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The dynamics of cellular immunity against pathogens, and its
interaction with the human MHC system, is a key area for empirical
research, both within individual hosts and in population genetic
surveys. However, in contrast with humoral immunity, the dynam-
ics of cellular immunity have not been modeled at the population
level. Here, we address this lacuna with a model of recently
observed dramatic invasions of cytotoxic T lymphocyte escape
mutants in human influenza A. In particular, we offer an explana-
tion for the rapid fixation of a HLA-B27 restricted cytotoxic T
lymphocyte escape mutant on the nucleoprotein that emerged in
the 1993-1994 season. We find that the dynamics within a single
season of influenza do not provide a realistic description, but a
model of the full annual dynamics can offer a possible explanation.
Our model is deterministic for the winter epidemic, and stochastic
for the summer period. An escape mutant that leads to a slightly
longer infection in a small proportion of hosts has a substantial
advantage through summer persistence. Furthermore, if a small
number of founding cases are responsible for initiating each
epidemic, then this effect of rapid mutant fixation is amplified.

H umoral immunity to influenza has been much studied both
in individual hosts and at the population level. In particular,
the gradual antigenic drift and dramatic pandemic shift in the
structure of the immunogenic surface hemagglutinin and neur-
aminidase molecules is one of the best documented cases of rapid
evolution in pathogen population dynamics (1, 2). The cellular
arm of the immune response against influenza has also been
studied in individual hosts or in vitro (3-5). A recent focus of this
work has been on the cytotoxic T lymphocyte (CTL) response (6,
7). These influenza studies echo considerable general interest in
the importance of CTL responses and their interaction with
MHC variability in human and other populations. In particular,
the within-host dynamics of CTL responses with the human
immune system have been addressed extensively empirically and
in theory for HIV and a number of other infections (8, 9).
Recently, the population-level signature of CTL restriction has
been detected for HIV (10). However, the dynamics of CTL-
MHC interactions have not yet been modeled in any system at
the population level. Here we derive simple models for the
population dynamics of CTL escape mutants of the influenza
virus. This is based on recent empirical observations of remark-
ably rapid fixation of CTL escape mutants in influenza A
infections of human populations (6, 11).

In particular, extensive sequencing and analysis of the nucleo-
protein gene has shown changes in CTL epitopes of circulating
influenza in humans in The Netherlands and other countries (6,
11-13) (Table 1). When mutations do occur, they apparently
reach fixation remarkably rapidly. In particular, an epitope on
the viral nucleoprotein (NPsg3 301), associated with a human
MHC allele HLA-B27, disappeared after 1993. A single amino
acid mutation (R384G) at the anchor residue of the epitope was
sufficient to stop the peptide from binding to its HLA molecule,
effectively removing it as a possible CTL target (6). This
influenza variant without the CTL target epitope has also
appeared in other countries in recent years (12) (Table 1).
Earlier isolates show a mutation at the same site that would also
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Table 1. HLA-B27-associated CTL escape mutants: Summary of
frequencies of amino acid 384 on nucleoprotein

No. of amino acids at
position 384 of NP

Year R K G Source
1933-1968 1 0 0 Shu (13)
1971 1 0

1972 4 1 0

1973-1990 32 0 0

1989-1990 46 13 0 Voeten (6)
1991-1992 16 0 0

1992-1993 16 0 0

1993-1994 0 0 56

1998-1999 0 15

1993 1 0 0 Lindstrom (12)
1994 0 0 1

1995-1996 6 0 0

1997 0 0 2

This table summarizes the results from three different sources, giving the
number of isolates with a particular amino acid at position 384 of the nucleo-
protein gene. When R is present at this site, it is known to be an anchor residue
of a HLA-B27 restricted CTL epitope. The epitope was completely ineffective
in the isolates with either of the alternate amino acids (6).

have led to removal of the CTL epitope (R384K), during the
1988-1989 (6) and 1971-1972 (13) seasons. In both earlier cases,
the mutation did not persist and the previous type resumed
circulation.

At first sight, the rapid spread of a CTL escape mutation is
surprising, given the HLA restriction of the epitope. In the
Caucasian population, only ~8% of people are HLA-B27 pos-
itive (6). This varies between ethnic groups, but generally the
prevalence of HLA-B27 is around this mark, or slightly lower (14,
15). If the benefit of the escape mutants only conveys a potential
advantage in ~8% of hosts, how could the mutation spread to
fixation so quickly? This question is the focus of the current
paper.

We address the basic dynamic issues by using simple popula-
tion models. The population-level consequences of a CTL escape
mutation are not well understood, so the goal here is to provide
the most parsimonious qualitative explanation of the observed
dynamics.

The rest of the paper introduces two simple models. The first
is for the winter influenza epidemic only. We explore two simple
assumptions for the escape mutant’s advantage: an infection
takes longer to clear in some hosts, or infection is more severe
and some hosts are more infectious. This model does not offer
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Table 2. Within-season dynamics

Increased infectiousness*
S= =B + l2a + kl2p)S
I = BhS — vl
I:Za = Blla + kbp)(1 — P)S — vhza
Ly = Blla + kl2p)pS — vi2p
Increased infection length
$ = —Blh + ha + Ip)S
ih = BhS — vh
I:Za = Blha + hp)(1 — p)S — vha
lap = Blla + hp)pS — vhp/k
Host variables (measured in proportions)
S-Have had neither strain
I1—Are infected with nonmutant
l,a—Are HLA-B27-negative and infected with mutant
l,p—Are HLA-B27-positive and infected with mutant
Parameters
1—Recovery rate (5 days)
B—Transmission coefficient (Ro X v)
Ro—Reproduction ratio (20)
P—Proportion HLA-B27 positive (0.08)
k—A measure of the relative advantage of the mutant in
HLA-B27-positive hosts

The basic equations used to represent the epidemic phase. Both systems are
the same when k = 1, and identical to the standard SIR model.
*The mutant strain is k times more infectious in hosts who have type HLA-B27
The mutant strain leads to a k times longer infection in hosts who have type
HLA-B27.

a satisfactory picture of mutant invasion. Either the time scale
for mutant invasion is too long, or the escape mutant must be
unrealistically infectious or persistent. The second system thus
considers the full annual dynamics of influenza, including the
phase between epidemic seasons. It shows that a longer infec-
tious period can enable a rapid invasion, and a bottleneck in the
chain of infection reinforces this effect.

Within-Season Dynamics

The Model. Influenza is responsible for an epidemic each winter
in each hemisphere, and persists at low levels between epidemics.
As a simple first approach, we focus on the dynamics of this
winter epidemic by using a deterministic system (Table 2). We
model two strains circulating in the population, one with and one
without a particular HLA-B27 associated CTL epitope. The two
strains are distinguishable in 8% of the host population, and
indistinguishable in the other 92% of hosts.

An important issue is the estimation of the reproduction ratio,
Ro, which measures the maximal rate of spread of influenza in
humans. This is the key parameter in describing the spread of an
infectious disease. It is well characterized for some infections
(16-18) but is not so well described for influenza. We use
Ry = 20 for the strain before CTL escape mutation, based on an
argument given in the Appendix. It is disappointing that a better
estimate for influenza Ry is currently unavailable; however, we
stress that the following results are not qualitatively sensitive to
the size of R,.

There are a number of plausible ways in which a CTL escape
mutant might scale up, via its behavior in an individual host, to
act at the population level. The simplest is that the escape mutant
has a higher effective Ry; this could occur by some combination
of two basic mechanisms. First, the escape mutant could have a
longer infectious period: the host takes longer to clear infection,
because what would have been an immunodominant CTL
epitope is unavailable. Second, the mutant might have higher
infectiousness, perhaps a higher viral load in the infecting host.

We also need to set the number of susceptibles at the start of
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Fig. 1. Epidemic dynamics. (a and b) HLA-B27-positive hosts are twice as
infectious when infected with the mutant. (c and d) HLA-B27-positive hosts
have an infection of twice the normal duration when infected by the mutant
(Table 2 with k = 2). The solid curves of a and c give the fraction of 1% of hosts
infected (starting from 0.01%). The dashed curves give the proportion of these
that are infected by the mutant. Initially, the mutant accounted for 10% of all
infections. The solid curves of b and d represent the overall effect on the
proportion of infected that are CTL escape mutants of the epidemic season.
The dotted line is the identity (diagonal), for comparison.

the season. In vaccinating with one influenza strain and exper-
imentally challenging with another, the probability of infection
increases with the number of years between isolation of those
strains (19). Pease (20) gave a linear fit to this apparent loss of
immunity with time of strain isolation (his figure 2). Combining
this with host births and deaths, we assume that a proportion of
~().05 of all hosts lose immunity to circulating influenza between
epidemics, because of a combination of influenza antigenic drift
and host demographics. Assuming that the fluctuation in the
number of susceptibles is small, we set the initial condition at the
start of each season as a proportion (1/Ry + 0.05/2) of hosts are
susceptible to influenza, the factor of two coming from basic
epidemic theory.

Finally, for the nonmutant, we suppose an infectious period
v~ = 5 days, (ref. 21 gives range of acute infection symptoms as
3-7 days).

Results. Both possibilities (longer infectious period or increased
infectiousness of the mutant in 8% of hosts) could support rapid
mutant invasion at extreme parameter values. However, as
illustrated in Fig. 1, both required a very substantial advantage
in HLA-B27 positive hosts.

Fig. 1 a and b shows one epidemic where the mutant is twice
as infectious as the nonmutant in HLA-B27-positive hosts. An
emerging mutant would take many years to invade, even with this
substantial effect in 8% of hosts. Fig. 1 ¢ and d shows an epidemic
with the mutant infectious for twice the usual length of time in
HLA-B27-positive hosts. Here an emerging mutant could invade
over the course of several years, and the epidemics are only
marginally larger than usual. It seems unlikely that this level of
advantage is obtained in practice, because no increase of disease
severity in particular hosts was reported, nor was the epidemic
unusually large in the years that the mutant first appeared.

In summary, these simple models can show the escape mutant
fixating at the population level. However, the models do not
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Fig. 2. Multiseason dynamics. These are some realizations of the stochastic

system. The solid curves are the number of infected expressed as a fraction of
1%. The mixed dashed and solid line is the proportion of infections that are
caused by the mutant, with the dashed segment representing the change over
the summer, including random founder choice with five founders. The mutant
is introduced at autumn of year 1 at 1% relative prevalence. About 44% of
runs are like the top example: the mutant does not survive until the second
year. If the mutant does survive the first summer, then it tends to go to fixation
rapidly.

explain the rapid speeds of fixation. With these results in mind,
further biological aspects of influenza dynamics must be con-
sidered, and an alternative model must be sought.

Annual Dynamics

The Model. A prolonged infectious period offers the mutant some
advantage during an epidemic, although the required extension
to the infectious period must be substantial (Fig. 1). The mutant
advantage is most marked in the tail of the epidemic (Fig. 1c).
Further, it is known that the lengths and distributions of infec-
tious periods can also affect stochastic persistence in acute
infections during epidemic troughs (22-24). This suggests that
we consider how a longer infectious period (in some hosts) might
affect mutant invasion when the full annual dynamics, including
epidemic troughs, are taken into account.

Multiphase models have been developed previously (25), in
particular for annual influenza with a single strain at any given
time and a transition between epidemics (26). Here we present
a model that includes the CTL escape mutant, and thus needs to
consider dynamics between epidemics in more detail. The
epidemic part of the year (winter) is the deterministic system
given above. The 8 months of infections between epidemic
seasons is treated as a stochastic system, details are given in the
Appendix. A small number of founder infections initiate the next
epidemic the following winter. In both phases, the mutant causes
a slightly longer infection in 8% of hosts.

Results. The mutant gains substantial advantage in the time
between epidemics. During epidemic troughs, increased persis-
tence from its longer infectious period is key. Despite having only
a sightly larger reproductive ratio (20.64 as opposed to 20), the
mutant can invade rapidly.

Fig. 2 shows four different realizations of the system for the
case when there are five founders. Around 44% of the time,
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Fig. 3. Effect of different numbers of founders. A comparison of the

probability distribution of the number of mutants at the end of each year for
a small and large number of founders. The left column of graphs is for five
founders, and the right column is for 50 founders. The mutant is introduced
at the start of the first year, accounting for 1% of all infection. The rows
correspond to the end of successive years. The x axis gives the number of the
founders cases that are caused by the mutant, and the y axis gives the
probability of this number. For five founders, the mutant reaches fixation with
probability ~56%. Typically, it has reached either near fixation or extinction
after 2 years. For 50 founders, the mutant nearly always will eventually reach
fixation, though may take longer than for five founders. In the extreme of a
single founder, any mutant is always forced to fixation or goes extinct after
the first summer.

the mutant does not survive the first summer. In other cases, the
mutant usually reaches fixation after 2-3 years.

If the number of founders is small, this advantage can be
amplified by chance in some years and lost in others. Fig. 3
compares the probability distribution of the number of mutants
among the founders after the start of successive winters. The
small number of founders gives the mutant a chance to reach
fixation very rapidly, but a larger number of founders gives a
greater probability of fixation in the long term. In the extreme
case of a single infection sparking each epidemic, the mutant
reaches fixation after one season 15% of the time, and otherwise
vanishes.

We took the mutant infection to last 7 days, rather than 5, in
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8% of hosts. Changing this to 8 days (not shown here) gives the
mutant a much larger advantage in the summer. For a mutant
infectious period of 6 days, there is still an advantage, but rapid
fixation becomes more reliant on there being a small number of
founders.

Discussion and Conclusions

The surface proteins of circulating influenza (hemagglutinin and
neuraminidase) undergo continual mutation in response to
strong immune selection pressure from the human population
(1). In contrast, the evolutionary dynamics of CTL epitopes are
more punctuated. Furthermore, when changes have occurred,
they appear to fixate rapidly (6, 11). We have aimed to offer a
qualitative description of this phenomenon with particular focus
on the recent HLA-B27-associated escape mutant (6). There are
several models considering CTL escape within a host, for
example, HIV (refs. 9 and 27, but see ref. 10 for an empirical
study at the population level). The present study models the
population level impact of CTL escape and MHC restriction.

An initial model of the winter epidemic alone did not offer a
sufficient mechanism for CTL escape fixation. By contrast, a
model of the full seasonal dynamics provides a biologically
plausible explanation for rapid fixation. The combination of two
effects (summer stochastic persistence, autumn bottleneck) of-
fers a possible mechanism for the rapid emergence and fixation
of a CTL escape mutant. The mutant persists better between
seasons through a longer infectious period in some hosts. The
rapid emergence of escape in mutations that are observed can
be explained by the compounding of this advantage with the
“make or break” amplification effect of the epidemic-founding
bottleneck.

It is interesting to note that the season before the fixation of
the HLA-B27 epitope mutation (1992-1993) was dominated by
influenza B, with a low prevalence of influenza A; this would
greatly increase the potential of a bottleneck, effectively a
“summer” that lasts for almost 2 years.

Biological Impact of CTL Escape in Influenza

A key assumption in our most successful model is that CTL
escape mutant virus has a longer infectious period in the relevant
hosts. This hypothesis should be testable via longitudinal studies
of viral shedding in human or other host populations. Such
studies would be demanding, but their results could have pro-
found implications for our understanding of influenza dynamics.
[Note also a very recent study where influenza CTL escape
mutants caused longer infections in mice (7).]

Complications and Caveats

Model Structure and Complexity. The systems presented here are
kept simple to explore influenza dynamics in as parsimonious a
way as possible. However, we expect these mechanisms leading
to rapid escape fixation (summer advantage, autumn bottleneck)
to have direct parallels in more complex models. The models
given in this paper can thus be thought of as possible components
of a wider system. Their role here is to provide a minimal
platform on which to explore and demonstrate our proposed
mechanism of escape.

The Appendix gives an argument for the rough magnitude of
Ry, the reproduction ratio. Our results are not highly sensitive to
Ry, but to get more quantitatively realistic dynamics, better
parameter estimates will be needed. In addition, we did not
include spatial structure, whereas influenza has complex geo-
graphic patterns, particularly the alternating epidemics in the
northern and southern hemispheres’ winters (4). In a model
including this global description, chains of infection cross be-
tween countries and hemispheres over the year, so the parallel
to the autumn bottleneck will be complex, including both
seasonal and spatial aspects.
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The antigenic drift structure of influenza A was treated simply
as a loss of host immunity with time. In practice, the interplay
between humoral and cellular immunodynamics may be impor-
tant. The theoretical structures needed to model influenza drift
dynamics are being developed (2, 28), and an important future
challenge is to combine drift and CTL escape dynamics in a
population model.

Long-Term CTL Memory. Another possible explanation for mutant
invasion would be if CTL immunity were important for long-
term protection against influenza. However, this is not thought
to be the case in practice (29). A model of escape from
cross-protective immunity (not given here) shows that both
mutant invasion and the size of the epidemic are highly sensitive
to the relative importance of the epitope in a HLA-B27 positive
host. If the CTL epitope is not very important for long-term
immunity, then the mutant has little advantage. If the epitope is
significant, then an immune escape leads to a massive epidemic
across the population, which has not to date been detected in
association with CTL escape. There is little middle ground
between these extremes.

Side Effects of Mutation. The basic assumption here was that the
escape mutant did not behave differently to the original strain,
except for a single effect in 8% of hosts. This is likely to be a
simplification. For example, compensatory mutations may be
necessary, otherwise the virus may reproduce less well (30). If
the escape mutant were slightly less fit, then it may be at an
advantage while the epidemic was in decline and between
seasons, but at a disadvantage when the winter epidemic is taking
off. This might be explored, because a possible mechanism for
the transient mutants that have been observed. Also, there are
several CTL target epitopes on the nucleoprotein; in particular,
there is an overlapping HLA-B08-restricted epitope.

More broadly, it is intriguing that the particularly immuno-
dominant HLA-A2 restricted M1sg_gs epitope has remained
stable since at least 1918, despite a frequency of type HLA-A2
of about one-quarter of the population (15). By our reasoning,
we would expect a strong pressure favoring a spread of such a
mutant. Note, however, that the viral sequence at this point may
contribute vitally to the large-scale structure of the M1 protein,
so that functional constraints may predominate here. Balancing
structural constraints against immunological opportunities is a
particularly interesting area for future work.

Impact of Other HLA Alleles. We assumed here that the escape
mutant gains a net advantage in HLA-B27-positive people, and thus
that HLA-B27-negative hosts have alternate target epitopes avail-
able. Another hypothesis would be that the original virus is at a
disadvantage in HLA-B27-positive people and that the escape
mutant loses this disadvantage. A simple model of this scenario (not
shown) indicates that the above qualitative results still hold, al-
though the effect is weaker, a stronger founder effect is required to
drive rapid fixation. In practice, however, there are many CTL
epitopes in influenza A with different HLA restrictions. Teasing out
how the full complexity of host and pathogen genetics drives the
spread of CTL mutants is an important area for future work (31).
Influenza A provides a relatively tractable model for considering
the general issue of population level impact of CTL responses.

Appendix

The Ro of Influenza. The R of influenza is notoriously hard to
estimate. Murray used a simple epidemic model to fit an
outbreak in a boys boarding school in 1978 (32). His parameter
fits suggest Ry = 3.8. However, the implied infectious period is
~2.3 days, on average, which is unusually low for influenza. This
could be because the boys were sent to the infirmary when they
showed symptoms, effectively removing contact with suscep-
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tibles. Scaling up the infectious period to 5 days would place Ry
at 8.3.

Spicer fitted a simple daily time-series model to weekly deaths
from influenza and influenzal pneumonia in England and Wales
and also separately to London for the epidemic season from a
range of 1958-1973 (33, 34). This model was based on the more
complex model for influenza in U.S.S.R. by Baroyan et al. (35,
36). Scaling up Spicer’s estimates of R per day, times the expected
infectious period gives Ry between 11.5-22.7. The top end of this
range was from the epidemic of 1969-1970, which was shortly
after a subtype shift so corresponds to a largely susceptible
population.

The present paper uses Ry = 20, guided by Spicer’s studies and
the assumption that it is substantially larger than Murray’s value
for a single outbreak in nonnaive hosts. It is disappointing that
a more confident value could not be found and, clearly, further
studies to establish the R, of various influenza strains are
needed.

The Annual Model. The epidemic phase is as in Table 2 and lasts
for 4 months. After this period, the number of susceptibles is
frozen at S = 1/Ry — 0.025. The next 8 months are modeled as
a stochastic system. The branching process of infection can be
described as a Markov chain:

i

dt

=BSE — Dk;—y — (BS + v)ik; + v(i + Dk; iy, [1]

where k; is the probability that there are i infectious individuals.

Most chains of infection from the end of an epidemic will fade
out over the summer, so we require the probability that a branch
of infection initiated by a single infection persists through to the
next epidemic. Define P,(f) to be the probability that the chain
of infection will fail by a time ¢ in the future, given that there are
currently n individuals infected, then

d
g7 Pr©) = BnS(Pysa(t) = Py()) + v (P, (1) = Py(1)). (2]
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All branches operate independently as the susceptible pro-
portion does not vary, so P,(f) = (Pi(¢))", and this solution
follows

P,(t)=1- m. [3]

The mutant strain is more complex, but following similar lines:

dm
ar BSm(pn + (1 — pym — 1) + v(1 — m)

[4]
% = BSn(pn + (1 — pym — 1) + (1 — n)/k,

where m is the probability a chain of infection failing by time ¢,
starting from an infection in one HLA-B27-negative host, and n
is the corresponding probability from one HLA-B27-positive
host.

The final values of these systems, found numerically, give the
probability of a chain of infection spanning the 8 months
between epidemic seasons. Taking the final values of the number
of infecteds from the previous deterministic epidemic, and
weighting them with these probabilities gives the distribution of
mutant and nonmutant branches just before the following win-
ter. A number of founder infecteds are drawn from this distri-
bution, and the next epidemic is initiated with that proportion of
escape mutants.

There are two approximations in this processes. First, we
assume that the distribution of persisting branches corresponds
to the distribution of infections at the end of the summer, and
secondly, mutant infections are distributed in the host at the start
of the epidemic independently of host HLA type. Both of these
simplifying assumptions can be shown to weight against the
escape mutant, but are small in effect.
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