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RNA viruses display high mutation rates and their populations repli-
cate as dynamic and complex mutant distributions, termed viral
quasispecies. Repeated genetic bottlenecks, which experimentally are
carried out through serial plaque-to-plaque transfers of the virus, lead
to fitness decrease (measured here as diminished capacity to produce
infectious progeny). Here we report an analysis of fitness evolution
of several low fitness foot-and-mouth disease virus clones subjected
to 50 plaque-to-plaque transfers. Unexpectedly, fitness decrease,
rather than being continuous and monotonic, displayed a fluctuating
pattern, which was influenced by both the virus and the state of the
host cell as shown by effects of recent cell passage history. The
amplitude of the fluctuations increased as fitness decreased, resulting
in a remarkable resistance of virus to extinction. Whereas the fre-
quency distribution of fitness in control (independent) experiments
follows a log-normal distribution, the probability of fitness values in
the evolving bottlenecked populations fitted a Weibull distribution.
We suggest that multiple functions of viral genomic RNA and its
encoded proteins, subjected to high mutational pressure, interact
with cellular components to produce this nontrivial, fluctuating
pattern.

RNA viruses mutate at rates in the range of 10�3 to 10�5 base
substitutions per nucleotide copied (1, 2). These values are

several orders of magnitude larger than those normally encoun-
tered during replication of viral DNA and many orders of magni-
tude greater than that of cellular DNA (3, 4). One of the conse-
quences of these high mutation rates is that RNA virus populations
are composed of ensembles of closely related, nonidentical ge-
nomes that are known as viral quasispecies (5–10). Viral quasispe-
cies evolve as a result of competition, selection, and random
sampling events acting on continuously arising mutant genomes. A
viral quasispecies is generally dominated by one or several most-fit
genomes surrounded by a mutant spectrum whose components
rank according to their relative fitness in the environment in which
replication takes place (7, 9, 10). Fitness is defined here as the
relative replication capacity of viruses measured in growth com-
petition experiments (11, 12).

Alterations in population size have a decisive effect in the
evolution of fitness of viral quasispecies. Large population passages
of RNA viruses often result in fitness gains (13–16). In contrast to
this finding, repeated bottleneck passages (experimentally carried
out by plaque-to-plaque transfers of a virus; compare Fig. 1) are
known to result in average fitness losses of a number of different
RNA viruses (17–20). Such losses have been interpreted as an
accentuation of Muller’s ratchet (21), or accumulation of delete-
rious mutations predicted to occur in asexual populations of
organisms when no compensatory mechanisms such as sex or
recombination operate (17–25). In the case of the important viral
pathogen foot-and-mouth disease virus (FMDV), a representative
of the RNA family of virus termed Picornaviridae (26), fitness
losses as a result of plaque-to-plaque transfers have been associated
with an accumulation of mutations at a rate of 0.3 nucleotide

substitutions per transfer per genome. The process of fitness
decrease, instead of being monotonic, was observed to follow a
fluctuating pattern.

In this article, we report on the analysis of the statistical prop-
erties of the fluctuations in virus titer obtained with four FMDV
clones subjected to serial transfers (27). To study the role played by
the host cells in the process, the values of virus yield obtained in 50
independent platings were also analyzed. The results obtained show
that the magnitude of the fluctuations depends on both the virus
and the host cell. After the initial decrease in fitness, the system
settles into a statistically stationary state (27, 28). In the case of
clones subjected to serial transfers, the observed pattern of fluc-
tuations can be described by a Weibull distribution (29), suggesting
that the process belongs to a broad category of phenomena
previously documented in many different fields, from physics to
biology to economics (30, 31), and related to emergence (32). Our
results imply that the complexity of mutational events in the virus
interacting with the host cell results in considerable resistance of the
virus to extinction, and have implications for the design of new
antiviral strategies.

Materials and Methods
Virus, Fitness Values, Cells, and Infections. The origin and charac-
teristics of the FMDV clones and populations used for this work
have been described. FMDV C-S8c1 (33) is considered as the
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Fig. 1. Schematic representation of virus platings as carried out in this article.
(A) Serial transfers. Clones C30

10, H30
5 , H30

7 , and H30
10 (described in ref. 19 and in

Materials and Methods) were diluted and plated for isolation of virus from an
individual plaque (upper plates) and for titration of infectious particles (lower
plates). Each viral population was derived from a plaque of the previous
plating, and the serial plaque-to-plaque transfers were repeated a total of 50
times. (B) Control platings. C-S8c1, C22

9 p50, MARLS, and RGG were repeatedly
plated to determine the influence of the cells on virus titer. Each titration was
a dead end for these control platings of nonevolving virus. A total of 50
platings were carried out with aliquots of the same population (indicated as
1). Procedures for virus plating and plaque development are detailed in
Materials and Methods.
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reference clone, with a relative fitness of 1 in BHK-21 (baby hamster
kidney) cells. RGG (Arg-Gly-Gly) (34), MARLS (Mar mutant
Leucine to Serine) (35, 36), and C22

9 p50 (16) are likewise used in
the repeated platings of the control experiments (Fig. 1B), and have
higher fitness than C-S8c1 (MARLS � RGG � C22

9 p50 � C-S8c1).
These control populations were stored frozen in separate aliquots
used for each plating. Clones C30

10, H30
5 , H30

7 , and H30
10 (19) used in the

serial transfer experiments (Fig. 1A) have fitness ranging from 0.1
to 0.5, which is lower than that of C-S8c1. These last four clones
were obtained after subjecting C-S8c1 p2 or CS8c1 p113 to 30
plaque-to-plaque transfers (19) previous to the 50 additional pas-
sages described here.

BHK-21 cells were grown in DMEM containing 5% FCS. Cells
were passaged for a maximum of 28 serial passages, and then a fresh
aliquot of cells was thawed and used. For plating of virus, cells were
seeded at a 1:2.5 dilution of a trypsin-treated confluent monolayer
24 h before plating and following standard procedures (refs. 16, 19,
and 37 and references therein). All platings were carried out with
just-confluent cell monolayers. Plaque development was for 24 h
using DMEM�2% FCS�1% DEAE dextran�0.5% agar (DIFCO;
ref. 19). Plating of each virus (Fig. 1) was carried out in triplicate,
either in the conditions of the serial transfer experiments (Fig. 1A),
or in the conditions of the control platings (Fig. 1B). The average
number of progeny plaques per ml (SD never exceeded 20%) was
taken as a measure of relative fitness.

Statistical Procedures. Statistical calculations were done by using the
packages DATA MANIPULATION, CONTINUOUS DISTRIBUTIONS,
DESCRIPTIVE STATISTICS, LINEAR REGRESSION, and NONLINEAR FIT
for MATHEMATICA 3 (Wolfram Research). The values for the
Kolmogorov–Smirnov statistics were determined by using the pro-
gram STATGRAPHICS 7.0. The computational program for the cal-
culation of the Hurst exponent has been written by us, and the
method is described in Appendix A.

Results
Fitness Loss of FMDV Clones. Clones C30

10, H30
5 , H30

7 , and H30
10, which

were derived by 30 plaque-to-plaque transfers of C-S8c1 p2 or
C-S8c1 p113 (see Materials and Methods and ref. 19) were subjected

to 50 additional plaque transfers on monolayers of BHK-21 cells.
The amount of virus progeny in each cloning event was quantitated
as described in Materials and Methods and depicted in Fig. 1A.
Control platings involved repeated plating of the nonbottlenecked
viral populations C-S8c1, C22

9 p50, MARLS, and RGG on BHK-21
cell monolayers (Fig. 1B). The natural logarithm of yield of progeny
virus plotted as a function of passage number shows a decreasing
trend that was not observed in control platings (Fig. 2). This trend
(slope was estimated by regression analysis) is highly significant (P
values are included in Fig. 2). Fluctuations in virus titer were
observed in the four clones subjected to plaque-to-plaque transfers.
Such fluctuations were also present, although they were less pro-
nounced, in control platings, particularly those of the high-fitness
MARLS (Fig. 2). We interpreted this as pointing out a possible role
of the host cell in the viral yield. Because alternating passages of
cells differed in the cell dilution at the penultimate cell passage
before virus plating (1:6 versus 1:16) we explored the possibility that
this difference would be the cause of the observed fluctuations.
However, the time series corresponding to the number of infectious
units at alternating passages also showed a similar fluctuating
pattern, indicating that the cause of the fluctuations must be
different. Moreover, elimination of this difference in cell passage
history did not result in the disappearance of the fluctuations seen
with low-fitness viruses (sections for passages 40–50 are inserted in
Fig. 2A; see also Discussion). Therefore, we infer that serial
plaque-to-plaque transfers of FMDV clones resulted in a decaying
and fluctuating pattern on the production of infectious virus
progeny.

The decreasing trend is a consequence of the sequential transfer
of viral genomes, whereas fluctuations were influenced both by the
virus and the host cells.

To investigate the evolution of fitness after a larger number of
plaque-to-plaque passages, clone C30

10 was subjected to 50 additional
passages (Fig. 3 and ref. 27). The results obtained suggest that after
the initial decrease in fitness, a stationary state is reached. Results
of simulations based on theoretical models (28) provide additional
support for the presence of stationary states of fitness when viral
populations are passed with a fixed bottleneck size (defined by the
number of particles that initiate the replication at every passage).

Fig. 2. Infectious units produced by sequential or repetitive platings of FMDV clones and populations. (A) Logarithm of the number of infectious virus progeny per
ml per plaque as a function of passage number of clones C30

10, H30
5 , H30

7 , and H30
10. The inset in each section corresponds to the infectious units per ml produced per plaque

(plaque transfers 40–50) by using cells with identical passage history (serial 1:6 dilutions). The origin of the clones is described in ref. 19 and in Materials and Methods,
andtheexperimentalprocedure is schematicallydepicted inFig.1A.Allmainplots share thescale inbothaxes.Thescale for insets isalso shared,as represented inLower
Right. (B) Control (nonevolving) populations C-S8c1, C22

9 p50, MARLS, and RGG were repeatedly plated as schematically depicted in Fig. 1B. The procedures used are
described in Materials and Methods and references therein. All four sections have the same scale as in A.
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Significance of the Amplitude of Fluctuations in Virus Yield. To
investigate the differences between the fluctuations found in both
repeated plating and serial transfers, we carried out an analysis of
the statistical parameters describing experimental data.

The coefficient of variation of the logarithm of the data series
(Table 1) indicate that fluctuations in the yield of infectious virus
were 2.4- to 6.2-fold larger for clones C30

10, H30
5 , H30

7 , and H30
10

subjected to serial plaque transfers than for the nonevolving,
control C-S8c1, C22

9 p50, MARLS, and RGG populations. A similar
conclusion was obtained for the ratios of infectivity between
consecutive passages. The fluctuations in viral yield now ranged
from 1.7- to 8.5-fold (Fig. 4 and Table 1).

Statistical Distributions. Often, the presence of fluctuations in the
evolution of a physical system indicates that one is dealing with
some form of self-organization, or with regimes where many
components in the system are simultaneously involved. This finding
is the case in the turbulent regime of fluid motion, where velocity
fluctuations indicate that eddies of many different sizes are acting
to generate the turbulent motion. In other physical systems, such as
for example in Brownian motion, the presence of complicated

fluctuations is an indicator of a very deep simplicity: a Gaussian
probabilistic process that describes the diffusion of small-size
particles.

Inspired by the above, we have studied the fluctuations in
infectious virus progeny production and the presence of long-range
correlations in the process. We have applied the rescaled range
analysis technique to our time series representing the experimental
data. This method was originally introduced by H. E. Hurst (38) to
analyze natural phenomena characterized by the presence of in-
creasingly large fluctuations (compared with the typical deviations)
as the length of the time series increased. It can be used to
determine the nature and properties of long-time correlations. Our
analysis shows that the typical values of H for all of the clones
analyzed, as well as for the control series, are �0.75. Hence, we face
a system with large, long-range correlated fluctuations (see Appen-
dix A).

From the experimental time series for the number of infectious
virus progeny per plaque as a function of passage number for each
of the clones (Fig. 2), we have calculated the cumulative frequency
distribution. The cumulative frequency distribution may be straight-
forwardly interpreted as a probability distribution function P(Y �
Y0) that the number of infectious units per plaque, Y, is less than or
equal to Y0. Furthermore, once the probability distribution function
is identified, one can then proceed to model the process in statistical
terms or, alternatively, think of the underlying process as a many-
body physical problem and search for an effective dynamic gov-
erning it. Here we will only attempt to identify the probability

Fig. 3. Infectious units per ml per plaque produced during 100 plaque-to-
plaque passages of clone C30

10. After the initial decrease in fitness we observe that
the system settles into a statistically stationary state with large fluctuations. After
plaque transfer 60, the cells have an identical passage history (1:6).

Table 1. Determination of the coefficient of variation of the
data series

Viral clone

Coefficient of variation

A B

C30
10 0.25 0.34

H30
5 0.22 0.22

H30
7 0.23 0.21

H30
10 0.19 0.21

C-S8c1 0.07 0.10
C22

9 p50 0.05 0.08
MARLS 0.04 0.04
RGG 0.08 0.12

The coefficient of variation was calculated as the ratio between the SD and
the mean of the data series. A, the series corresponding to the logarithm of
infectious units per ml recovered in each plaque. B, the series obtained after
calculating the ratio between consecutive passages of the A series.

Fig. 4. Amplitude of the fluctuations of the number of infectious progeny
quantified through the logarithm of infectious units per ml per viral plaque at
each passage (iu at pi�1) relative to the logarithm of infectious units per ml per
viral plaque at the previous passage (iu at pi). The experimental design is depicted
in Fig. 1, and the origin of viruses and methods for plating on cell monolayers are
detailed in Materials and Methods.
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distribution and will not present any results on a possible viral
dynamics leading to it.

Once the presence of ‘‘long tails’’ in the data had been detected,
we first considered various functional forms for the probability
distribution. We tried simple power laws, as in the Pareto distri-
bution, and then more complex probability distribution functions,
such as Gaussian, log-normal, Weibull, and others. The results of
fitting the experimental data to these distributions are summarized
in Tables 2 and 3, where we have reported only the most significant
results. We concluded that Pareto and other scale-free distributions
did not fit the data because the discrepancies between data and
distribution were �20%. The infectivity data clearly fell into two
distinct classes: (i) C30

10, H30
5 , H30

7 , and H30
10, which had been subjected

to serial plaque-to-plaque transfers, followed a pattern which is best
described by a Weibull distribution; on the other hand, (ii) the data
for the nonevolving, control populations C-S8c1, C22

9 p50, MARLS,
and RGG were best described by a log-normal distribution
(see Tables 2 and 3 and Fig. 5). These conclusions are also
supported by Monte Carlo simulations and by the plotting of the
data in rank-ordering graphics (Fig. 5), in which the Weibull
distributions are well represented by straight lines (30) according to
the expression

�Y�n��� � �a log n � b. [1]

Here Y(n) represents the number of infectious units per plaque
ordered by decreasing values. The exponent � is obtained by fitting
a Weibull distribution to the data; n is the rank (number of order
for each value).

Because of the statistical significance of our results, it is safe to
conclude that neither the evolving viral populations nor the non-
evolving populations follow a logistic population dynamic, as one
would expect. The dynamics of our process involve intermittent and
discontinuous phenomena. For example, computational models of
population dynamics, as well as empirical observations, suggest the
presence of metastable states of high fitness where the system
remains locked for a given time. This time shortens exponentially
with increasing fitness. The dynamics we observe are therefore
more complex than that described by a pure, scale-free power law.
In particular, the specific nature of the phenomenon depends on
the value of the exponent � and on a characteristic scale k (see
Table 2).

Discussion
Unveiling the molecular mechanisms behind the extinction of
viruses is of great current interest for two related reasons: (i)
because they provide new information on the tolerance of viral
genomes to accept genetic lesions while remaining replication-
competent, and (ii) because viral extinction through increased
(lethal) mutagenesis is actively investigated as a possible new
antiviral strategy (10, 39–46). One of the strategies to force viruses
to extinction through inefficient replication is by subjecting their
quasispecies genome distributions to serial plaque-to-plaque trans-

Table 2. Fit of cumulative frequencies of the number of
infectious units per ml recovered in each plaque (denoted by Y)
to a Weibull distribution

Viral clone � k
Degree of

significance

C30
10 0.40 	 0.02 5.9 
 104 0.94

H30
5 0.55 	 0.08 2.0 
 105 0.80

H30
7 0.52 	 0.05 4.2 
 105 0.61

H30
10 0.55 	 0.03 2.4 
 104 0.88

C-S8c1 0.99 	 0.09 2.4 
 106 0.52
C22

9 p50 0.96 	 0.30 1.5 
 107 0.03
MARLS 1.56 	 0.29 1.7 
 107 0.35
RGG 0.89 	 0.19 4.4 
 106 0.47

In this table, � and k are the two parameters characterizing the Weibull
distribution function, given by P(Y � Y0) � 1 � exp[�(Y0�k)�]. We fit the
cumulative number of infectious units per ml per plaque for each of the viruses
enumerated to the above expression by adjusting � and k. The goodness of
the fit was evaluated through the degree of significance (P value) of the
Kolmogorov–Smirnov statistic for each case.

Table 3. Fit of cumulative frequencies of the number of
infectious units per ml recovered in each plaque (denoted by Y)
to a log-normal distribution

Viral clone � �

Degree of
significance

C30
10 9.9 2.5 0.83

H30
5 10.9 2.4 0.50

H30
7 11.6 2.6 0.20

H30
10 9.4 1.8 0.91

C-S8c1 14.3 1.0 0.96
C22

9 p50 16.4 0.7 0.21
MARLS 16.4 0.6 0.35
RGG 4.9 1.2 0.60

� and � (mean and SD of the logarithm of infectious units per ml per plaque
series) are the two parameters characterizing the log-normal cumulative
distribution function given by P(Y � Y0) � 1�2[1 � Erf{(�� � log Y0)�
�2 �}]. The goodness of fit was evaluated through the degree of significance
(P value) of the Kolmogorov–Smirnov statistic for each case.

Fig. 5. Representation of the values of infectious units per ml per plaque
(iu/plaque) as a function of the logarithm of the rank. The data series were
ordered by decreasing values and raised to the power � that was obtained from
the fitting of the frequency values to a Weibull distribution (ref. 30, see Table 2).
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fers that represent a severe form of repeated bottleneck, because
viral population size is systematically reduced to one. As an
example, several FMDV clones were brought close to extinction,
although all of them were rescued by allowing longer time for
plaque development or by replicating them in a liquid medium (27).

We have detected in our experiments that fitness decrease
through bottleneck events, rather than being gradual and contin-
uous, follows a fluctuating pattern influenced by both the virus and
the host cell, and with an amplitude increasing as virus fitness
decreases (Figs. 2 and 4). Eventually, a state where fitness fluctu-
ations attain a statistically stationary distribution is reached (Fig. 3).
Although the contribution of the host cell to the fluctuations in viral
yield occurred also in control viruses repeatedly plated, the statis-
tical properties of evolving and nonevolving viruses showed clear
differences. Whereas the dynamics of the control series follows
log-normal distributions, fluctuations in evolving viruses distribute
according to a Weibull distribution (Table 2 and Fig. 5). We believe
that the log-normal distribution has its origin in a complex depen-
dence of the replication of viruses on the cellular state, where
several steps need to be independently and successfully completed
for replication to take place. Consequently, small differences are
multiplicatively amplified during the course of replication and result
in large fluctuations in the number of viable particles. Further
studies of the underlying dynamics controlling the effect of the
cellular state on replication are warranted. Because the effects of
the cell were far more dramatic for low-fitness viruses (compare
pattern variation in Fig. 2A with C-S8c1 and MARLS in Fig. 2B),
this problem is of direct relevance to virus replication efficiency and
survival, and it may relate to recent observations on the influence
of cell-cycle phase in cap-dependent versus cap-independent inter-
nal ribosome entry site (IRES)-directed translation (47).

In the evolving populations, repeated bottlenecks allow for large
variations in the initial state of the founder particle, an effect which
is of course absent in the control series. These variations add to the
cell-particle interaction and generate larger fluctuations and a ‘‘fat
tail’’ in the probability distribution, which eventually develops a
stretched exponential (Weibull) shape. The Weibull distribution
has been used to describe a number of phenomena and processes
in engineering and medicine (30), including cardiac contractions
(48), time between events of the disease paroxysmal atrial fibrilla-
tions (49), and in modeling some epidemics (50). In our case, we
believe that the simplest interpretation of our results is as a type of
relaxation phenomena in which the system fluctuates out of equi-
librium in response to environmental pressure: the viruses employ
spontaneous mutations in a strategy to reach a more stable state.
Sequence analysis of viral genomes at several intermediate passages
demonstrated the accumulation of mutations in the viral genome
(27), showing that the observed changes in the infectious progeny
result from a synergy between genomic changes and differences in
the state of the host cell.

There are strong analogies between mutation in a viral popula-
tion and the notion of hopping in dispersive transport in a random
environment. We can view the process of viral mutation as an
evolutionary process in which the viral genome evolves from one
sequence to another and where there is a replacement of dominant
genomes. Because deleterious mutations are far more probable
than beneficial ones, this diffusive process corresponds formally to
a random walk with drift: the probability that the random walk is
at position f decreases exponentially with f (51). This mechanism,
together with the multiplicative replication process (which we have
seen to follow a log-normal distribution function), can be used to
explain the presence of fluctuations following a Weibull distribu-
tion. In fact, one can introduce a function to describe the probability
of a mutation affecting fitness in a given time interval (‘‘mutation
function’’) and use it to study the evolution of viral populations and
build models (see Appendix B).

Viruses are entirely dependent on host cells for their replication,
in that numerous cellular proteins [surface proteins that may act as

cellular receptors, protein synthesis (translation) factors, etc.],
cellular RNAs and macromolecular structures and aggregates
(ribosomes, membranes, etc.) participate in virus uptake, viral
genome replication, and expression, as well as assembly and release
of viral particles (see overviews in refs. 10 and 52). As Montroll and
Shlesinger showed long ago, ‘‘. . . when a population is engaged in
tasks whose completion requires the successful conclusion of many
independent subtasks, the distribution function for successes in the
primary task is log-normal’’ (53). Our results with the control viral
clones completely agree with their ideas. In addition, the viral
genome is a compact repository of information (10, 54): a given
RNA region and also viral proteins (including unprocessed pre-
cursors) may be involved in multiple functions in such a way that
variations in genetic information may trigger a cascade of pertur-
bations sensed in the form of changes in virus yield. Thus, complex
fluctuations could have their origin in the combined effect of the
highly compact genetic information of the virus, in strict depen-
dence of the host cell, and the perturbing influences of mutations
in the multiple virus-cell interactions needed for completion of the
virus life cycle. As the virus becomes more debilitated by delete-
rious mutations, compensatory mutations play a more relevant role
to increase the fitness of the virus and contribute to the appearance
of the fluctuating pattern.

Biologically, the large fluctuations in virus yield when viral fitness
has reached very-low-fitness values (passages 40–50 in Fig. 2)
underlies an extreme resistance of virus to extinction as a result of
population bottlenecks and accumulation of mutations. This find-
ing reinforces the need to search for alternative antiviral strategies
not based on inhibition of replication but based instead on virus
entry into error catastrophe through highly increased mutagenesis
(10, 39–46). Such research using a variety of viruses warrants
further study.

Appendix A: Rescaled Range Analysis
Given a time series {Y(t)}, we calculate the running sum during a
time �

S��� � �
t�0

�

Y�t�, [2]

the average value during this interval, Y�� � S(�)�� and the
associated SD �(�). The accumulated departure during this time is

D�t , �� � �
i�1

t

�Y�i� � Y���. [3]

The difference R(�) between the maximal DM and minimal Dm
values of D(t, �), which take place at different times in the interval
(1, �) is the expected range of variation of the accumulated
departure. Empirically, Hurst (38) found out that for many phe-
nomena the rescaled range R(�)��(�) had a power-law dependence
on the length � of the observation window,

R���

����
� � H. [4]

The exponent H � [0, 1] is the Hurst exponent. For a simple system
such as a Random Walk, H � 0.5, and 1�f noise translates into
H � 1. Any value between 0.5 and 1 corresponds to a system with
long-ranged correlations and nontrivial fluctuations, whereas val-
ues between 0 and 0.5 stand for anticorrelated time series.

Appendix B: The Mutation Function
Mutations affecting fitness, which are the ones empirically mea-
sured in this article, represent a dynamical change of state. We can
define a function for the occurrence of nonneutral and nonlethal
mutations, h(t), as the conditional instantaneous mutation rate, so
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that h(t)dt is the conditional probability that the system will mutate
(in a way affecting fitness) in the time interval between t and t � dt
given that it had not mutated until time t. Then, if T is the random
time at which the mutation takes place and fT(t) is its probability
density, it follows that the probability distribution function P(T 	
t) is given by

P�T 	 t� � �
1

�

fT �t��dt� � 1 � P�T � t�. [5]

We have seen empirically that P(T � t) above is given by a Weibull
distribution (compare Table 2). Using elementary concepts from
probability theory and standard notation one can easily show that

h�t� � fT �t � T 	 t�, [6]

h�t� �
fT �t�
PT �t�

�
fT �t�
RT �t�

, [7]

with P�T (t) � fT (t). [The function of a random variable RT (t) � 1 �
PT (t) can be interpreted as the ‘‘viral resistance’’ to mutation.]
From the above it follows that

fT �t� � RT �0�h�t� exp���
0

t

h�t��dt�� [8]

as well as

RT �t� � �1 � PT �0��exp���
0

t

h�t��dt��. [9]

But, because PT(t) � 1 � exp [� (t�t0)�], we have for the probability
density function that

fT �t� � �
1
t0
� t��1 exp���t�t0���, for t 	 0 [10]

and

fT �t� � 0, for t 
 0. [11]

Hence the ‘‘mutation function’’ is found to be

h�t� � �
1
t0
	 t

t0

��1

. [12]

This concept of mutation function and the associated formalism can
be used to design strategies for viral extinction which we will explore
elsewhere.
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45. Grande-Pérez, A., Sierra, S., Castro, M. G., Domingo, D. & Lowenstein, P. R.

(2002) Proc. Natl. Acad. Sci. USA 99, 12938–12943.
46. Pariente, N., Sierra, S., Lowenstein, P. R. & Domingo, E. (2001) J. Virol. 75,

9723–9730.
47. Sachs, A. B. (2000) Cell 101, 243–245.
48. Araki, J., Matsubara, H., Shimizu, J., Mikane, T., Mohri, S., Mizuno, J., Takaki, M.,

Ohe, T., Hirakawa, M. & Suga, H. (1999) Am. J. Physiol. 277, H1940–H1945.
49. Rose, M. S., Gillis, A. M. & Sheldon, R. S. (1999) Stat. Med. 18, 139–154.
50. Cooley, P. C., Myers, L. E. & Hamill, D. N. (1996) Eur. J. Epidemiol. 12, 229–235.
51. Feller, W. (1957) An Introduction to Probability Theory and Its Applications (Wiley,

New York).
52. Flint, S. J., Enquist, L. W., Krug, R. M., Racaniello, V. R. & Skalka, A. M. (2000)

Virology, Molecular Biology, Pathogenesis, and Control (Am. Soc. Microbiol., Wash-
ington, DC).

53. Montroll, E. W. & Shlesinger, M. F. (1982) Proc. Natl. Acad. Sci. USA 79,
3380–3383.

54. Gromeier, M., Wimmer, E. & Gorbalenya, A. E. (1999) in Origin and Evolution of
Viruses, eds. Domingo, E., Webster, R. G. & Holland, J. J. (Academic, San Diego),
pp. 287–343.

Lázaro et al. PNAS � September 16, 2003 � vol. 100 � no. 19 � 10835

EV
O

LU
TI

O
N


