Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1994 Feb;69(2):242–246. doi: 10.1038/bjc.1994.46

Mechanism of differential sensitivity of human bladder cancer cells to mitomycin C and its analogue.

B H Xu 1, V Gupta 1, S V Singh 1
PMCID: PMC1968684  PMID: 8297721

Abstract

This study was undertaken to elucidate the mechanism(s) of differential sensitivity of human bladder cancer cell lines J82 and SCaBER to mitomycin C (MMC) and its analogue, BMY 25067. The IC50 values for MMC and BMY 25067 in the SCaBER cell line were respectively 5- and 4-fold higher than in J82. BMY 25282 and BMY 25067 were significantly more cytotoxic, on a molar basis, than MMC in both the cell lines. NADPH cytochrome P450 reductase and DT diaphorase activities were significantly higher in the J82 cell line than in SCaBER, suggesting that relatively lower sensitivity of the SCaBER cell line to MMC and BMY 25067 may be due to deficient drug activation. This conclusion was supported by the observation that IC50 values for BMY 25282, which has lower quinone reduction potential than MMC and BMY 25067, did not differ significantly in these cell lines. A correlation between drug sensitivity, oxyradical formation and levels of antioxidative enzymes was not observed. These results suggest that the relatively lower sensitivity of SCaBER cells to MMC or BMY 25067 may be independent of differential oxyradical formation. MMC-induced DNA interstrand cross-link (ISC) formation was markedly lower in the SCaBER cell line than in J82. However, it remains to be seen if the reduced ISC frequency in the SCaBER cell line is a consequence of deficient drug activation or results from increased repair of the damaged DNA.

Full text

PDF
242

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Bradner W. T., Rose W. C., Schurig J. E., Florczyk A. P. Antitumor activity and toxicity in animals of N-7[2-(4-nitrophenyldithio) ethyl] mitomycin C (BMY-25067). Invest New Drugs. 1990;8 (Suppl 1):S1–S7. doi: 10.1007/BF00171978. [DOI] [PubMed] [Google Scholar]
  3. Crooke S. T., Bradner W. T. Mitomycin C: a review. Cancer Treat Rev. 1976 Sep;3(3):121–139. doi: 10.1016/s0305-7372(76)80019-9. [DOI] [PubMed] [Google Scholar]
  4. Dorr R. T., Bowden G. T., Alberts D. S., Liddil J. D. Interactions of mitomycin C with mammalian DNA detected by alkaline elution. Cancer Res. 1985 Aug;45(8):3510–3516. [PubMed] [Google Scholar]
  5. Dorr R. T., Liddil J. D., Trent J. M., Dalton W. S. Mitomycin C resistant L1210 leukemia cells: association with pleiotropic drug resistance. Biochem Pharmacol. 1987 Oct 1;36(19):3115–3120. doi: 10.1016/0006-2952(87)90620-4. [DOI] [PubMed] [Google Scholar]
  6. Doyle T. W., Vyas D. M. Second generation analogs of etoposide and mitomycin C. Cancer Treat Rev. 1990 Sep;17(2-3):127–131. doi: 10.1016/0305-7372(90)90036-f. [DOI] [PubMed] [Google Scholar]
  7. Dulhanty A. M., Li M., Whitmore G. F. Isolation of Chinese hamster ovary cell mutants deficient in excision repair and mitomycin C bioactivation. Cancer Res. 1989 Jan 1;49(1):117–122. [PubMed] [Google Scholar]
  8. Dusre L., Rajagopalan S., Eliot H. M., Covey J. M., Sinha B. K. DNA interstrand cross-link and free radical formation in a human multidrug-resistant cell line from mitomycin C and its analogues. Cancer Res. 1990 Feb 1;50(3):648–652. [PubMed] [Google Scholar]
  9. Gustafson D. L., Pritsos C. A. Bioactivation of mitomycin C by xanthine dehydrogenase from EMT6 mouse mammary carcinoma tumors. J Natl Cancer Inst. 1992 Aug 5;84(15):1180–1185. doi: 10.1093/jnci/84.15.1180. [DOI] [PubMed] [Google Scholar]
  10. Hoban P. R., Walton M. I., Robson C. N., Godden J., Stratford I. J., Workman P., Harris A. L., Hickson I. D. Decreased NADPH:cytochrome P-450 reductase activity and impaired drug activation in a mammalian cell line resistant to mitomycin C under aerobic but not hypoxic conditions. Cancer Res. 1990 Aug 1;50(15):4692–4697. [PubMed] [Google Scholar]
  11. Hrycay E. G., Jonen H. G., Levin W., Lu A. Y. Reconstitution of the reduced nicotinamide adenine dinucleotide phosphate- and reduced nicotinamide adenine dinucleotide-peroxidase activities from solubilized components of rat liver microsomes. Arch Biochem Biophys. 1975 Jan;166(1):145–151. doi: 10.1016/0003-9861(75)90374-4. [DOI] [PubMed] [Google Scholar]
  12. Kennedy K. A., Rockwell S., Sartorelli A. C. Preferential activation of mitomycin C to cytotoxic metabolites by hypoxic tumor cells. Cancer Res. 1980 Jul;40(7):2356–2360. [PubMed] [Google Scholar]
  13. Keyes S. R., Fracasso P. M., Heimbrook D. C., Rockwell S., Sligar S. G., Sartorelli A. C. Role of NADPH:cytochrome c reductase and DT-diaphorase in the biotransformation of mitomycin C1. Cancer Res. 1984 Dec;44(12 Pt 1):5638–5643. [PubMed] [Google Scholar]
  14. Konings A. W., Drijver E. B. Radiation effects on membranes. I. Vitamin E deficiency and lipid peroxidation. Radiat Res. 1979 Dec;80(3):494–501. [PubMed] [Google Scholar]
  15. Lenaz L. Mitomycin C in advanced breast cancer. Cancer Treat Rev. 1985 Dec;12(4):235–249. doi: 10.1016/0305-7372(85)90007-6. [DOI] [PubMed] [Google Scholar]
  16. Long B. H., Willson J. K., Brattain D. E., Musial S., Brattain M. G. Effects of mitomycin on human colon carcinoma cells. J Natl Cancer Inst. 1984 Oct;73(4):787–792. [PubMed] [Google Scholar]
  17. Marshall R. S., Paterson M. C., Rauth A. M. Deficient activation by a human cell strain leads to mitomycin resistance under aerobic but not hypoxic conditions. Br J Cancer. 1989 Mar;59(3):341–346. doi: 10.1038/bjc.1989.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Moertel C. G., Reitemeier R. J., Hahn R. G. Mitomycin C therapy in advanced gastrointestinal cancer. JAMA. 1968 Jun 17;204(12):1045–1048. [PubMed] [Google Scholar]
  19. Pan S. S., Akman S. A., Forrest G. L., Hipsher C., Johnson R. The role of NAD(P)H:quinone oxidoreductase in mitomycin C- and porfiromycin-resistant HCT 116 human colon-cancer cells. Cancer Chemother Pharmacol. 1992;31(1):23–31. doi: 10.1007/BF00695990. [DOI] [PubMed] [Google Scholar]
  20. Pan S. S., Andrews P. A., Glover C. J., Bachur N. R. Reductive activation of mitomycin C and mitomycin C metabolites catalyzed by NADPH-cytochrome P-450 reductase and xanthine oxidase. J Biol Chem. 1984 Jan 25;259(2):959–966. [PubMed] [Google Scholar]
  21. Perry R. R., Greaves B. R., Rasberry U., Barranco S. C. Effect of treatment duration and glutathione depletion on mitomycin C cytotoxicity in vitro. Cancer Res. 1992 Sep 1;52(17):4608–4612. [PubMed] [Google Scholar]
  22. Pritsos C. A., Sartorelli A. C. Generation of reactive oxygen radicals through bioactivation of mitomycin antibiotics. Cancer Res. 1986 Jul;46(7):3528–3532. [PubMed] [Google Scholar]
  23. Rockwell S. Effects of mitomycin C alone and in combination with X-rays on EMT6 mouse mammary tumors in vivo. J Natl Cancer Inst. 1983 Oct;71(4):765–771. [PubMed] [Google Scholar]
  24. Siegel D., Beall H., Senekowitsch C., Kasai M., Arai H., Gibson N. W., Ross D. Bioreductive activation of mitomycin C by DT-diaphorase. Biochemistry. 1992 Sep 1;31(34):7879–7885. doi: 10.1021/bi00149a019. [DOI] [PubMed] [Google Scholar]
  25. Singh S. V., Xu B. H., Maurya A. K., Mian A. M. Modulation of mitomycin C resistance by glutathione transferase inhibitor ethacrynic acid. Biochim Biophys Acta. 1992 Nov 17;1137(3):257–263. doi: 10.1016/0167-4889(92)90145-2. [DOI] [PubMed] [Google Scholar]
  26. Tomasz M., Lipman R., Chowdary D., Pawlak J., Verdine G. L., Nakanishi K. Isolation and structure of a covalent cross-link adduct between mitomycin C and DNA. Science. 1987 Mar 6;235(4793):1204–1208. doi: 10.1126/science.3103215. [DOI] [PubMed] [Google Scholar]
  27. Willson J. K., Long B. H., Chakrabarty S., Brattain D. E., Brattain M. G. Effects of BMY 25282, a mitomycin C analogue, in mitomycin C-resistant human colon cancer cells. Cancer Res. 1985 Nov;45(11 Pt 1):5281–5286. [PubMed] [Google Scholar]
  28. Xu B. H., Singh S. V. Effect of buthionine sulfoximine and ethacrynic acid on cytotoxic activity of mitomycin C analogues BMY 25282 and BMY 25067. Cancer Res. 1992 Dec 1;52(23):6666–6670. [PubMed] [Google Scholar]
  29. Xu B. H., Singh S. V. Potentiation of mitomycin C cytotoxicity by glutathione depletion in a multi-drug resistant mouse leukemia cell line. Cancer Lett. 1992 Sep 14;66(1):49–53. doi: 10.1016/0304-3835(92)90279-5. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES