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An instance of a random constraint satisfaction problem defines a
random subset S (the set of solutions) of a large product space XN

(the set of assignments). We consider two prototypical problem
ensembles (random k-satisfiability and q-coloring of random reg-
ular graphs) and study the uniform measure with support on S. As
the number of constraints per variable increases, this measure first
decomposes into an exponential number of pure states (‘‘clusters’’)
and subsequently condensates over the largest such states. Above
the condensation point, the mass carried by the n largest states
follows a Poisson-Dirichlet process. For typical large instances, the
two transitions are sharp. We determine their precise location.
Further, we provide a formal definition of each phase transition in
terms of different notions of correlation between distinct variables
in the problem. The degree of correlation naturally affects the
performances of many search/sampling algorithms. Empirical evi-
dence suggests that local Monte Carlo Markov chain strategies are
effective up to the clustering phase transition and belief propa-
gation up to the condensation point. Finally, refined message
passing techniques (such as survey propagation) may also beat this
threshold.

message passing algorithms � phase transitions � random graphs

Constraint satisfaction problems (CSPs) arise in a large spec-
trum of scientific disciplines. An instance of a CSP is said to

be satisfiable if there exists an assignment of N variables (x1,
x2, . . . , xN) ' x, xi � X (X being a finite alphabet), which
satisfies all of the constraints within a given collection. The
problem is in finding such an assignment or showing that the
constraints are unsatisfiable. More precisely, one is given a set of
functions �a : Xk 3 {0, 1}, with a � {1, . . . , M} ' [M] and of
k-tuples of indices {ia(1), . . . , ia(k)} � [N], and has to establish
whether there exists x � XN such that �a (xia(1), . . . , xia(k)) � 1 for
all as. In this article we shall consider two well known families
of CSPs [both known to be NP-complete (1)]:

(i) k-satisfiability (k-SAT) with k � 3. In this case X � {0, 1}.
The constraints are defined by fixing a k-tuple [za(1), . . . ,
za(k)] for each a, and setting �a(xia(1), . . . , xia(k)) � 0 if
(xia(1), . . . , xia(k)) � (za(1), . . . , za(k)) and � 1 otherwise.

(ii) q-coloring (q-COL) with q � 3. Given a graph G with N
vertices and M edges, one is asked to assign colors xi � X
' {1, . . . , q} to the vertices in such a way that no edge has
the same color at both ends.

The optimization (maximize the number of satisfied constraints)
and counting (count the number of satisfying assignments) versions
of this problems are defined straightforwardly. It is also convenient
to represent CSP instances as factor graphs (2), i.e., bipartite graphs
with vertex sets [N], [M] including an edge between node i � [N] and
a � [M] if, and only if, the ith variable is involved in the ath
constraint (compare Fig. 1). This representation allows one to
define naturally a distance d(i, j) between variable nodes.

Ensembles of random CSPs (rCSPs) were introduced (see e.g.,
ref. 3) with the hope of discovering generic mathematical phenom-

ena that could be exploited in the design of efficient algorithms.
Indeed several search heuristics, such as Walk-SAT (4) and ‘‘my-
opic’’ algorithms (5) have been successfully analyzed and optimized
over rCSP ensembles. The most spectacular advance in this direc-
tion has probably been the introduction of a new and powerful
message passing algorithm (survey propagation, SP) (6). The
original justification for SP was based on the (nonrigorous) cavity
method from spin glass theory. Subsequent work proved that
standard message passing algorithms (such as belief propagation,
BP) can indeed be useful for some CSPs (7–9). Nevertheless, the
fundamental reason for the (empirical) superiority of SP in this
context remains to be understood and is a major open problem in
the field. Building on a refined picture of the solution set of rCSP,
this article provides a possible (and testable) explanation. We
consider two ensembles that have attracted the majority of work in
the field: (i) random k-SAT: each k-SAT instance with N variables
and M � N� clauses is considered with the same probability; (ii)
q-COL on random graphs: the graph G is uniformly random among
the ones over N vertices, with uniform degree l (the number of
constraints is therefore M � Nl/2).

Phase Transitions in rCSP
It is well known that rCSPs may undergo phase transitions as the
number of constraints per variable � is varied.g The best known of
such phase transitions is the SAT-UNSAT one: as � crosses a
critical value �s(k) (that can, in principle, depend on N), the
instances pass from being satisfiable to unsatisfiable with high
probabilityh (10). For k-SAT, it is known that �s(2) � 1. A
conjecture based on the cavity method was put forward in ref. 6 for
all k � 3 that implied in particular the values presented in Table 1
and �s(k) � 2k log 2 � (1 � log 2)/2 � O (2�k) for large k (11).
Subsequently, it was proved that �s(k) � 2k log 2 � O(k), confirming
this asymptotic behavior (12). An analogous conjecture for q-COL
was proposed in ref. 13 yielding, for regular random graphs (14), the
values reported in Table 1 and ls(q) � 2q log q � log q � 1 � o(1)
for large q [according to our convention, random graphs are with
high probability uncolorable if l � ls(q)]. It was proved in refs. 12
and 15 that ls(q) � 2q log q � O(log q).

Even more interesting and challenging are phase transitions in
the structure of the set S � XN of solutions of rCSP’s (‘‘structural’’
phase transitions). Assuming the existence of solutions, a conve-
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nient way of describing S is to introduce the uniform measure over
solutions �(x):

��x� �
1
Z �

a�1

M

�a�xia�1�, . . . , xia�k��, [1]

where Z � 1 is the number of solutions. Let us stress that, since S
depends on the rCSP instance, �� is itself random.

We shall now introduce a few possible ‘‘global’’ characterizations
of the measure ��. Each one of these properties has its counterpart
in the theory of Gibbs measures, and we shall partially adopt that
terminology here (17).

To define the first of such characterizations, we let i � [N] be a
uniformly random variable index, denote as x� the vector of
variables whose distance from i is at least �, and by �(xi�x�) the
marginal distribution of xi given x�. Then we say that the measure
(Eq. 1) satisfies the uniqueness condition if for any given i � [N],

� sup
x�, x��

�
xi�X

���xi�x�� � ��xi�x��� � 3 0. [2]

as �3� (here and below the limit N3� is understood to be taken
before � 3 �). This expresses a ‘‘worst case’’ correlation decay
condition. Roughly speaking: the variable xi is (almost) independent
of the far apart variables x� irrespective of the instance realization
and the variables distribution outside the horizon of radius �. The
threshold for uniqueness (above which uniqueness ceases to hold)
was estimated in ref. 9 for random k-SAT, yielding �u(k) � (2 log
k)/k [1 � o(1)] (which is asymptotically close to the threshold for the
pure literal heuristics) and in ref. 18 for coloring implying lu(q) �
q for q large enough (a ‘‘numerical’’ proof of the same statement
exists for small q). Below such thresholds BP can be proved to
return good estimates of the local marginals of the distribution
(Eq. 1).

Notice that the uniqueness threshold is far below the SAT-
UNSAT threshold. Furthermore, several empirical studies (19, 20)
pointed out that BP [as well as many other heuristics (4, 5)] is
effective up to much larger values of the clause density. In a
remarkable series of papers (6, 21), statistical physicists argued that
a second structural phase transition is more relevant than the
uniqueness one. Following this literature, we shall refer to this as
the ‘‘dynamic phase transition’’ and denote the corresponding
threshold as �d(k) [or ld(q)]. To precise this notion, we provide here
two alternative formulations corresponding to two distinct intui-
tions. According to the first one, above �d(k) the variables (x1, . . . ,
xN) become globally correlated under ��. The criterion in 2 is
replaced by one in which far apart variables x� are themselves
sampled from � (‘‘extremality’’ condition):

� �
x�

��x�� �
xi

���xi�x�� � ��xi��3 0. [3]

as � 3 �. The infimum value of � (respectively l) such that this
condition is no longer fulfilled is the threshold �d(k) (ld(k)). Of
course this criterion is weaker than the uniqueness one [hence
�d(k) � �u(k)].

According to the second intuition, above �d(k), the measure (Eq.
1) decomposes into a large number of disconnected ‘‘clusters.’’ This
means that there exists a partition {An}n�1 . . . N of XN (depending
on the instance) such that: (i) one cannot find n such that �(An)3
1; (ii) denoting by �� A the set of configurations x � XN\ A whose
Hamming distance from A is at most N�, we have �(�� An)/
�(An)(1 � �(An))3 0 exponentially fast in N for all n and � small
enough. Notice that the measure � can be decomposed as:

�� � �
n�1

N

wn�n�, [4]

where wn' �(An) and �n�' �( � � An). We shall always refer to
{An} as the ‘‘finer’’ partition with these properties.

The above ideas are obviously related to the performance of
algorithms. For instance, the correlation decay condition in Eq. 3
is likely to be sufficient for approximate correctness of BP on
random formulae. Also, the existence of partitions as above implies
exponential slowing down in a large class of Monte Carlo Markov
chain sampling algorithms.i

Recently, some important rigorous results were obtained sup-
porting this picture (22, 23). However, even at the heuristic level,
several crucial questions remain open. The most important concern
the distribution of the weights {wn}: are they tightly concentrated
(on an appropriate scale) or not? A (somewhat surprisingly) related
question is: can the absence of decorrelation above �d(k) be
detected by probing a subset of variables bounded in N?

SP (6) can be thought as an inference algorithm for a modified
graphical model that gives unit weight to each cluster (20, 24), thus
tilting the original measure toward small clusters. The resulting
performances will strongly depend on the distribution of the cluster
sizes wn. Further, under the tilted measure, �d(k) is underestimated
because small clusters have a larger impact. The correct value was
never determined (but see ref. 16 for coloring). Mézard et al. (25)
undertook the technically challenging task of determining the
cluster size distribution without, however, clarifying several of its
properties.

In this article we address these issues and unveil at least two
unexpected phenomena. Our results are described in Results and
Discussion and summarized in Fig. 2. Finally, we discuss the
connection with the performances of SP. Some technical details of
the calculation are collected in Cavity Formalism, Tree Reconstruc-
tion, and SP.

Results and Discussion
The formulation in terms of extremality condition (see Eq. 3) allows
for an heuristic calculation of the dynamic threshold �d(k). Previous
attempts were based instead on the cavity method, which is an

iOne possible approach to the definition of a Monte Carlo Markov chain algorithm is to
relax the constraints by setting �a(� � �) � � instead of 0 whenever the ath constraint is
violated. Glauber dynamics can then be used to sample from the relaxed measure ���.

Table 1. Critical connectivities for the dynamic, condensation,
and satisfiability transitions in k-SAT and q-COL

SAT COL

k �d �c �s (Ref. 11) q ld (Ref. 16) lc ls (Ref. 14)

4 9.38 9.547 9.93 4 9 10 10
5 19.16 20.80 21.12 5 14 14 15
6 36.53 43.08 43.4 6 18 19 20

x

x
x

xx 1

5
7

32

x6

x4

a b

c

Fig. 1. The factor graph of a small CSP allows to define the distance d(i, j)
between variables xi and xj (filled squares are constraints and empty circles
variables). Here, for instance, d(6, 1) � 2 and d(3, 5) � 1.
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heuristic implementation of the definition in terms of pure state
decomposition (see Eq. 4). Generalizing the results of ref. 16, it is
possible to show that the two calculations provide identical results.
However, the first one is technically simpler and under much better
control. As mentioned above we obtain, for all k � 4 a value of �d(k)
larger than the one quoted in refs. 6 and 11.

Further we determined the distribution of cluster sizes wn, thus
unveiling a third ‘‘condensation’’ phase transition at �c(k) � �d(k)
(strict inequality holds for k � 4 in SAT and q � 4 in coloring, see
below). For � 	 �c(k) the weights wn concentrate on a logarithmic
scale [namely, �log wn is 
(N) with 
(N1/2) fluctuations]. Roughly
speaking, the measure is evenly split among an exponential number
of clusters.

For � � �c(k) [and 	 �s(k)] the measure is carried by a
subexponential number of clusters. More precisely, the ordered
sequence {wn} converges to a well known Poisson-Dirichlet process
{w*n}, first recognized in the spin glass context by Ruelle (26). This
is defined by w*n � xn/�xn, where xn � 0 are the points of a Poisson
process with rate x�1�m(�) and m(�) � (0, 1). This picture is known
in spin glass theory as one-step replica symmetry breaking (1RSB)
and has been proven in ref. 27 for some special models. The Parisi
1RSB parameter m(�) is monotonically decreasing from 1 to 0
when � increases from �c(k) to �s(k) (see Fig. 3).

Remarkably, the condensation phase transition is also linked to
an appropriate notion of correlation decay. If i(1), . . . , i(n) � [N]
are uniformly random variable indices, then, for � 	 �c(k) and any
fixed n:

� �

xi��

���xi�1� . . . xi�n�� � ��xi�1�� . . . ��xi�n���3 0 [5]

as N3 �. Conversely, the quantity on the left side of Eq. 5 remains
positive for � � �c(k). It is easy to understand that this condition
is even weaker than the extremality one (compare Eq. 3) in that we
probe correlations of finite subsets of the variables. In the next two
sections we discuss the calculation of �d and �c.

Dynamic Phase Transition and Gibbs Measure Extremality. A rigorous
calculation of �d(k) along any of the two definitions provided above
(compare Eqs. 3 and 4) remains an open problem. Each of the two

approaches has, however, an heuristic implementation that we shall
now describe. It can be proved that the two calculations yield equal
results as further discussed in the last section.

The approach based on the extremality condition in Eq. 3 relies
on an easy-to-state assumption and typically provides a more
precise estimate. We begin by observing that, because of the
Markov structure of ��, it is sufficient for Eq. 3 to hold that the
same condition is verified by the correlation between xi and the set
of variables at distance exactly � from i, that we shall keep denoting
as x�. The idea is then to consider a large yet finite neighborhood
of i. Given �� � �, the factor graph neighborhood of radius �� around
i converges in distribution to the radius-�� neighborhood of the root
in a well defined random tree factor graph T.

For coloring of random regular graphs, the correct limiting
tree model T is coloring on the infinite l-regular tree. For random
k-SAT, T is defined by the following construction. Start from the
root variable node and connect it to l new function nodes
(clauses), l being a Poisson random variable of mean k�. Connect
each of these function nodes with k � 1 new variables and repeat.
The resulting tree is infinite with nonvanishing probability if � �
1/k(k� 1). Associate a formula to this graph in the usual way,
with each variable occurrence being negated independently with
probability 1/2.

The basic assumption within the first approach is that the
extremality condition in Eq. 3 can be checked on the correlation
between the root and generation-� variables in the tree model. On
the tree, �� is defined to be a translation invariant Gibbs measure
(17) associated to the infinite factor graphj T (which provides a
specification). The correlation between the root and generation-�
variables can be computed through a recursive procedure (defining
a sequence of distributions P� �, see Eq. 15 below). The recursion can
be efficiently implemented numerically yielding the values pre-
sented in Table 1 for k (resp. q) � 4, 5, 6. For large k (resp. q) one
can formally expand the equations on P� and obtain:

�d�k� �
2k

k � log k�log log k 	 
d 	 O� log log k
log k � � [6]

ld�q� � q� log q 	 log log q 	 
d 	 o�1�� [7]

with 
d � 1 (under a technical assumption of the structure of P�).
The second approach to the determination of �d(k) is based on

the ‘‘cavity method’’ (6, 25). It begins by assuming a decomposition
in pure states of the form 4 with two crucial properties: (i) if we
denote by Wn the size of the nth cluster (and hence wn � Wn/� Wn),
then the number of clusters of size Wn � eNs grows approximately
as eN�(s); (ii) for each single-cluster measure �n�, a correlation
decay condition of the form 3 holds.

The approach aims at determining the rate function �(s), com-
plexity: the result is expressed in terms of the solution of a
distributional fixed point equation. For the sake of simplicity we

jMore precisely �� is obtained as a limit of free boundary measures.

αd,+ αd αc αs
Fig. 2. Pictorial representation of the different phase transitions in the set of solutions of a rCSP. At �d,� some clusters appear, but for �d,� 	 � 	 �d they comprise
only an exponentially small fraction of solutions. For �d 	 � 	 �c the solutions are split among about eN�� clusters of size eNs�. If �c 	 � 	 �s the set of solutions
is dominated by a few large clusters (with strongly fluctuating weights), and above �s the problem does not admit solutions any more.

Σ (s)

s

αs(k)αc(k)

m (α)

1

0.5

0

Fig. 3. The Parisi 1RSB parameter m(�) as a function of the constraint density
�. In the Inset, the complexity �(s) as a function of the cluster entropy for � �
�s(k) � 0.1 [the slope at �(s) � 0 is �m(�)]. Both curves have been computed
from the large k expansion.
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describe here the simplest possible scenariok resulting from such a
calculation (compare Fig. 4). For � 	 �d,��(k) the cavity fixed point
equation does not admit any solution: no clusters are present. At
�d,��(k) a solution appears, eventually yielding, for � � �d,� a
non-negative complexity �(s) for some values of s � ��. The
maximum and minimum such values will be denoted by smax and
smin. At a strictly larger value �d,0(k), �(s) develops a stationary
point (local maximum). It turns out that �d,0(k) coincides with the
threshold computed in refs. 6, 11, and 14. In particular, �d,0(4) �
8.297, �d,0(5) � 16.12, �d,0(6) � 30.50 and ld,0(4) � 9, ld,0(5) � 13,
ld,0(6) � 17. For large k (resp. q), �d,0(k) admits the same expansion
as in Eqs. 6 and 7 with 
d,0 � 1 � log 2. However, up to the larger
value �d(k), the appearance of clusters is irrelevant from the point
of view of ��. In fact, within the cavity method it can be shown that
eN[s��(s)] remains exponentially smaller than the total number of
solutions Z: most of the solutions are in a single cluster. The value
�d(k) is determined by the appearance of a point s� with ��(s�) �
�1 on the complexity curve. Correspondingly, one has Z �
eN[�(s�)�s�]: most of the solutions are comprised in clusters of size
about eNs�. The entropy per variable � � limN3� N�1 log Z remains
analytic at �d(k).

Condensation Phase Transition. As � increases above �d, �(s�)
decreases: clusters of highly correlated solutions may no longer
satisfy the newly added constraints. In Fig. 5 Inset, we show the �
dependency of �(s�) for 4-SAT. In the large k limit, with � � �2k

we get �(s�) � log 2 � � � log 2 e�k� � O(2�k), and s� � log 2e�k� �
O(2�k).

The condensation point �c(k) is the value of � such that �(s�)
vanishes: above �c(k), most of the measure is contained in a
subexponential number of large clustersl. Our estimates for �c(k)
are presented in Table 1 [see also Fig. 4 for �(s) in the six-coloring]
while in the large-k limit we obtain �c(k) � 2k log 2 � 3/2 log 2 �
O(2�k) [recall that the SAT-UNSAT transition is at �s(k) �
2k log 2 � (1 � log 2)/2 � O(2�k)] and lc(q) � 2q log q � log q �
2 log 2 � o(1) [with the COL-UNCOL transition at ls(q) �
2q log q � log q � 1 � o(1)]. Technically, the size of dominating
clusters is found by maximizing �(s) � s over the s interval on which
�(s) � 0. For � � [�c(k), �s(k)], the maximum is reached at smax,
with �(smax) � 0 yielding � � smax. It turns out that the solutions

are comprised within a finite number of clusters, with entropy
eNsmax��, where � � 
(1). The shifts � are asymptotically distributed
according to a Poisson point process of rate e�m(�)� with m(�) �
���(smax). This leads to the Poisson Dirichlet distribution of
weights discussed above. Finally, the entropy per variable � is
nonanalytic at �c(k).

Let us conclude by stressing two points. First, we avoided the
3-SAT and three-coloring cases. These cases [as well as the
three-coloring on Erdös-Rényi graphs (25)] are particular in that
the dynamic transition point �d is determined by a local insta-
bility [a Kesten-Stigum (28, 29) condition, see also ref. 21],
yielding �d(3) � 3.86 and ld(3) � 6 (the case l � 5, q � 3 being
marginal). Related to this is the fact that �c � �d: throughout the
clustered phase, the measure is dominated by a few large clusters
[technically, �(s�) 	 0 for all � � �d]. Second, we did not check
the local stability of the 1RSB calculation. By analogy with ref.
30, we expect that an instability can modify the curve �(s) but
not the values of �d and �c.

Algorithmic Implications. Two message passing algorithms were
studied extensively on random k-SAT: BP and SP (mixed strategies
were also considered in refs. 19 and 20). A BP message 
u3v(x)
between nodes u and v on the factor graph is usually interpreted as
the marginal distribution of xu (or xv) in a modified graphical model.
An SP message is instead a distribution over such marginals
Pu3v(
). The empirical superiority of SP is usually attributed to the
existence of clusters (6): the distribution Pu3v(
) is a survey of the
marginal distribution of xu over the clusters. As a consequence,
according to the standard wisdom, SP should outperform BP for
� � �d(k).

This picture, however, has several problems. Let us list two of
them. First, it seems that essentially local algorithms (such as
message passing ones) should be sensitive only to correlations
among finite subsets of the variablesm, and these remain bounded
up to the condensation transition. Recall in fact that the extremality
condition in Eq. 3 involves a number of variables unbounded in N,
while the weaker in Eq. 5 is satisfied up to �c(k).

Second, it would be meaningful to weight uniformly the solutions
when computing the surveys Pu3v(
). In the cavity method jargon,
this corresponds to using a 1RSB Parisi parameter r � 1 instead of
r � 0 as is done in ref. 6. It is a simple algebraic fact of the cavity
formalism that for r � 1 the means of the SP surveys satisfy the BP
equations. Since the means are the most important statistics used
by SP to find a solution, BP should perform roughly as SP. BothkThe precise picture depends on the value of k (resp. q) and can be somewhat more

complicated.

lNotice that for q-COL, since l is an integer, the ‘‘condensated’’ regime [lc(q), ls (q)] may be
empty. This is the case for q � 4. On the contrary, q � 5 is always condensated for ld 	 l 	 ls. mThis paradox was noticed independently by Dimitris Achlioptas (personal communication).

Fig. 4. The complexity function [the number of clusters with entropy density
s is eN�(s)] for the six-colorings of l-regular graphs with l � {17, 18, 19, 20}. Circles
indicate the dominating states with entropy s�; the dashed lines have slopes
��(s�) � �1 for l � 18 and ��(s�) � �0.92 for l � 19. The dynamic phase
transition is ld(6) � 18, the condensation one ld(6) � 19, and the SAT-UNSAT
one ls(6) � 20.
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Fig. 5. Correlation function (3) between the root and generation � variables
in a random k-SAT tree formula. Here k � 4 and (from bottom to top) � � 9.30,
9.33, 9.35, 9.40 [recall that �d(4) � 9.38]. In the Inset, the complexity �(s�) of
dominant clusters as a function of � for 4-SAT.
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arguments suggest that BP should perform well up to the conden-
sation point �c(k). We tested this conclusion on 4-SAT at � � 9.5 �
[�d(4), �c(4)], through the following numerical experiment (com-
pare Fig. 6). (i) Run BP for tmax iterations. (ii) Compute the BP
estimates 
i(x) for the single-bit marginals and choose the one with
largest bias. (iii) Fix xi � 0 or 1 with probabilities 
i(0), 
i(1). (iv)
Reduce the formula accordingly (i.e., eliminate the constraints
satisfied by the assignment of xi and reduce the ones violated). This
cycle is repeated until a solution is found or a contradiction is
encountered. If the marginals 
i� were correct, this procedure
would provide a satisfying assignment sampled uniformly from ��.
In fact, we found a solution with finite probability (�0.4), despite
the fact that � � �d(4). The experiment was repeated at � � 9 with
a similar fraction of successes.

Above the condensation transition, correlations become too
strong and the BP fixed point no longer describes the measure �.
Indeed the same algorithm proved unsuccessful at � � 9.7 � [�c(4),
�s(4)]. As mentioned above, SP can be regarded as an inference
algorithm in a modified graphical model that weights preferentially
small clusters. More precisely, it selects clusters of size eNs� with s�
maximizing the complexity �(s). With respect to the new measure,
the weak correlation condition in Eq. 5 still holds and allows one to
perform inference by message passing.

Within the cavity formalism, the optimal choice would be to take
r � m(�) � [0, 1). Any parameter corresponding to a non-negative
complexity r � [0, m(�)] should, however, give good results. SP
corresponds to the choice r � 0 that has some definite computa-
tional advantages, since messages have a compact representation in
this case (they are real numbers).

Cavity Formalism, Tree Reconstruction, and SP
This section provides some technical elements of our computation.
The reader not familiar with this topic should consult refs. 6, 11, 25,
and 32 for a more extensive introduction. The expert reader will
find a new derivation and some hints of how we overcame technical
difficulties.

On a tree factor graph, the marginals of ��, Eq. 1 can be
computed recursively. The edge of the factor graph from variable
node i to constraint node a (respectively from a to i) carries
‘‘message’’ �� i3a (
�a3i), a probability measure on X defined as the
marginal of xi in the modified graphical model obtained by deleting
constraint node a (resp. all constraint nodes around i apart from a).
The messages are determined by the equations:

�� i3a�xi� �
1

zi3a�

�b3i��
�

b��i�a


�b3i�xi�, [8]


�a3i�xi� �
1

ẑa3i�
�� j3a��
�
x�a � i

�a�x�a� �
j��a�i

�� j3a�xj�, [9]

where �u is the set of nodes adjacent to u, \ denotes the set
subtraction operation, and xA � {xj : j � A}. These are just the BP
equations for the model (1). The constants zi3a, ẑa3i are uniquely
determined from the normalization conditions �xi

�� i3a(xi) � �xi

v�a3i(xi) � 1. In the following we refer to these equations by
introducing functions fi3a�, fa3i� such that:

�� i3a � fi3a�

�b3i�b��i�a�, 
�a3i � fa3i�
�� j3a�j��a\i�. [10]

The marginals of � are then computed from the solution of these
equations. For instance �(xi) is a function of the messages 
�a3i from
neighboring function nodes.

The log number of solutions, log Z, can be expressed as a sum of
contributions that are local functions of the messages that solve Eqs.
8 and 9:

log Z � �
a

log za�
�� i3a�� 	 �
i

log zi�

� a3i���

� �
�ai�

log zai��� i3a,
� a3i� [11]

where the last sum is over undirected edges in the factor graph and

za 	 �
x
�

�a

�a�x
�

�a� �
i��a

�� i3a�xi�,

zi 	 �
xi

�
a��i


�a3i�xi�, zai 	 �
xi

�� i3a�xi�
�a3i�xi�.

Each term z gives the change in the number of solutions when
merging different subtrees (for instance, log zi is the change in
entropy when the subtrees around i are glued together). This
expression coincides with the Bethe free-energy (31) as expressed
in terms of messages.

To move from trees to loopy graphs, we first consider an
intermediate step in which the factor graph is still a tree but a subset
of the variables, xB � {xj : j � B} is fixed. We are therefore replacing
the measure �� (compare Eq. 1), with the conditional one �( � �xB).
In physics terms, the variables in xB specify a boundary condition.

Notice that the measure �( � �xB) still factorizes according to (a
subgraph of) the original factor graph. As a consequence, the
conditional marginals �(xi�xB) can be computed along the same
lines as above. The messages � i3a

xB and 
a3i
xB obey Eq. 10, with an

appropriate boundary condition for messages from B. Also, the
number of solutions that take values xB on j � B [call it Z(xB)] can
be computed by using Eq. 11.

Next, we want to consider the boundary variables themselves as
random variables. More precisely, given r � �, we let the boundary
to be xB with probability

�̃�xB� �
Z�xB� r

Z�r�
, [12]

where Z(r) enforces the normalization �xB
�̃(xB) � 1. Define

Pi3a(�) as the probability density of �i3a
xB when xB is drawn from �̃,

and similarly Qa3i(
). One can show that Eq. 8 implies the following
relation between messages distributions:

Pi3a��� �
1

Zi3a

 �

b��i�a

dQb3i�
b���� � f i3a�

b��� zi3a�

b��
r,

[13]
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Fig. 6. Performance of BP heuristics on random 4-SAT formulae. The residual
entropy per spin N�1 log Z (here we estimate it within Bethe approximation)
as a function of the fraction of fixed variables. tmax � 20 in these experiments.
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where fi3a is the function defined in Eq. 10, zi3a is determined by
Eq. 8, and Zi3a is a normalization. A similar equation holds for
Qa3i(
). These coincide with the 1RSB equations with Parisi
parameter r. SP corresponds to a particular parameterization of Eq.
13 (and the analogous one expressing Qa3i in terms of the Ps) valid
for r � 0.

The log-partition function �(r) � log Z(r) admits an expression
that is analogous to Eq. 11,

log Z�r� � �
a

log Za�
Pi3a�� 	 �
i

log Zi�
Qa3i���

� �
ai

log Zai�Pi3a, Qa3i� [14]

where the shifts Z(� � �) are defined through moments of order r of
the zs, and sums run over vertices not in B. For instance Zai is the
expectation of zai(�, 
)r when �, 
 are independent random vari-
ables with distribution (respectively) Pi3a and Qa3i. The (Shannon)
entropy of the distribution �̃ is given by �(r) � �(r) � r��(r).

As mentioned, the above derivation holds for tree factor graphs.
Nevertheless, the local recursion equations 10 and 13 can be used
as an heuristics on loopy factor graphs as well. Further, although we
justified Eq. 13 through the introduction of a random boundary
condition xB, we can take B � � and still look for nondegenerate
solutions of such equations.

Starting from an arbitrary initialization of the messages, the
recursions are iterated until an approximate fixed point is reached.
After convergence, the distributions Pi3a, Qa3i can be used to
evaluate the potential �(r) (compare Eq. 14). From this we
compute the complexity function �(r)' �(r) � r��(r) that gives
access to the decomposition of �� in pure states. More precisely,
�(r) is the exponential growth rate of the number of states with
internal entropy s � ��(r). This is how curves such as in Fig. 4 are
traced.

In practice, it can be convenient to consider the distributions of
messages Pi3a, Qa3i with respect to the graph realization. This
approach is sometimes referred to as density evolution in coding
theory. If one considers a uniformly random directed edge i3 a (or
a 3 i) in a rCSP instance, the corresponding message will be a
random variable. After t parallel updates according to Eq. 13, the
message distribution converges (in the N 3 � limit) to a well
defined law Pt (for variable to constraint messages) or Q t (for
constraint to variable). As t3 �, these converge to a fixed point P,
Q that satisfies the distributional equivalent of Eq. 13.

To be definite, let us consider the case of graph coloring. Since
the compatibility functions are pairwise in this case (i.e., k � 2 in

Eq. 1), the constraint-to-variable messages can be eliminated and
Eq. 13 takes the form:

Pi3j��� � 
 �
l��i�j

dPl3i�� l� ��� � f�
� l��� z�
� l��
r,

where f is defined by �(x) � z�1 �l(1 � �l(x)) and z by normal-
ization. The distribution of Pi3j is then assumed to satisfy a
distributional version of the last equation. In the special case of
random regular graphs, a solution is obtained by assuming that Pi3j

is indeed independent of the graph realization and i, j. One has
therefore simply to set Pi3j � P in the above and solve it for P.

In general, finding messages distributions P, Q that satisfy the
distributional version of Eq. 13 is an extremely challenging task,
even numerically. We adopted the population dynamics method
(32), which represents the distributions by samples (this is closely
related to particle filters in statistics). For instance, one represents
P by a sample of Ps, each encoded as a list of �s. Since computer
memory drastically limits the samples size, and thus the precision of
the results, we worked in two directions: (i) we analytically solved
the distributional equations for large k (in the case of k-SAT) or q
(q-Col); and (ii) we identified and exploited simplifications arising
for special values of r.

Let us briefly discuss the second point. Simplifications emerge for
r � 0 and r � 1. The first case corresponds to SP. Refs. 6 and 11
showed how to compute efficiently �(r � 0) through population
dynamics. Building on this, we could show that the clusters internal
entropy s(r � 0) can be computed at a small supplementary cost.

The value r � 1 corresponds instead to the tree reconstruction
problem (33): In this case �̃(xB) (compare Eq. 12), coincides with
the marginal of �. Averaging Eq. 13 (and the analogous one for
Qa3i) one obtains the BP equations (8 and 9), e.g., ʃ dPi3a(�) � �
�� i3a. These remarks can be used to show that the constrained
averages:

P� ��,�� � � 
 dP�P� P����� �� � 
 dP������� , [15]

and Q� (
, 
�) (defined analogously) satisfy closed equations that are
much easier to solve numerically.
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