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We assessed the relation between hemodynamic and electrical
indices of brain function by performing simultaneous functional
MRI (fMRI) and electroencephalography (EEG) in awake subjects at
rest with eyes closed. Spontaneous power fluctuations of electrical
rhythms were determined for multiple discrete frequency bands,
and associated fMRI signal modulations were mapped on a voxel-
by-voxel basis. There was little positive correlation of localized
brain activity with alpha power (8–12 Hz), but strong and wide-
spread negative correlation in lateral frontal and parietal cortices
that are known to support attentional processes. Power in a 17–23
Hz range of beta activity was positively correlated with activity in
retrosplenial, temporo-parietal, and dorsomedial prefrontal corti-
ces. This set of areas has previously been characterized by high but
coupled metabolism and blood flow at rest that decrease when-
ever subjects engage in explicit perception or action. The distrib-
uted patterns of fMRI activity that were correlated with power in
different EEG bands overlapped strongly with those of functional
connectivity, i.e., intrinsic covariations of regional activity at rest.
This result indicates that, during resting wakefulness, and hence
the absence of a task, these areas constitute separable and dy-
namic functional networks, and that activity in these networks is
associated with distinct EEG signatures. Taken together with stud-
ies that have explicitly characterized the response properties of
these distributed cortical systems, our findings may suggest that
alpha oscillations signal a neural baseline with ‘‘inattention’’
whereas beta rhythms index spontaneous cognitive operations
during conscious rest.

electroencephalography � human brain � spontaneous activity �
functional magnetic resonance imaging � blood oxygenation-level-
dependent contrast

To ‘‘do and think nothing’’ is probably the hardest instruction
to follow. By nature restless, we are driven toward activity

when awake, and refraining from such activity is an efficient way
of falling asleep. Despite its intrinsic instability, the ‘‘awake
resting state’’ has been the most widely used experimental
condition in functional neuroimaging studies. It usually serves to
define a ‘‘baseline’’ of brain activity, and local task-related
deviations from baseline values are interpreted as functional
‘‘activation’’ or ‘‘deactivation’’ in response to a precisely defined
experimental condition (1). Because any such difference is
meaningful only if both conditions compared are well defined,
there is continuing interest in better understanding brain pro-
cesses during the resting state.

From the earliest electrophysiological recordings, ‘‘spontane-
ous activity’’ has been observed in neuronal discharge patterns.
Neurons fire not only in relation to a sensory or behavioral event
but also variably and seemingly unpredictably including at ‘‘rest.’’
In the context of experiments that target stimulus-locked re-
sponses, such unpredictable activity has been considered
‘‘noise.’’ However, recent evidence suggests that spontaneous
activity is coherently expressed in larger neuronal populations
and functionally meaningful (2–4). But how are spontaneous

fluctuations in activity organized macroscopically across the
brain? Answering this question could enable us to better under-
stand their functional significance. If, for instance, neural activ-
ity f luctuated coherently in specific brain circuits, it might be
related to fluctuations of specific mental activities, the nature of
which might then be inferred from existing studies reporting
explicit activation of these circuits. This result would corroborate
the concept of a ‘‘default mode’’ of brain function as proposed
by others (5). The underlying idea is that when one is awake and
at ‘‘rest,’’ brain activity switches to default processes, which are
suspended when one is engaged in a task. However, demon-
strating that during rest neural activity spontaneously fluctuates
in specific distributed spatial patterns would also modify this
concept. In contrast to a static baseline, rest would appear as
intrinsically dynamic and different from other functional states
by virtue of preferential association with a distinct subset of the
totality of neural (and cognitive) processes.

Surprisingly, few studies have addressed this issue so far,
despite the implications for interpreting functional neuroimag-
ing studies. Here, we explored the neuroanatomical patterns of
resting state fluctuations of human brain activity by simulta-
neously applying two neurophysiological recording techniques,
functional MRI (fMRI) and electroencephalography (EEG).
The contrast used in most fMRI studies, including the present
one, is blood oxygenation-level-dependent (BOLD) (6). In
recent visual stimulation studies combining microelectrode re-
cordings and fMRI in anaesthetized monkeys, a linear correla-
tion was found between the BOLD response and the stimulus-
driven modulation of the local field potential, a measure of local
synaptic activity (7). In relation to this electrical signal, the
BOLD response is convolved with a spatio-temporal low-pass
filter that reflects the properties of neurovascular coupling. In
surface EEG, electrical signals arise from synchronization of
postsynaptic potentials across large populations of cortical neu-
rons (8). We used recent methodological developments that
allow for continuous acquisition of EEG despite the artifacts
generated by fMRI (9). Our starting hypothesis was that the
dynamics of EEG activity at rest hold information about the
functional state of subjects and can be used to dissociate
different brain networks spontaneously engaged and disengaged
in the absence of any explicit instruction or task.

Methods
Fifteen healthy volunteers (with written informed consent) were
scanned during resting wakefulness on a 1.5-Tesla MRI system
equipped with a gradient booster and by using a standard head
coil (Siemens Vision, Erlangen, Germany). The instruction was
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to lie still with eyes closed and not fall asleep. Maintenance of
wakefulness throughout the sessions was checked for (self-
reported or sleep patterns on EEG), leading to the exclusion of
4 subjects. An additional subject was excluded because of poor
data quality, and hence datasets of 10 subjects were analyzed (6
female, 4 male, aged 31 � 3 yr). Each of two consecutive 20-min
sessions per subject yielded 300 T2*-weighted echo-planar image
volumes covering the entire cerebrum (voxel size 3.44 � 3.44 �
4 mm3, 19 slices with 1-mm gap in 2.8 s, volumes recorded every
4 s, echo time 50 ms).

EEG was recorded by using the BrainAmp MR EEG ampli-
fier, BRAIN VISION RECORDER software (Brainproducts, Munich,
Germany), and the BrainCap electrode cap (Falk Minow Ser-
vices, Herrsching-Breitbrunn, Germany) at 29 positions (follow-
ing the 10�20 system, sampled at 5 kHz, 0.016–250 Hz). This cap
provides a reference position between Fz and Cz. Mastoid or ear
electrodes would be susceptible to wire loops and effects from
head restraining pads.

Off-line EEG signal correction was based on averaging and
then subtracting imaging and pulse artifact (10, 11), as imple-
mented in the BRAIN VISION ANALYZER (Brainproducts,
Munich). In each session, the 300 EEG segments contaminated
by imaging artifact were averaged. This first step is similar to
recording evoked potentials, where time-locked averaging serves
to identify a weak response embedded in the strong EEG signal.
In this average, the non-locked EEG contribution to the signal
zeroes out, and (different from evoked potentials) this average
artifact signal is then subtracted from the artifact-laden EEG
recorded originally, thus reconstituting the ‘‘true’’ biological
EEG signal. This approach requires nonsaturating amplifiers
and assumes constant artifact properties (Fig. 4, which is pub-
lished as supporting information on the PNAS web site, www.
pnas.org). To facilitate visual inspection of the corrected EEG,
a 0.5-Hz high-pass and, due to residual high-frequency artifact
from under-sampling, a 30-Hz low-pass Butterworth filter (48
dB) was used after the subtraction algorithm, precluding analysis
of activity in the gamma range. Power spectrum analyses were
performed by using a Fast Fourier Transform (1-s epochs,
Hanning window). A more detailed description of these methods
and their validation for our setting is reported elsewhere (12).

Image preprocessing [realignment, spatial normalization, and
spatial smoothing with a 10-mm full width at half maximum
(FWHM) Gaussian kernel], and statistical analysis were carried
out by using the SPM99 package (www.fil.ion.ucl.ac.uk�spm).
Regressors for the model were derived from convolving the
power time courses of the bands of interest (calculated from the
raw amplitude mean of the two occipital EEG leads O1 and O2)
with a canonical hemodynamic response function. They were
then down-sampled to the frequency of image volume sampling
and mean-scaled. For group analysis, a fixed-effects model was
applied, and statistical inferences were corrected for multiple
comparisons by using Gaussian random field theory. Responses
were considered significant at P � 0.05, corrected, if confirmed
in a random effects model at P � 0.001, uncorrected.

Results
Like others (13), we first studied spontaneous fluctuations of
‘‘alpha’’ oscillations (8–12 Hz), the classical EEG hallmark of
resting wakefulness with eyes closed (14). In other words, the
power time course in this frequency band during a prolonged
continuous resting state (convolved with the hemodynamic
response function) served as a regressor for the analysis of the
simultaneously acquired image data. Accordingly, positive cor-
relation with alpha power should determine whether, and if so,
which brain regions are more active when the brain expresses
alpha oscillations than during alpha desynchronization. Positive
correlation with alpha power was sparse and restricted to two
foci in the cingulate gyrus and occipital cortex, but we found
widespread negative correlation with alpha power in a bilateral
fronto-parietal network (Fig. 1A and Table 1). This latter
neuroanatomical pattern is well-known from functional neuro-
imaging experiments that overtly recruit attentional processes
and related cognitive resources (15). We found no correlations
between fMRI signal and power in the 4- to 7-Hz theta band.

Next, we analyzed activity f luctuations occurring in correla-
tion with higher frequency oscillations in the ‘‘beta’’ band (13–30
Hz). We subdivided the beta range into three bands (16), and
performed the same type of analysis as for alpha power, probing
positive and negative correlations. No significant fMRI signal
changes were associated with the beta-1 range (13–16 Hz), but
we found positive correlation with beta-2 power (17–23 Hz) in

Fig. 1. Brain regions where BOLD fMRI signal is positively (green) or negatively correlated (red) with spontaneous power fluctuations in EEG frequency bands
at rest (A, 8–12 Hz; B, 17–23 Hz). The results from a fixed effects group analysis (see Methods) are overlaid onto a rendering of a template brain and visualized
at a threshold of P � 0.001, uncorrected. Note that activation in all clusters was also significant (P � 0.05) after correction for multiple comparisons, and see Table
1 for results at the level of a random effects analysis.
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several areas, namely the posterior cingulate and adjacent
precuneus as well as the temporo-parietal junction and dorso-
medial prefrontal cortex (Fig. 1B and Table 1). A trend for
negative correlations with the beta-2 band was seen in primary
cortices across the visual, auditory, and sensori-motor modali-
ties, but the result did not pass the rigorous threshold criteria we
set for statistical significance (see Methods). Finally, power
fluctuations in the beta-3 band (24–30 Hz) were positively
correlated with a region in the anterior cingulate gyrus and
negatively correlated with retrosplenial and temporo-parietal as
well as prefrontal areas. This observation suggested that similar
areas were activating during high beta-2 and deactivating during
beta-3 activity, a notion we submitted to formal testing by

applying a conjunction analysis (Fig. 5, which is published as
supporting information on the PNAS web site). The generaliz-
ability of the findings for both alpha and beta frequencies was
confirmed in a random effects analysis (Table 1).

A remaining question was whether the correlation we ob-
served between power fluctuations in certain EEG bands and
activity f luctuations in several different brain areas was inciden-
tal, or whether it meant that EEG was signaling activity covaria-
tions in distributed but functionally connected systems. One
could imagine finding correlations with EEG parameters across
several areas even if they do not share the bulk of their variance
over time. If so, our findings would probably be of low functional
significance, and we would not be able to consider certain EEG
bands to provide signatures of activity in distinct functional
networks. We addressed the question of whether the distributed
areas correlated with power in the same EEG band are indeed
functionally coupled to each other by determining the intrinsic
correlation patterns of spontaneous fMRI signal f luctuations.
Others have used this approach as a measure of functional
connectivity and have shown correlated signal changes during
prolonged rest in the motor, auditory, and visual system (17–19).
Here, we extracted the fMRI activity time courses from single
voxels that significantly correlated with alpha (left parietal
cortex) and beta-2 power (left temporo-parietal junction). By
using these time series as regressors, we then mapped regions
showing correlated signal changes in the group data set that we
had previously analyzed in relation to the EEG findings (Fig. 2).
This analysis demonstrated that virtually the same regions that
were related to power changes in specific EEG bands were also
intrinsically more strongly functionally connected to each other
than to any other region. Moreover, our findings regarding the
beta-2-associated network are in close agreement with a recent
fMRI study on functional connectivity in the resting state (20).

A further concern was that our results might have been
influenced by the choice of the occipital EEG leads to provide
the power time courses that we used as regressors for the fMRI
analysis. We therefore took the reverse approach as in our first
analysis and mapped the correlation of the band-specific power
time courses at the different electrode positions with the fMRI

Table 1. Brain regions showing positive or negative correlation
between BOLD fMRI signal and power in EEG frequency bands

EEG band Brain region Coordinates Z-score

Alpha pos. Occipital �16 �94 2 5.1
Mid-cingulate 8 �14 44 3.9*

Alpha neg. Lateral prefrontal left �44 34 16 5.8
Lateral prefrontal right 44 18 24 4.3
Parietal left �50 �52 50 4.2
Parietal right 34 �72 48 3.9

Beta-2 pos. Posterior cingulate 2 �36 30 4.3
Precuneus �12 �66 44 4.1*
Temporo-parietal junction left �36 �62 36 4.5
Temporo-parietal junction right 44 �66 38 3.6*
Dorsal medial prefrontal left �16 38 28 3.8
Dorsal medial prefrontal right 14 34 20 3.7*

Beta-3 pos. Anterior cingulate 10 26 26 5.6
Beta-3 neg. Posterior cingulate �4 �46 18 4.1

Temporo-parietal junction left �34 �80 26 3.7
Temporo-parietal junction right 48 �64 30 3.8

The results are from a random effects analysis and list effects that were
significant for single voxel peak height at P � 0.001 (with Z-scores reported)
and for extent of the cluster at P � 0.01, both uncorrected (36). Asterisks
indicate regions where the effects were too focal to fulfill the latter criterion.

Fig. 2. Brain regions where BOLD fMRI signal at rest correlates with the reference regions indicated in green (stereotactic coordinates: A, �50, �52, 50; B, �36,
�62, 36). The image data set is the same as in Fig. 1, and the functional connectivity results are visualized at a height threshold of T � 10.00.
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activity time courses from different regions of interest (Fig. 3).
We found that activity in different brain regions was linked to
distinct EEG bands but not others, and that this correlation was
not restricted to only a few electrode positions but observed for
the majority. Thus, for instance, correlation of left parietal
cortical activity with alpha power was negative across virtually all
electrode positions (Fig. 3A), and no correlation was observed
with the beta-2 band. Conversely, retrosplenial activity (from the
posterior cingulate cortex) correlated positively with beta-2
power at most electrode positions but not detectably with the
other beta bands (Fig. 3B). This finding underlines that the
correlations observed between the frequency bands and distinct
brain networks as monitored by the fMRI recording were not
restricted to the electrodes chosen to provide the power time
series. Due to high statistical interdependence of EEG signals
across electrode positions we could not topographically assess
the significance of these correlations. Conversely, collapsing the
correlations across all electrode positions left little statistical
power (one data point per subject and frequency band). None-
theless, the difference between the correlations of left parietal
BOLD signal with alpha and beta-2 power was significant, as was
that between the correlation of retrosplenial activity with beta-2
and beta-3 power (P � 0.05 in one-sided paired t test after
Fisher’s Z-transformation). Of note, there were no negative
correlations between the corresponding EEG power band time
courses.

Discussion
Together, the findings in this study generate a picture of
intertwined yet dissociable dynamic brain processes occurring at
conscious rest and suggest that, in the absence of defined
experimental conditions, specific EEG bands provide signatures
of activity in distinct networks of the human brain. Data from
functional neuroimaging studies are usually interpreted in rela-
tion to stimulation characteristics or behavioral performance
during specific experimental conditions. One of the problems
when studying the resting state is the difficulty in positively and
precisely defining its functional characteristics (1, 21). Most
laboratories define rest operationally by the absence rather than
the presence of factors that are known to influence brain activity.
Accordingly, they minimize sensory input by blindfolding sub-
jects or asking them to keep their eyes shut and by plugging their

ears. By definition, instructions beyond ‘‘lie still and stay awake’’
are precluded because they would induce specific brain states
instead of ‘‘rest.’’ The precise mental processes (and their timing)
during rest hence remain essentially uncontrolled, and this is
probably the main limitation to the utility of this condition as a
‘‘baseline’’ or ‘‘control.’’

Despite this uncertainty regarding mental correlates, specific
neuroanatomical activity patterns have been associated with
resting wakefulness and thus define a functional baseline that is
distinct from both sleep (22) and also any type of task involving
explicit perception and action. This latter observation comes
from metaanalyses of previous positron emission tomography
measurements of blood flow at rest and during various experi-
mental tasks (21, 23). ‘‘Reverse-subtraction’’ identified brain
regions showing common, task-independent deactivations across
many different experimental conditions when compared with
rest. These conditions differed with respect to sensory input,
motor output, and cognitive connotation, and, hence, consis-
tently deactivated areas were considered more active at rest.

The question remains as to whether greater blood flow in
certain brain regions during rest indicates an activation or simply
a higher physiological baseline level that could putatively cor-
respond to the continuous importance and prevalence of the
mental operations these areas subserve (5, 24). An uncoupling
of blood flow and oxygen consumption is often considered a
label of activation, i.e., of deviations from a physiological
steady-state baseline during which there is coupling (25). The
oxygen extraction fraction (the ratio of oxygen consumption and
blood flow and thus a measure of coupling) is widely homoge-
nous at rest (5). This means that hemodynamic and metabolic
measures are locally coupled over time and thus argues for an
identity of the functional with the physiological baseline. Yet, the
hemodynamic and metabolic activity values display (proportion-
al) topographic heterogeneity. Remarkably, the highest absolute
values of blood flow and metabolism at rest are found in
retrosplenial cortex (5), an area that we observed to increase
fMRI signal in correlation with beta-2 power. Very recently, an
fMRI study on functional connectivity has obtained a very
similar spatial pattern by analyzing fluctuations during the
resting state (20). Because the fMRI signal in these studies arises
from an uncoupling of blood flow from oxidative metabolism
(26), those as well as our current findings for fMRI signal

Fig. 3. Mean correlation over all subjects of BOLD fMRI signal time courses with power changes in different EEG frequency bands for all scalp electrode positions.
Brain activity data were derived from a volume of interest (5 mm sphere) around a voxel in the left parietal (A, stereotactic coordinates: 50, �52, 50) and
retrosplenial cortex (B, stereotactic coordinates: 2, �36, 30). Note that, at the latter site, we observed no strong negative correlation of BOLD signal with the
beta-3 band (compare location of peak effects in Table 1). Correlation with the individual power time courses was projected onto a standard template of the
corresponding electrode positions.
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f luctuations show that greater activity at rest may at least in part
reflect activation instead of only a higher physiological baseline
level.

Moreover, the pattern of beta-2 associated activations we
observed here during prolonged rest is highly congruent with the
distribution of task-independent deactivations shown in the
aforementioned ‘‘reverse-subtraction’’ analyses. This network
includes posterior cingulate and precuneus as well as the tem-
poro-parietal and dorsomedial prefrontal cortex (Fig. 1B). The
brain structures composing this pattern have been implicitly (27,
28) or explicitly (24, 25, 29–31) linked to those cognitive
processes that become active when one is put to rest, i.e., random
episodic memory (23) and related imagery (30), conceptual
processing (28), stimulus-independent thought (29), and self-
reflection (24, 31). Together, these findings support the notion
that the default mode of brain activity at rest has a specific
functional connotation with cognitive and emotional processes
revolving around the subject’s internal state instead of current
external events or circumstances (24). We identified power in the
17- to 23-Hz beta band as a signature of activity in the brain
network that underlies this default mode of brain function.

In contrast to beta-2, high alpha power was not associated with
activation except for two regions in the cingulate gyrus and some
effect in occipital areas. Different from high-density EEG
techniques (32), our recordings are probably mostly driven by
global properties of alpha synchronization (12). If these global
properties of alpha activity correlated with weak effects in
broadly distributed neural populations, functional imaging might
not be sensitive enough to detect significant activity changes on
a voxel-by-voxel basis. Yet, the almost complete absence of focal
activations during high alpha power also conforms to the clas-
sical understanding of alpha as the EEG rhythm ‘‘when the
cortex has nothing to do’’ (33) and this pattern could hence be
addressed as a ‘‘baseline mode.’’

Alpha activity is blocked for instance by attentively processing
external stimuli or during intentional mental operations with
high cognitive load (8, 32). Accordingly, one could expect low
alpha power to be associated with activations in cortical struc-
tures that orchestrate goal-directed cognition and behavior. Our
findings are in good agreement with this notion: whenever alpha
power decreased, the BOLD fMRI signal increased in frontal
and parietal cortical areas that are involved in attention and
related cognitive processes (15). We propose this to form a ‘‘set
mode’’ of brain function that corresponds to abortive orienting
reactions or loadings of working memory loops that occur (and
subside) spontaneously during conscious rest. This finding is in
line with one classical interpretation of the alpha ‘‘blockade’’
(most commonly elicited in the clinical EEG laboratory by eye
opening) as an orienting reaction of the brain rather than a

sensory process (34). That activations in the fronto-parietal
cortices during rest have not been identified previously is
probably due to the reverse-subtraction technique in which
averaged brain activity during rest is compared with that during
explicit cognitive tasks. Because these latter conditions probably
recruit frontal and parietal cortex more strongly and continu-
ously than this occurs during rest, reverse subtraction may fail to
detect spontaneous activations in the attentional network.

The fact that the power time courses from different bands gave
distinct results points to an at least partial independence of the
associated networks. Moreover, the linkage of alpha activity to
attention and of beta activity to cognition, respectively, is in line
with long-standing EEG observations during mental processing
(35). We do not believe that the link between EEG frequency
spectrum and hemodynamic indices of synaptic activity as de-
scribed here is direct. In other words, we do not consider our
imaging data to delineate the neural sources of cortical alpha and
beta oscillations, and it remains for future studies to clarify the
relation between these two very different types of biological
signal. Instead, our data suggest that cognitive function enters as
an intervening variable between the two, and that attention or
the ‘‘default mode’’ are associated with specific signatures both
at the level of EEG and fMRI. Functional segregation of the
associated neural systems was further confirmed by our analyses
of functional connectivity (Fig. 2), and by using a reverse
inference from localized brain activity to band-specific EEG
patterns (Fig. 3).

As a practical consequence, the presence of alpha oscillations
on surface EEG cannot serve to define a neural baseline for the
entire brain but only for the structures that constitute the
attentional system. During high alpha power, the beta-2-
associated brain network (and perhaps other as yet unidentified
systems) may or may not be active, thus precluding the definition
of a global baseline from alpha power alone. Together, the
dynamic approach to the resting state that we used here fosters
an understanding of the nature and structure of spontaneous
activity in the awake state. Our results illustrate that, during
wakefulness, the brain never truly remains at rest. Instead of
globally stabilizing at a homogenous baseline level, brain activity
f luctuates within and between different modes that imply dif-
ferent segregated functional networks and have distinct EEG
signatures.
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