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A major task in computational analysis of mRNA expression pro-
files is definition of relationships among profiles on the basis of
similarities among them. This is generally achieved by pattern
recognition in the distribution of data points representing each
profile in a high-dimensional space. Some drawbacks of commonly
used pattern recognition algorithms stem from their use of a
globally linear space and�or limited degrees of freedom. A pattern
recognition method called Local Context Finder (LCF) is described
here. LCF uses nonlinear dimensionality reduction for pattern
recognition. Then it builds a network of profiles based on the
nonlinear dimensionality reduction results. LCF was used to ana-
lyze mRNA expression profiles of the plant host Arabidopsis
interacting with the bacterial pathogen Pseudomonas syringae. In
one case, LCF revealed two dimensions essential to explain the
effects of the NahG transgene and the ndr1 mutation on resistant
and susceptible responses. In another case, plant mutants deficient
in responses to pathogen infection were classified on the basis of
LCF analysis of their profiles. The classification by LCF was consis-
tent with the results of biological characterization of the mutants.
Thus, LCF is a powerful method for extracting information from
expression profile data.

An important aspect of expression profile analysis is identi-
fication of relationships among multiple profiles on the

basis of similarities: comparing either profiles of different sam-
ples, which consist of expression values for numerous genes as
parameters, or profiles of different genes, which consist of
expression values for different samples as parameters. Interest-
ing relationships may be defined by the investigator (e.g., find
samples in which genes A and B are up-regulated and gene C is
down-regulated). Alternatively, computer algorithms may be
used to find relationships that are not strictly defined (e.g., find
samples that have similar profiles, regardless of what the simi-
larity might be). When the expression profiles of different
samples are compared, computer algorithms treat each expres-
sion profile as a data point in a high-dimensional linear space,
such that the expression value for each gene is its coordinate in
one of the dimensions, and the number of dimensions is equal to
the number of genes. In other words, if m profiles, each
consisting of expression values for n genes, are to be analyzed,
m data points are placed in an n-dimensional linear space. The
problem of identifying relationships among expression profiles is
thus translated into a problem of recognizing patterns in the
distribution of m data points within the n-dimensional space.
Similarly, when the expression profiles of n different genes (with
m different samples as parameters) are compared, the problem
is handled as the distribution of n data points in the m-
dimensional space. Thus, the mathematical principle is the same
for comparison of profiles of different samples or different
genes.

Some drawbacks of conventional algorithms, such as hierar-
chical clustering (1), Self-Organizing Maps (2, 3), K-means
clustering (4), and principal component analysis (5, 6), stem from
the facts that they use artificially imposed distance measures such
as a distance measure defined in a globally linear space and�or

that they consider only very limited degrees of freedom. There
is no reason to assume that an artificially imposed space or a
space with artificially imposed degrees of freedom can describe
the distribution of expression profile data points well. Nonlinear
dimensionality reduction (7, 8) is an improvement in both of
these aspects. It defines the structure of the global space that
contains all the data points and the degree of freedom in the
global space, on the basis of the local geometric context of the
data point distribution.

Tenenbaum et al. (7) and Roweis and Saul (8) developed two
different algorithms, Isomap and Locally Linear Embedding
(LLE), respectively, to perform nonlinear dimensionality reduc-
tion for the purpose of pattern recognition. A nonlinear dimen-
sionality reduction procedure identifies a globally nonlinear
manifold (a space with the degree of freedom defined by the
distribution of data points), on the basis of local geometric
contexts defined in locally linear spaces. For example, a Swiss roll
structure requires three dimensions for description in a linear
space but only two for description in a nonlinear space (see figure
3 of ref. 7 and figure 1 of ref. 8). This example clearly demon-
strates that a linear dimensionality reduction procedure, such as
principal component analysis, is not able to capture such globally
nonlinear manifolds.

The model plant–pathogen system consisting of the plant host
Arabidopsis and the bacterial pathogen Pseudomonas syringae
has been crucial for deepening our understanding of plant–
pathogen interactions due to the genetic and genomic tractability
of both organisms (9). Gene-for-gene resistance is conditioned
by a resistance (R) gene in a plant and the corresponding
avirulence (avr) gene in a pathogen. When corresponding R and
avr genes are present in the system, the plant exhibits strong
resistance to the pathogen (10). Otherwise, the plant is suscep-
tible. Several R–avr combinations were identified in the Arab-
diopsis-P. syringae system, including RPS2 for avrRpt2 (11, 12)
and RPMI for avrB (13). The ndr1 mutation compromises both
RPS2-and RPMI-mediated resistance but has a stronger effect on
RPS2-mediated resistance (14, 15).

Even when a plant is susceptible to a pathogen, the plant shows
a limited level of resistance to the pathogen (general resistance)
(9). Salicylic acid (SA) is an important plant-signaling molecule
for general resistance and at least some types of gene-for-gene
resistance. The NahG transgene encodes an SA hydroxylase, so
plants expressing NahG have very low SA levels. NahG plants
show defects in general resistance against P. syringae and in
RPS2-mediated resistance (16). Similarly, mutations that reduce
the SA level, such as pad4, eds5, and sid2, and a mutation that
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affects responses to SA, npr1, have defects in general resistance
against P. syringae (9). Jasmonic acid (JA) and ethylene (ET) are
also important for plant signaling in response to pathogens (9).
Plant responses mediated by SA or JA�ET pathways have
differential effects on different spectra of pathogens. For exam-
ple, the JA response mutant coi1 is more susceptible to Alternaria
brassicicola than wild-type plants (17), but coi1 is more resistant
to P. syringae (18). The ET response mutant ein2 is affected in
disease symptom development but is similar to wild type with
respect to P. syringae growth (19).

We have been using expression profiling as a massive pheno-
typing method to characterize biological systems (expression
phenotyping) (20–22). When the state of a cell changes, it is
likely that expression levels of some genes change. Such expres-
sion changes can be used as markers for a particular state of the
cell, regardless of whether the expression changes have func-
tional significance. Therefore, an expression profile of a biolog-
ical sample can be used as a broad-spectrum phenotype of cell
state. Although in principle any global profiling technologies
can be used for this purpose, mRNA expression profiling cur-
rently has an advantage in sensitivity, accuracy, and breadth of
coverage.

We recently reported expression phenotyping of Arabidopsis
responses after P. syringae infections. Resistant and susceptible
responses were compared in one case (20), and several defense
mutants were compared in another (21). Hierarchical clustering
was the main analytical method used. Although this analysis
provided valuable information, we also noticed its limitations,
one of which is that the method can handle only one degree of
freedom. We need a method that can handle multiple degrees of
freedom.

Here, we report development of Local Context Finder (LCF),
which uses nonlinear dimensionality reduction for pattern rec-
ognition and translates the result into a network. In LCF,
globally nonlinear space is generated on the basis of local
contexts, and analysis of the multidimensional relationships
among profiles is accomplished by using principles of network
analysis. LCF was applied to the analysis of Arabidopsis expres-
sion profiles from plants infected with P. syringae.

Materials and Methods
mRNA Expression Profile Data. The data used were generated by
using the Affimetrix (Santa Clara, CA) AtGenome1 GeneChip,
which represents �8,000 Arabidopsis genes; these data are
available as supplements to refs. 20 and 21. Only probe sets
showing significant expression changes, as defined in the refer-
ences, were chosen for analysis.

LCF. Programs for LCF were written in PERL and are available for
noncommercial research conducted in nonprofit organizations
on request to F.K. The network output of LCF was visualized and
analyzed by using PAJEK (http:��vlado.fmf.uni-lj.si�pub�
networks�pajek) (23). For visualization, the Kamada–Kawai
free energy optimization option was used in Fig. 1 C–E, and the
Fruchterman–Reingold 3D option was used in Fig. 2 B–D. The
PAJEK files for Fig. 2 B and C and 2D are published as Data Set 1
and Data Set 2, respectively, as supporting information on the
PNAS web site, www.pnas.org.

Results and Discussion
Principle of LCF. The LLE procedure (8) for nonlinear dimen-
sionality reduction was adapted to LCF. We chose LLE for LCF
rather than Isomap (7), because the algorithm is simpler. The
beginning of the LCF procedure is based on the first two steps
of LLE (see figure 2 of ref. 8). In LCF, the data points in a
high-dimensional space are described as vectors in the space: a
data point representing an expression profile is the end point of
an n-dimensional vector, where n is equal to the number of

expression values, and the origin is the start point of the vector.
There is no mathematical restriction on what isotropic local
distance measure should be used in LLE (8). LCF uses the
uncentered Pearson correlation coefficient (i.e., normalized dot
product), because LCF is designed to compare only the shapes
of profiles, not the amplitudes.

In mathematical terms:
For profile i, we can define a normalized unit vector, X� i,

corresponding to a point in n dimensional space:

X� i � �x1
�i�, x2

�i�, . . . , xn
�i��

and

�X� i� � 1 for i � 1, 2, . . . , N,

where xl
(i) is the lth expression measurement in profile i, and N

is the total number of profiles.
The uncentered Pearson correlation coefficient between two

points i and j is defined as:

dij � X� i�X� j .

For each data point X� i, Steps 1 and 2 are performed.
Step 1. Selection of neighbor data points. For X� i, k closest neighbor
data points, {X� j}, are selected such that for any point, X� m � {X� j},
dim � dij. The number of closest data points, k, is used as the
primary measure to define the neighbors, instead of a fixed
cutoff value for the uncentered Pearson correlation coefficient,
because it enables the algorithm to adapt to differences in the
local density of the data points. See How the number of neighbors,
k, is determined, below, for determination of k.
Step 2. Reconstruction with linear weights. The context-dependent
correlation Di is defined as the uncentered Pearson correlation
coefficient between X� i and a linear convex combination of
neighboring data points {X� j}.

Di � X� i���
j

aijX� j� and

� �
j

aij X� j� � 1,

where aij � 0 for all j, and is chosen to maximize Di.
In LCF, the linear combination is restricted to a convex one

(aij � 0). This restriction makes this step equivalent to finding the
point closest to X� i within a space confined by {X� j}.
Building networks. The difference between LCF and LLE lies in
the way the data points are embedded in a low-dimensional
space. Spaces defined by more than three dimensions are not
easily visualized, yet the number of dimensions resulting from a
nonlinear dimensionality reduction procedure could be more
than three for a particular data set. One way to deal with this
situation is to choose three or fewer dimensions at a time. Then
embedding of the data points can be optimized for the chosen
dimensions and visualized, as in LLE (8). A disadvantage of this
LLE-type embedding method for analysis of profiling data is that
it may be difficult to grasp overall relationships, because only
three dimensions can be viewed at once; therefore, if the data
require more than three dimensions, they cannot be displayed in
a single view. In LCF, the relationships identified in Step 2 are
translated into a network. In this way, the entire network
structure can be viewed at once.
Step 3. Translation of the relationships among data points into a network.
Once Steps 1 and 2 have been performed for each data point X� i,
if the parameter ail satisfies ail��j aij � 0.001, the corresponding
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point, X� l � {X� j}, is considered to contribute to the reconstruc-
tion significantly, and a directed link is made from vertex l to
vertex i. The cutoff value of 0.001 was chosen in the cases below
on the basis of the stability of the outcome (see Appendix 1, which
is published as supporting information on the PNAS web site).
If the cutoff value is too small, the results may be overly sensitive
to noise in the data. The strength of each link is defined as dil.
Embedding the results into a low-dimensional space is associated
with alteration of the length of the links. To give a sense of
distance between vertices, the links are color coded according to
their strength.
Step 4. Visualization and analysis of the network. PAJEK (23) was used
for visualization and analysis of the network. When the final
number of dimensions for a particular data set is three or fewer,
visualizing the network by using energy optimization in three
dimensions has an effect similar to embedding the data points in
a three-dimensional space in LLE. In other words, the manifold
structure can be observed in the network. In LCF, more than
three links to one vertex suggest that the local area requires more
than three dimensions. Consequently, LCF gives a sense of local
dimensionality.

An advantage of translating the results into a network is that
relationships among vertices (data points) can be analyzed by
network analysis methods on the basis of graph theory. For
example, the first analysis would be to see whether the data
generate more than one disconnected network. For the next
level, ‘‘strongly connected components’’ can be used to define
subnetworks or clusters. When it is possible to proceed according
to the directions of links from vertex A to vertex B and vice versa,
vertices A and B are defined to be strongly connected. A data
point closely related to a group of data points is likely to be
strongly connected to the members of the group, whereas a data
point not closely related to the group is not. Although they were
not used in this study, there are other network analysis methods
that can be used to define subnetworks. Observing relationships
among subnetworks (each subnetwork is defined by consolida-
tion of its member data points) or focusing on the data point
relationships within a single subnetwork at a time are powerful
ways to simplify the network structure and are crucial for
analyzing networks composed of a large number of data points,
such as expression profiles of numerous genes with multiple
samples as parameters.
How the number of neighbors, k, is determined. If k is too small, LCF
cannot capture enough local dimensionality information. If k is
too large, contexts considered by the algorithm are more global
than local. The optimal value for k is determined for each set of
data on the basis of the stability of the outcome network
structure. When k is scanned from 1 to a larger integer, the
number of directed links L(k) is recorded. The percent increase
of the link number I(k) � 100�{L(k � 1) 	 L(k)}�L(k) is
plotted against k. When I(k) stops decreasing consistently with
increasing k, our interpretation is that k is large enough to
capture most local contexts, and that the resulting network
structure is relatively stable. We choose the minimum k value
that satisfies this condition. Refer to the examples of actual cases
below.
Implementation of bootstrap analysis. Data collection in a global
profiling experiment could be biased. For example, the microar-
ray used in the cases below covers only about one-third of
Arabidopsis genes. There could be a bias in selection of the genes
covered by the microarray. To reduce the effects of such bias in
data collection on pattern recognition, bootstrapping of the data
was implemented in the analysis. In addition, bootstrapping can
reduce some types of noise that affect values for a small fraction
of the total number of parameters, e.g., noise caused by small
defects in the microarray, without requiring replicate data sets.
In the first case below, the initial data had 26 columns (profiles)
and 1,606 rows (probesets). To generate a set of bootstrapped

data, rows were randomly sampled 1,606 times with replacement.
The new bootstrapped data were analyzed by LCF, and the
resulting directed links were recorded. This process of generat-
ing and analyzing bootstrapped data was performed 1,000 times.
A histogram of the occurrence of each directed link was made,
and the cutoff value was selected at a clear valley in the
histogram shape (see supporting information for details). In this
case, the links with a 90% or higher occurrence were chosen as
links well supported by bootstrapping. The bootstrap analysis
was also performed similarly in the second case, and the links
with a 85% or higher occurrence were chosen (see Appendix 1).

Comparison of LCF and Other Methods Commonly Used for Pattern
Recognition in Expression Profiling Data. Methods such as hierar-
chical clustering (1), Self-Organizing Maps, (2), and the K-means
method (4) do not perform well in pattern recognition when the
patterns are not comprised of nonoverlapping convex sets (24),
because they do not consider local contexts. Fig. 1 demonstrates
the performance of LCF with overlapping nonconvex patterns.
Patterns are easily recognized visually so long as the dimension
number of the space is three or lower. Computer algorithms used
for expression profile analysis, including LCF, are unaffected by
the dimension number of the space. Therefore, to compare
pattern recognition performance, it makes sense to perform
comparisons by using patterns in a low-dimensional space so
results can be easily evaluated visually. For this reason, data
points are distributed in a 2D space in this figure (Fig. 1 A). To
allow these data points to be analyzed by using normalized unit
vectors, an arbitrary large number was assigned as the third-
dimension coordinate to all the data points (the coordinates for
these data points are provided in Data Set 3, which is published
as supporting information on the PNAS web site). It is imme-
diately apparent that these data points should be clustered into
two groups, indicated by pink and blue. However, as expected,
hierarchical clustering by using average or complete linkage
failed to recognize the patterns (Fig. 1B). In contrast, as shown
in Fig. 1C, LCF (with k � 7; in this case, k was intentionally set
much higher than necessary to demonstrate the power of di-
mensionality reduction described below) recognized the patterns
and separated them into two disconnected networks (in Fig. 1,
the directions of the links are not shown). In addition, LCF kept
essential geometric relational information in the two dimen-
sions: the shapes of the networks represent the original shapes
of the groups well. Recognition of two colored patterns depends
on the determination of neighbors. Methods in which a limited
number of neighbors are simply chosen (e.g., hierarchical clus-
tering by using single linkage connects the closest neighbors) can
also recognize two colored patterns. When a sufficient number
of neighbors are chosen, such a method also seems to be able to
keep geometric information when embedded in two dimensions
(e.g., Fig. 1E shows part of the blue pattern when five neighbors
are indiscriminately connected).

An advantage of LCF over these methods, in which a fixed
number of neighbors are simply chosen, is that LCF can capture
geometric relational information with the actual degree of
freedom, which is achieved by dimensionality reduction. To
illustrate this point, LCF (Fig. 1D) was compared with a method
that connects a fixed number of neighbors without dimension-
ality reduction (LCF Step 2 is omitted; Fig. 1E). To demonstrate
the power of dimensionality reduction, the k value for LCF was
chosen to be larger (k � 7) than the fixed number for the second
method (five neighbors). A part of the blue pattern in Fig. 1C is
magnified in Fig. 1D. It is clear that LCF captures the true 2D
nature (i.e., two degrees of freedom) of the pattern, because
there are no links crossing each other in this 2D embedded
image. In this case, k � 7, so links with seven closest neighbors
are considered for each point, but only links necessary to
describe the 2D nature of the pattern are selected through linear
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reconstruction. In contrast, Fig. 1E shows the corresponding
part of the pattern when all five closest neighbors are connected
to each point without any selection. Although this still separated
the pink and blue patterns of Fig. 1 A (not shown) and kept
superficial geometric relational information, it is evident that
many links cross each other: this procedure without the selection
by linear reconstruction resulted in geometric relational infor-
mation with the degree of freedom higher than the actual
degree, 2. Therefore, methods with neighbor selection without
dimensionality reduction are inefficient in extracting essential
information.

In this particular example, principal component analysis
(PCA) can identify two base dimensions to describe these data
points, because the initial 2D space is linear, but visual inspection
is required to identify the patterns in the 2D space. However, in
nonlinear spaces, nonlinear dimensionality reduction methods
are generally superior to linear dimensionality reduction meth-
ods like PCA, as exemplified by the Swiss roll structure described
above (7, 8).

Case 1: Resistant and Susceptible Responses of Arabidopsis. Expres-
sion profile data for resistant and susceptible responses (incom-
patible and compatible interactions, respectively) of Arabidopsis
during infection with P. syringae strains (20) were analyzed by
LCF including bootstrapping. The value used for analysis is
log2-transformed ratio between the sample and the correspond-
ing control. Because the results from 6 and 9 h after inoculation
were similar (20), the 9-h data were omitted from the analysis.
The data consist of 26 samples with expression values of 1,606
probesets each. The number of neighbors to explore in LCF, k,
was determined by using the function I(k) (Fig. 2A). In this case,
when k � 4, the I(k) value does not decrease consistently. We
chose k � 4 to capture the local context. Fig. 2 B and C show two
different views of the same network generated by LCF and
visualized by PAJEK. Clusters of profiles defined by strongly
connected components are indicated by commonly colored
vertices. In Fig. 2B, the dimension that separates profiles be-
tween 3 and 6 h is evident, confirming that the shapes of the
profiles for resistant and susceptible responses are similar within
the same time point (20). The 6-h profiles for infection by the
nonhost strain P. syringae pv. phaseolicola (Psp) (indicated by
purple arrowheads in Fig. 2 B and C) locate between the 3- and
6-h planes consisting of other profiles, suggesting that the
response to Psp has slower kinetics, as we pointed out previously
(20). The view in Fig. 2C exhibits the relationships among the 6-h
profiles. Within this set of profiles, excluding the profiles with
Psp, it is clear that the major trend can be described by two
independent dimensions (i.e., two degrees of freedom). One
dimension is defined by whether the bacterial strains carry avr
genes (��	 avr). The other dimension is defined by effects of
NahG and ndr1 (WT-NahG-ndr1). This network structure indi-
cates that (i) the effects of NahG and ndr1 were qualitatively
similar when plants were infected with P. syringae pv. tomato
(Pst) or Pst�avrRpt2, but ndr1 has a stronger effect; (ii) these
effects were weaker but approximately along the sameWT-
NahG-ndr1 dimension when plants were infected with Pst�avrB;
(iii) in ndr1, avrRpt2-dependent responses were not totally
eliminated, because the difference between the profiles of
Pst�ndr1�6h and Pst�aR2�ndr1�6h is along the ��	 avr dimen-
sion; and (iv) the profile of Pst�aR2�ndr1�6h is clustered with
those of Pst�ndr1�6h and Pst�NahG�6h but not with that of
Pst�aR2�NahG�6h. Points i and ii indicate that both NahG and
ndr1 strongly affect general resistance responses when Pst or
Pst�avrRpt2 is used, and that they weakly affect general resis-
tance responses when Pst�avrB is used. Although both ndr1 and
NahG were reported to affect the RPS2-avrRpt2 gene-for-gene
interaction (14, 16), point (iv) suggests that the effect on the
interaction is stronger with ndr1, and that the ways they affect the
interaction are qualitatively different.

In Case 1, LCF provided an easy way to visually identify the
global nonlinear dimensions of the data. Note that such visual
identification of global dimensions is meaningful only when the
numbers of local dimensions do not exceed three. When they do,
extracting part of a subnetwork or consolidating some subnet-
works could help reduce the numbers and enable visual identi-
fication of dimensions. For example, in this case, the entire
network required three dimensions, but the 6-h subnetwork
required only two. We previously proposed a quantitative model
to roughly explain the data for resistant and susceptible re-

Fig. 1. Performance of LCF in pattern recognition. (A) Initial data points for
pattern recognition tests. Pattern recognition performance was compared
between hierarchical clustering (B; Left, complete linkage; Right, average
linkage) (1), and LCF (k � 7) (C). The colors of the bars in B and the vertices in
C represent cluster assignment of the colored data points in A. (D) A magnified
image of a part of the blue pattern in C. The direction of links is not shown, and
the links are not color-coded according to the uncentered Pearson correlation
coefficient value (all green). (E) The part corresponding to D when linear
reconstruction (Step 2) of LCF is omitted (k � 5), i.e., each point is connected
to five neighbors indiscriminately. Note that the links are not always mutual,
so some vertices have more than five links.
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sponses and the effects of NahG and ndr1 on them (20). We
pointed out a limitation of the model due to its single degree of
freedom. LCF analysis revealed that two degrees of freedom are
required to explain the 6-h data. Although ndr1 was initially
described as a mutation that specifically suppresses some resis-
tance mediated by certain R genes (14), it clearly affects general
resistance (20). avrRpt2-dependent responses were not totally
eliminated in ndr1 (point iii above). A comparison of these
profiles with a profile of ndr1 rps2 double-mutant plants infected
with Pst�avrRpt2 will determine whether the remnant avrRpt2-
dependent responses in ndr1 are RPS2-dependent (i.e., results of
a gene-for-gene interaction) or are caused by the virulence
function of avrRpt2.

Case 2: Relationships Among Arabidopsis Defense Mutants. We have
conducted expression profile analysis of Arabidopsis defense
mutants responding to Psm (21). In this work, we analyzed the
data from wild-type, sid2, eds5-1, eds5-3, eds4, npr1-1, npr1-3,
pad2, NahG, pad4, eds3, pad1, ein2, coi1, and eds8. The data were
analyzed by using LCF including bootstrap analysis. The value
used in the analysis is a log2-transformed ratio between an
infected mutant and the infected wild-type. The data consist of
17 samples with expression values of 519 probesets each. On the
basis of the I(k) function curve, k � 4 was chosen (see Fig. 3,
which is published as supporting information on the PNAS web
site). Fig. 2D shows a view of the network generated by LCF and
visualized by PAJEK. Clusters of profiles defined by strongly
connected components are indicated by commonly colored
vertices.

The results are generally in agreement with those obtained by
hierarchical clustering, but LCF provides more information.
Hierarchical clustering classified the mutants into three major
groups: sid2, eds5-1, eds5-3, eds4, and npr1-3 to the SA group;
npr1-1, pad2, NahG, pad4, and eds3 to the central group; pad1,
ein2, coi1, and eds8 to the JA�ET group. The JA�ET cluster
defined by LCF (yellow in Fig. 2D) is the same as the JA�ET
group defined by hierarchical clustering. LCF combined the SA
and central groups into one group (red in Fig. 2D), except for
pad2. However, it is easy to grasp several interesting aspects of
this red cluster from its network structure. NahG, pad4, and eds3
are closely related to each other because of high degrees of
connection within their profiles (degree of a vertex). This central
group core, composed of NahG, pad4, and eds3, is located on the
end opposite the part containing the SA group members in the
red cluster, which agrees with the separation of the central and

The color of each arrow indicates the similarity between the data sets defined
by the uncentered Pearson correlation coefficient. Red indicates 0.92–0.97;
orange, 0.83–0.92; green, 0.72–0.83; and blue, 0.59–0.72. The orientation of
each arrow points to a data set from each of its informative neighbors. (B) In
this view, profiles are well separated according to time points, except profiles
for Psp. (C) In this view, within the set of the 6-h profiles (except those for Psp;
labeled vertices), the network can be well described by two independent
dimensions. The name of each profile is indicated as ‘‘(plant)�(bacteria
strain)�(time after inoculation, 3 or 6 h).’’ (plant); Col (wild-type), NahG or ndr1
(bacteria strain); Pst (P. syringae pv. tomato DC3000, virulent strain); Psm (P.
syringae pv. maculicola ES4326, virulent strain); PstaR2 (Pst�avrRpt2, avirulent
strain); PsmaR2 (Psm�avrRpt2, avirulent strain); PstaB (Pst�avrB, avirulent
strain); and Psp (P. syringae pv. phaseolicola NPS3121, nonhost strain). Purple
arrowheads indicate profiles with Psp at 6 h. (D) Relationships determined by
LCF among Arabidopsis defense mutants on the basis of their responses 30 h
after infection by Psm (Case 2). Representation of the network is similar to B
and C. The vertices are classified into three groups on the basis of strongly
connected components: red, SA plus central group; green, pad2; yellow, JA�ET
group. The color of each arrow indicates the similarity between the data sets
defined by uncentered Pearson correlation coefficient. Red indicates 0.77–
0.87; orange, 0.65–0.77; green, 0.51–0.65; and blue, 0.36–0.51. For mutants
tested in more than one experiment, the experiment number is shown as
‘‘#1’’ or ‘‘#3.’’

Fig. 2. LCF analysis of Arabidopsis responses to pathogen infections. (A–C)
Analysis of resistant and susceptible responses of Arabidopsis (Case 1). (A) The
link increase rate function I(k). B and C are two different views of the same
network generated by LCF. Each profile is shown as a vertex. Vertex size
indicates 3D position in embedding, with larger vertices closer to the viewer.
The vertices are classified into clusters on the basis of strongly connected
components, and the groups are indicated by different colors of the vertices.
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SA groups by hierarchical clustering (21). The network structure
also shows that npr1-1 is located in the position that connects the
central group core to the SA group members. In addition, that
the major difference between the central group core members,
npr1-1, and the SA group is described along a single nonlinear
dimension (the arc shape spanning from pad4 and eds3 to eds4)
suggests the difference can be explained by a single factor. pad2
was classified as a cluster (green in Fig. 2D) separate from the
red cluster by LCF, and the difference between pad2 and the red
cluster was represented by a dimension different from the one
representing the major difference among the red cluster mem-
bers. These observations suggest that pad2 is very different from
members of the SA and central groups, which is consistent with
the biological observation that pad2 is not impaired in either the
SA or JA�ET pathways (21). This aspect of pad2 was not
correctly predicted by hierarchical clustering analysis. With
assignments of eds3 to the red cluster (SA, central group), pad1
and eds8 to the JA�ET cluster, and pad2 to its own cluster, LCF
correctly predicted the characteristics of all these mutants.

There are links from the central group core to pad1 and ein2
and from eds4 to eds8 (Fig 2D), indicating that the way the
central group core members are similar to JA�ET cluster
members is distinct from the way eds4 is similar to JA�ET cluster
members. With these links, the overall network consisting of the
red and JA�ET cluster members (except coi1) has a circular 2D
structure. This circular connection pattern indicates that at least
two degrees of freedom are required to explain differences
among these mutants.

LCF also detected experiment-to-experiment variations. The
plane defined by pad4 #1, NahG #1, npr1-1 #1, pad2 #1, npr1-3
#1, eds5-1 #1, and eds4 #1 is approximately parallel to the plane
defined by pad4 #3, NahG #3, sid2 #3, pad2 #3, and eds5-3 #3
(Fig. 2D). Note that the size of a vertex represents the depth in
the 3D imaging, and that the number after ‘‘#’’ labels each

experimental set. It is important that the dimension for the
experiment-to-experiment variations can be separated from
the dimensions representing biological differences, which are the
one along the arc from pad4 and eds3 to eds4 and the one
representing the difference between the red cluster and pad2. It
will be interesting to see whether experiment-to-experiment
variations among many different experiments can generally be
represented by a single dimension, similar to the one detected in
this study.

In Case 2, we demonstrated the usefulness of applying network
analysis to LCF results. The profiles can be classified into clusters
defined by the nature of their links, such as strongly connected
components. In addition, features in the network structure, such
as the degree of a vertex, could be used in interpretation of their
biological significance. Network analysis is independent of di-
mension numbers. Therefore, translation of the results of non-
linear dimensionality reduction into networks in LCF can aid
analysis of complex profile data involving many degrees of
freedom.

Conclusion
With the advance of genomic technologies and the rapid increase
of data generated by them, pattern recognition in high-
dimensional spaces (i.e., multivariate analysis) is becoming
increasingly important in biology research. Accurate pattern
information captured from large data sets allows researchers to
build testable hypotheses with a high probability of being correct.
Therefore, an advanced pattern recognition method like LCF
will be a crucial tool for pursuing hypothesis-driven research that
exploits the availability of large data sets.
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