A Plasmid from the Methylotrophic Actinomycete Amycolatopsis methanolica Capable of Site-Specific Integration

J. W. VRIJBLOED,¹ J. MADOŃ,²† AND L. DIJKHUIZEN^{1*}

Department of Microbiology, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands,¹ and Mikrobiologisches Institute, ETH-Zentrum, Universitätsstraße 2, CH-8092 Zürich, Switzerland²

Received 9 May 1994/Accepted 12 September 1994

Amycolatopsis methanolica contains a 13.3-kb plasmid (pMEA300) which is present both in the free state and integrated at a unique genomic location. A 2.1-kb pMEA300 DNA fragment was sequenced, revealing the putative *attP* site and two open reading frames, *xis* and *int*, showing similarity to genes encoding excisionases and integrases, respectively.

Actinomycetes are gram-positive bacteria that form elongated, branching cells and produce the majority of the currently known secondary metabolites. Genetic studies with various actinomycetes have resulted in the identification of self-transmissible DNA elements present both in the free state and chromosomally integrated (5, 8, 10, 15, 18, 19, 21, 25). For some of these elements (6, 10, 17, 20, 25), the processes of site-specific excision and integration have been shown to involve recombination between attachment sites on the plasmid (attP) and on the bacterial chromosome (attB). We are interested in the physiological role of such an integrating plasmid (pMEA300) in Amycolatopsis methanolica NCIB 11946 (11). This nocardioform actinomycete is a versatile methanol-utilizing bacterium, closely related to Amycolatopsis mediterranei and Saccharopolyspora erythraea (12, 16). Here, we report an analysis of the pMEA300 segment involved in site-specific integration.

Growth, DNA isolation, manipulation, and sequencing. Growth of A. methanolica was on complete medium containing (per liter) yeast extract (BBL) (4 g), malt extract (Difco) (10 g), and glucose (4 g). Plasmid DNA of A. methanolica was isolated by using the hot alkaline lysis method (14). Isolation of total cellular DNA was performed as described previously (13). Transfer of DNA fragments to Hybond-N nylon membranes (Amersham, Amersham, U.K.) was performed as described previously (24). DNA sequencing was performed with the Automated Laser Fluorescent DNA Sequencer from Pharmacia LKB. Sequencing reactions were done by the dideoxy method (23) with T7 polymerase and with either 5'-endlabelled primers (30) or with unlabelled primers and fluorescein-labelled ATP (27). The nucleotide sequence data were analyzed using the programs supplied in the PC/GENE software package (IntelliGenetics, Mountain View, Calif.). Open reading frames were identified by using a Streptomyces codon usage table (28). Nucleotide and deduced amino acid sequences of the identified open reading frames were compared with sequences in the database by using the Blast program (1). The nucleotide sequence data determined in this report has been deposited in the GenBank database under the accession number L36679.

Detection of free and integrated pMEA300 and location of the *attP* site. Covalently closed circular DNA could be isolated

† Present address: Department of Internal Medicine, Medical Clinic B, University Hospital, Remistrasse 100, CH-8091 Zürich, Switzerland. from CsCl-ethidium bromide gradients containing *A. methanolica* cell lysates. Restriction analysis of this plasmid, designated pMEA300 (Fig. 1A), revealed a size of 13.3 kb. The possible presence of an integrated form of pMEA300 in *A. methanolica* was examined by Southern hybridization using

FIG. 1. Restriction maps of free (A) and integrated (B) forms of pMEA300 (the scale is in kilobases). No restriction sites were found for *Eco*RI, *Eco*RV, *Nde*I, or *Xba*I.

^{*} Corresponding author. Phone: 31.50.632150. Fax: 31.50.632154. Electronic mail address: L.Dijkhuizen@biol.rug.nl.

BamHI, SphI, and BclI digests of total DNA (Fig. 2A). This revealed that pMEA300 was present as part of a larger replicon. Apparently, pMEA300 integration occurs via recombination in the 0.74-kb BclI pMEA300 fragment, thus carrying the attP site. Confirmation for this was obtained in a second

1	<i>Nsp</i> H ACAT	GCC		TCG	ACC	ACA	.ċcc	AGT	TCG	ACT	CAI	GGG	AGC		ACCA									
73	CGAC T T	GGC A	TGO	TCA C	GTC	CCT	TCC , P	GCC	ATT	GAT	CCC	GCI	GCC	GAC	CCGC A	CGC A	CCA Q	GCT	CCI	2007 , (GCT	CAC		ST (
145	CGTC A S	CGC	ATA Y	CCG	GTA Y	CGC	CGC	TGC A	cccc	TGA E	GCI I	GCC	TGI	GCC F	STCG	CTT F	CGG G	CCG	CCC F	GG1 \\\\	CTI	CG		rgo L
217	GCTC R S								AGT		CGA											7		
289	GCCA												v	т	R							TTC	GCC	T
361	CGAC D	GGT G	CCG P	GCG A	GAC D	CCG P	стс L	ACC T	GGT G	GAA E	.CGG R	AAC N	CGG	MHI ATC I		AAA. K	AGC S	GGC G	TTC F	GAC	STCC S	GAC E	GAC	G
433	GGCG A	TGG W	GAA E	AAG K	ATG M	GĊC A	GAG E	GCG A	CAG Q	GCC A	AAA K	CTG L	cgg R	GAG E	GGGC(G	CAG Q	CTC L	ACC T	AAG K	P	STCC S	AAA K	CGC R	SAC 1
505	AGTC V	GĊC A	CAG Q	TTC F	TTC F	GAG E	GAG E	TGG W	TTC F	CCG P	AGG R	ATG M	CGC R	AAC N	cagoz s	ATC I	GGG G	TCA S	CCG P	ACC T	ACC T	GCC A	AAC N	5.A.2 1
577	CTAT Y	GAG E	ACC T	TTG L	GCT A	CGC R	GCG A	TAC Y	GTC V	ATC I	CCG P	GTG V	ATC I	GGI G	AAG K	AAG K	CGC R	CTC L	CAG Q	GAC D	ATO	GAC D	GCA A	GI V
649	CACC T	GTG V	ACC T	тсс s	CTC L	TAC Y	GAG	CAC H	CTG L	CTC L	AAC N	AGC S	GGC	CGG R	R R	AG K	cgc R	GAC D	ACG T	AAC N	G	GAG E	ATC M	TT F
721	CAGA R	ATC I	TGG W	CAG Q	GAG E	GTG V	ACT T	GGC G	CGC R	GGT G	GAT D	GAG E	ATC I	AGC S	GCGG A	CGG	GAG	hel CTA L	GCC	CGC R	GAC E	GTC	G	GI
793	GACG T														GGA									
865	CCTG L	AGC S	AAG K	AAG K	ACG T	GTG V	CGT R	TCG S	GTC V	CAC. H	ATC I	ATG M	CTC L	AGG R	STCAC	GCC: A	FTC F	GCC A	GAT D	GCG A	GTO	ACC	TGG W	AA P
937	GTAC Y	GTA V	CCC P	ACG T	AAT N	CCC P	GTA V	GĊG A	GCT A	GTC. V	AAG K	GCT A	CCG P	TCC S	CCGC P	E E	AAT N	CGA R	GGC G	CAC H	CGG R	ACC T	TGG W	AC I
1009	cccg	ACG T	GAG E	CTA L	CGA R	CGG R	TTC F	L	ACG T	GCC A	GTC V	CAG Q	TCG S	GAC D	CGCC R	L.	rac Y	GCG A	ATG M	TGG W	CTO L	CTG L	CTG L	igc A
1081	TACG T	ACC T	GGA G	ATG M	CGC R	CGC R	TCG S	GAA E	GTC V	GĊCI A	GGC G	CTC L	CGC R	TTG L	GACO	GGG	CTG L	GAC D	CTC L	GAC D	AAC N	GGGG G	GCG A	C1 I
153	TGCG A	GTG V	AGG R	ACG T	ACG T	AGG R	GTG V	GTCI V	ACG T	AAC N	GGC. G	AAA K	GTT V	CGA R	Q	GC.	FTT	GGC. G	AAG K	TCG S	CGC R	CGG R	AGC	CG F

FIG. 2. Southern hybridizations of 32 P-labelled pMEA300 (A) or the 0.74-kb *Bcl*I pMEA300 fragment (B) with restriction digests of total DNA of *A. methanolica* (panel A, lanes 2, 3, 5, 7, and panel B, lanes 1, 3, and 5) and pMEA300 DNA (panel A, lanes 1, 4, and 6, and panel B, lanes 2, 4, and 6). The following restriction enzymes were used: panel A, *Sph*I (lanes 1 and 2), *Bam*HI (lane 3), *Bcl*I (lanes 4 and 5), and *Bam*HI + *Sph*I double digestion (lanes 6 and 7); panel B, *Bcl*I (lanes 1 and 2), *Sal*I (lanes 3 and 4), and *Bam*HI + *Sph*I double digestion (lanes 5 and 6). The lambda *Hind*III fragments were used as size standards. The sizes of the hybridizing bands are indicated on the right in kilobases.

hybridization experiment using the 0.74-kb *Bcl*I fragment as a probe (Fig. 2B). From the difference in hybridization intensity we estimated that the position of the integration site was 0.64 kb from the *SphI-Bcl*I sites (Fig. 1A). The data from Fig. 2 and similar experiments allowed the construction of a restriction map of the integrated plasmid (pMEA300^{int}) and its flanking regions (Fig. 1B). The restriction map of the integrated copy was found to be identical to that of the free copy. Unlike the situation for pMEA100 in *A. mediterranei* (29), rearrangements and amplifications of pMEA300 DNA fragments were not detected.

Nucleotide sequence of the NspHI pMEA300 segment involved in site-specific integration. The nucleotide sequence of the NspHI fragment (2,100 bp) was determined (Fig. 3). The G+C content was 68.6%. Two complete open reading frames, designated *int* and *xis* for reasons explained below, were

1225 TCCTCCCCTCTCGCTGGACAAGGCGACAGTGGCCGCCTTGCTCACCCACGTGGAGATGATCCAGGCCGAGAA
R R L S L D K A T V A A L L T H V E M I Q A E K
Mui 1297 GCCGACCTGGGCCGACGCGTACCAGGACCACGGCCTGGTGTTCTGCTGGGGGGGG
A T W A D A Y Q D H G L V F C W E D G R P I Y P
1369 GGACACGATCACCGAGTGGCTGGCCCGTATCGCCGACCGGCTGGGGCTGCCGCACCTGACCCTGCATGAACT
D T I T E W L A R I A D R L G L P H L T L H E L
1441 CAGGCACACCTACGCCACCACGGCGCCGGGGCCGGGGTCCATCCCAAGATCGTCAGCACCCGGCTGGGTCA
R H T Y A T T A L R A G V H P K I V S T R L G H
1513 CGCCACGGTCGCGTTCACCCCGGACCTCTACACCGCGGACATCCGGACCTCGGTCGG
1583 GATCAGCAACCTGTTCCCGGTACGCCTGGCTTGCGGAACAGATGCGGGGGGGG
1657 ACGCCCCCACTCACCACGGAAATCAGGCCGTTTGGCCACAAGGTTGGCCACAAGTCCGGCTCGCCCGCTAGA
> Bcll< ApaI> 1729 ACCACAAAACCCCGGTGGCGCTGTCTTGCCTGATCAGCGCTACCGGGGTGGtggtggggcocaggaggacttg
1801 acotcogacetettogttatcagAAGAACGGGTCGCGTCTCAGGCGTGTCCCGCGGTCTCAAACGGCCCTG
1000 12~~~~
1873 TTCGCTCGCCGTCGCGACATCGGGGCGTCTCACGTTGTCTCAGGATTCACACCCTGTCGCGAGCCGCACTGG
1945 ACACAGGATTGGACACCACTTCCGGGGCGCCTTGCCTCCTACCCACCGGGTCGGCGGGCG
2017 ACATCTCGGCCGGTGTCGCACAACGAAAGCCCGTGTCGTCAGGCCGCCGGAACGAGGACTTCTCCGACAGCG

. NspHI 2089 TTTGACATGC 2170

FIG. 3. Nucleotide sequence of the 2.1-kb NspHI fragment (Fig. 1A) involved in site-specific integration of pMEA300. The deduced amino acid sequence (single-letter code) is shown below the DNA sequences of xis and int. Restriction sites are shown above the DNA sequence. Putative ribosome-binding sites, showing complementarity to the 3' end of Streptomyces 16S rRNA (5'-GAUCACCUCCU UUCU-3') (4), are indicated by a line above the sequences (including G-U base pairs). The putative attP site is shown in lowercase, boldface letters. Arrows indicate inverted or direct repeats: *--->, putative transcription terminator; $I^{\sim} >$, putative DNA-binding sites for the integrase protein; -->, T Φ C stem of putative tRNA structure.

A ϕ 80 Xis λ Xis pSAM2 Xis pSE101 Xis pSE211 Xis pMEA300 Xis	$NH_2 - 4 - LVTSD - LTSRYKISRK - 44 - COOH$ $NH_2 - 1 - YLTLQEWNARQRRPRS - 53 - COOH$ $NH_2 - 7 - LLTVEVMARLKVGRS - 41 - COOH$ $NH_2 - 21 - LLTVEQARRLSVGRT - 39 - COOH$ $NH_2 - 41 - LLTVEEAAKQLGLGRT - 41 - COOH$ $NH_2 - 17 - LIPLPTAAQLLGLSRA - 46 - COOH$
B	399 433
φ80 Int	WSLHDMRR TIATNLSELGCPPHVIEKLLGHQM-VGVMAHYNL
λ Int	PTFHELRSLSA-RLYEKQISDKFAQHLLGHKS-DTMASQYR-
pSAM2 Int	WTPRELRHSFVSLLSDRGVPLEEISRLVGHSGTAVTEEVYRK
pSE101 Int	ARLHDARHTAATVLMLLRVPDRAVQDHMGWSS-IRMKERYMH
pSE211 Int	ARLHDARHTAATVLLVLGVPDRVVMELMGWSS-VTMKQRYMH
pMEA300 Int	LTLHELRHTYATTALRAGVHPKIVSTRLGHATVAFTLDLYTA

FIG. 4. Amino acid sequence alignments of Xis (A) and Int (B) of pMEA300 with the conserved segments of the Xis and Int proteins of bacteriophages λ and Φ 80 (2) and with the putative Xis and Int proteins of plasmids pSAM2 (7), pSE101 (9), and pSE211 (10). Identical or conserved amino acids at a given position (a minimum of four identical or conserved) are shown in italic, boldface type according to the following conservation scheme: ILMV, ASTPG, DE, RK, NQ, FYW, C, and H.

predicted. The deduced amino acid sequences of these open reading frames are shown in Fig. 3. xis starts at ATG-48 and terminates at TGA-285 (Fig. 3), encoding a relatively small (79 amino acids; M_r , 8,239) and basic protein. Xis displays considerable similarities with Xis proteins of the plasmids pSAM2, pSE211, and pSE101 (Fig. 4A). The first two possible start codons (ATG-3 and ATG-33) of xis are not preceded by recognizable ribosome-binding sites. Only the third methionine (ATG-48) of this open reading frame is preceded by a good ribosome-binding site (GGGAG).

Starting at ATG-287 and terminating at TGA-1655, int is postulated to encode a protein of 456 amino acid residues (M_r , 51,134). The start codon of int is preceded by a potential ribosome-binding site (GAGGAGG). Int shares extensive similarity with the C termini of proteins belonging to the Int family of site-specific recombinases (Fig. 4B). Residues His-396, Arg-399, and Tyr-433 (family positions; Fig. 4B) are conserved in all sequences (except for Int of pSAM2) and are present as His-383, Arg-386, and Tyr-419 in the Int of pMEA300. It thus appears very likely that int encodes the pMEA300 integrase. Deletion of the BamHI-ApaI region of pMEA300, which lies within the coding region of the int gene, indeed results in nonintegrating, autonomously replicating plasmids (27a). Five imperfect repeats were found immediately upstream of int and to the right of attP (Fig. 3; see below). These repeats could serve as possible DNA-binding sites for the Int protein, as has been suggested for pSAM2 (7). Similar consensus sequences can be derived for these repeats at similar positions on pMEA300 and pSAM2.

Analysis of the *attP* region. Current evidence indicates that *attB* sites are contained within tRNA genes (3, 6, 9, 22, 26). A database screen revealed that nucleotides 1780 through 1824, located downstream of *int* (Fig. 3), show extensive similarity to known *attB* sites (not shown) (9) and especially to tRNA sequences from various organisms. The highest score, of the pMEA300 *attP* (shown below in inverse complement), was obtained with an Ile-tRNA gene of *Rhodobacter sphaeroides* (X53853:RSRRNA).

This indicates that *attP* of pMEA300 is approximately 44 bp long and that chromosomal integration occurs within an Ile-tRNA gene with an ATC anticodon (shown in boldface type).

In future work we will study the other pMEA300-encoded functions, using a pMEA300-negative derivative strain of *A. methanolica* (27a). It is expected that this information, and a clear understanding of the regulation of pMEA300 integration and excision in relation to growth conditions, will provide further insights into the physiological role of this type of plasmid.

This study was supported by grant no. GBI81.1510 from the Netherlands Technology Foundation (STW), which is subsidized by the Netherlands Organization for the Advancement of Pure Research (NWO).

We are indebted to R. Hütter for his strong support in the initial stages of this project, to P. Terpstra for assistance in the sequence analysis, and to D. A. Hopwood for valuable comments.

REFERENCES

- Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.
- Argos, P., A. Landy, K. Abremski, J. B. Egan, E. Haggard-Ljungquist, R. H. Hoess, M. L. Kahn, B. Kalionis, S. V. L. Narayana, L. S. Pierson, N. Sternberg, and J. N. Leong. 1986. The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J. 5:433–440.
- Bar-Nir, D., A. Cohen, and M. E. Goedeke. 1992. tDNA^{ser} sequences are involved in the excision of *Streptomyces griseus* plasmid pSG1. Gene 122:71–76.
- Bibb, M. J., and S. N. Cohen. 1982. Gene expression in *Streptomyces*: construction and application of promoter-probe vectors in *Streptomyces lividans*. Mol. Gen. Genet. 187:265–277.
- Bibb, M. J., J. M. Ward, T. Kieser, S. N. Cohen, and D. A. Hopwood. 1981. Excision of chromosomal DNA sequences from *Streptomyces coelicolor* forms a novel family of plasmids detectable in *Streptomyces lividans*. Mol. Gen. Genet. 184:230–240.
- Boccard, F., T. Smokvina, J. L. Pernodet, A. Friedmann, and M. Guérineau. 1989. Structural analysis of loci involved in pSAM2 site-specific integration in *Streptomyces*. Plasmid 21:59–70.
- Boccard, F., T. Šmokvina, J. L. Pernodet, A. Friedmann, and M. Guérineau. 1989. The integrated conjugative plasmid pSAM2 of *Streptomyces ambofaciens* is related to temperate bacteriophages. EMBO J. 8:973–980.
- 8. Brown, D. P., S. D. Chiang, J. S. Tuan, and L. Katz. 1988.

A.m. 1824-CTGATAACGAAGAGGTCGGAGGTTCAAGTCCTCCTGGGCCCACCA-1780

Site-specific integration in *Saccharopolyspora erythraea* and multisite integration in *Streptomyces lividans* of actinomycete plasmid pSE101. J. Bacteriol. **170**:2287–2295.

- Brown, D. P., K. B. Idler, D. M. Backer, S. Donadio, and L. Katz. 1994. Characterization of the genes and the attachment sites for site-specific integration of plasmid pSE101 in *Saccharopolyspora erythraea* and *Streptomyces lividans*. Mol. Gen. Genet. 242:185– 193.
- Brown, D. P., K. B. Idler, and L. Katz. 1990. Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in *Saccharopolyspora erythraea*. J. Bacteriol. 172: 1877-1888.
- de Boer, L., L. Dijkhuizen, G. Grobben, M. Goodfellow, E. Stackebrandt, J. H. Parlett, D. Whitehead, and D. Witt. 1990. *Amycolatopsis methanolica* sp. nov., a facultatively methylotrophic actinomycete. Int. J. Syst. Bacteriol. 40:194–204.
- Embley, M. T., J. Smida, and E. Stackebrandt. 1988. The phylogeny of mycolate-less wall chemotype IV actinomycetes and description of *Pseudonocardiaceae* fam. nov. Syst. Appl. Microbiol. 11:44-52.
- Hintermann, G., R. Crameri, M. Vögtli, and R. Hütter. 1981. Restriction analysis of the *Streptomyces glaucescens* genome by agarose gel electrophoresis. Mol. Gen. Genet. 196:513–520.
- Hopwood, D. A., M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, D. J. Lydiate, C. P. Smith, J. M. Ward, and H. Schrempf. 1985. Genetic manipulation of Streptomyces: a laboratory manual. The John Innes Foundation, Norwich, United Kingdom.
- 15. Hopwood, D. A., G. Hintermann, T. Kieser, and H. M. Wright. 1984. Integrated DNA sequences in three *Streptomyces* form related autonomous plasmids after transfer to *Streptomyces lividans*. Plasmid 11:1–16.
- Lechevalier, M. P., H. Prauser, D. P. Labeda, and J.-S. Ruan. 1986. Two new genera of nocardioform actinomycetes: *Amycolata* gen. nov. and *Amycolatopsis* gen. nov. Int. J. Syst. Bacteriol. 36: 29-37.
- Madoń, J., P. Moretti, and R. Hütter. 1987. Site-specific integration and excision of pMEA100 in Nocardia mediterranei. Mol. Gen. Genet. 209:257-264.
- 18. Moretti, P., G. Hintermann, and R. Hütter. 1985. Isolation and characterization of an extrachromosomal element from *Nocardia*

mediterranei. Plasmid 14:126-133.

- Omer, C. A., and S. N. Cohen. 1984. Plasmid formation in Streptomyces: excision and integration of the SLP1 replicon at a specific chromosomal site. Mol. Gen. Genet. 196:429–438.
- Omer, C. A., and S. N. Cohen. 1986. Structural analysis of plasmid and chromosomal loci involved in site-specific integration of the SLP1 element of *Streptomyces coelicolor*. J. Bacteriol. 166:999– 1006.
- Pernodet, J. L., J. M. Simonet, and M. Guérineau. 1984. Plasmids in different strains of *Streptomyces ambofaciens*: free and integrated forms of plasmid pSAM2. Mol. Gen. Genet. 198:35–41.
- Reiter, W. D., P. Palm, and S. Yeats. 1989. Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res. 17:1907–1914.
- Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467.
- Smith, G. E., and M. D. Summers. 1980. The bidirectional transfer of DNA and RNA to nitrocellulose or diazobenzyloxymethyl paper. Anal. Biochem. 109:123–129.
- 25. Sosio, M., J. Madoń, and R. Hütter. 1989. Excision of pIJ408 from the chromosome of *Streptomyces glaucescens* and its transfer into *Streptomyces lividans*. Mol. Gen. Genet. 218:169–176.
- Vögtli, M., and S. N. Cohen. 1992. The chromosomal integration site for the *Streptomyces* plasmid SLP1 is a functional tRNA-Tyr gene essential for cell viability. Mol. Microbiol. 6:3041-3050.
- Voss, H., C. Schwager, U. Wirkner, J. Zimmermann, H. Erfle, N. Hewitt, T. Rupp, J. Stegemann, and W. Ansorge. 1992. New procedure for automated DNA sequencing with multiple internal labelling by fluorescent dUTP. Methods Mol. Cell. Biol. 3:30–34.
 W. Userbliched data
- 27a.Vrijbloed, J. W. Unpublished data.
- 28. Wright, F., and M. J. Bibb. 1992. Codon usage in the G+C-rich Streptomyces genome. Gene 113:55-65.
- Zhu, B., J. Madoń, A. Häusler, and R. Hütter. 1990. Amplification on the Amycolatopsis (Nocardia) mediterranei plasmid pMEA100: sequence similarities to actinomycete att sites. Plasmid 24:132– 142.
- Zimmermann, J., H. Voss, C. Schwager, J. Stegemann, H. Erfle, K. Stucky, T. Kristensen, and W. Ansorge. 1990. A simplified protocol for fast plasmid DNA sequencing. Nucleic Acids Res. 18:1067.