuno M, Fromm DP, Hamann HF, Gallagher A, Nesbitt DJ (2000).J Chem Phys
112:3117-3120.
9. Shimizu KT, Neuhauser RG, Leatherdale CA, Empedocles SA, Woo WK,
Bawendi MG (2001) Phys Rev B 63:205316.
10. Kuno M, Fromm DP, Gallagher A, Nesbitt DJ, Micic OI, Nozik AJ (2001) Nano
Lett 1:557-564.
11. Wang S, Querner C, Emmons T, Drndic M, Crouch CH (2006) J Phys Chem
B 110:23221-23227.
12. Kuno M, Fromm DP, Hamann HF, Gallagher A, Nesbitt DJ (2001) J Chem Phys
115:1028-1040.
13. Talapin DV, Mekis I, Gotzinger S, Kornowski A, Benson O, Weller H (2004)
J Phys Chem B 108:18826-18831.
14. Messin G, Hermier JP, Giacobino E, Desbiolles P, Dahan M (2001) Opt Lett
26:1891-1893.
15. Verberk R, Orrit M (2003) J Chem Phys 119:2214-2222.
16. Verberk R, van Oijen AM, Orrit M (2002) Phys Rev B 66:233202.
17. Huff RF, Swift JL, Crumb DT (2007) Phys Chem Chem Phys 9:1870-1880.
18. Pelton M, Grier DG, Guyot-Sionnest P (2004) Appl Phys Lett 85:819-821.
19. Jensen HJ, Christensen K, Fogedby HC (1989) Phys Rev B 40:7425-7427.

el N

14254 | www.pnas.org/cgi/doi/10.1073/pnas.0706164104

require the consideration of additional system states, beyond the
bright and dark states currently considered.

Conclusions

We have extended measurements of fluctuations in the fluores-
cence from individual nanocrystal QDs to time scales shorter
than have previously been examined. The power spectral density
clearly reveals a change in the fluctuation dynamics below a
critical time, #., of 5-35 msec. These results provide a significant
constraint on possible models of QD blinking. In particular, they
agree with models in which the blinking is controlled by a
diffusion process, because such models predict a corresponding
change in blinking statistics at f..

The existence of ¢ is largely independent of the microscopic
details of the models, although its value depends on the physical
parameters that enter the model. Determination of the molec-
ular mechanism responsible for blinking, and further verification
of the diffusion-based model, will thus require an investigation
of the dependence of the critical time on QD composition, size,
and temperature. Investigation of the dependence on laser
power will clarify whether the observed behavior contains
contributions from photon-induced processes. Improved data-
collection techniques should allow the extension of the mea-
surements to even shorter time scales, down to the recombina-
tion time of carriers in the QDs. The insight we have gained is
thus a key step toward understanding, and eventually controlling,
the blinking of QD fluorescence.
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