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Summary
Rho/Rac proteins constitute a subgroup of the Ras superfamily of GTP hydrolases. Although
originally implicated in the control of cytoskeletal events, it is currently known that these GTPases
coordinate diverse cellular functions, including cell polarity, vesicular trafficking, the cell cycle and
transcriptomal dynamics. In this review, we will provide an overview on the recent advances in this
field regarding the mechanism of regulation and signaling, and the roles in vivo of this important
GTPase family.

Introduction
The isolation of rhoA,(1) the first member of the Rho/Rac family ever identified, was achieved
by Richard Axel’s group in 1985 during the search for ras -related genes in Aplysia.(1) The
subsequent use of conventional cloning techniques and the more-recent characterization of
genomes revealed that the original gene is not alone, having numerous family counterparts in
other species including, among many others, S. cerevisiae(7 genes), A. taliana(11 genes), C.
elegans(9 genes), D. melanogaster(9 genes) and H. sapiens (23 genes). In humans, these
twenty-three different loci can generate at least twenty-six different proteins due to alternative
splicing events. In accordance with their homology at the amino acid sequence level, these
proteins are classified into six subfamilies: Rho, Rac, Cdc42, Rnd, RhoBTB and RhoT/Miro
(Fig. 1). RhoBTB and RhoT proteins are also referred to as ‘‘atypical’’ Rho/Rac GTPases
because they are very different from the other GTPase subfamilies according to structural,
regulatory and functional criteria.

Like the majority of Ras superfamily proteins, most Rho/ Rac GTPases behave as ‘‘molecular
switches’’ that fluctuate between inactive and active states, two conformations that depend on
the binding of either GDP or GTP to the GTPases, respectively (Fig. 2). Two types of regulatory
proteins control this cycling: GEFs and GAPs (Fig. 2). GEFs promote the exchange of GDP
for GTP molecules, thereby producing the activation of these proteins during signal
transduction. GAPs promote the hydrolysis of the bound GTP molecules, thus allowing the
transfer of the GTPase back to the inactive state at the end of the stimulation cycle. In the GTP-
bound state, these GTPases bind to a large collection of effector molecules that, in turn, lead
to the stimulation of signaling cascades that promote general cellular responses such as
cytoskeletal change, microtubule dynamics, vesicle trafficking, cell polarity and cell cycle
progression.(2) The plasticity of Rho/ Rac proteins both in terms of subcellular localization,
regulation, binding to effectors and crosstalk with other cellular pathways has put them in a
central regulatory point for a quite large number of cellular processes. Unfortunately, the toll
that we have to pay for this is the development of diseases when these routes become
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dysfunctional.(3,4) This crucial role has led to a comprehensive study on their mechanism of
regulation, to the identification of additional elements of their signal transduction pathways,
and to the characterization of their roles in vivo. In the present work, we will give an overall
view of the recent developments in those areas, placing special emphasis on their regulatory
and biological properties in vivo. Given that Rho, Rac and Cdc42 are the best-characterized
Rho/Rac subfamilies, we will limit our review to these molecules. Readers can find additional
information on other aspects of Rho/Rac biology in recent publications.(2,5)

Regulation of Rho/Rac protein activity
In order to ensure proper signaling responses to extracellular stimuli, cells control the activity
of Rho/Rac proteins through a number of regulatory steps. These include: (1) the control of
nucleotide binding and hydrolysis by GEFs and GAPs, a process that has been already the
object of recent reviews,(6,7) (2) the regulation of their subcellular localization, (3) the
modulation of their protein expression levels, and (4) other regulatory events. We summarize
below the advances in the understanding of these additional regulatory layers.

Regulation of Rho/Rac proteins by changes in the subcellular localization
In addition to GDP/GTP exchange, most Rho/Rac proteins require the docking onto cell
membranes in order to perform their biological functions. However, unlike other Ras
superfamily proteins, this anchoring step is not achieved by default during their biosynthesis
and requires, instead, a combination of intrinsic tethering signals and cooperative signaling
events.(8) The first and most crucial of the intrinsic tethering signals is the progressive post-
translational modification of the so-called GTPase ‘‘CAAX box’’ (Fig. 2). The first stage of
this modification is the incorporation of either a geranyl-geranyl or, less frequently, a farnesyl
group to the cysteine residue of the CAAX box, a process catalyzed in the cytoplasm by either
type I geranyl-geranyl or farnesyl transferases, respectively (Fig. 2).(8,9) The attachment of
the isoprenoid group to the CAAX box promotes the translocation of the GTPases to the
endoplasmic reticulum,(8,10) where the proteolytic cleavage of the AAX tripeptide tail ensues
via the isoprenyl, CAAX-specific protease Rce1 (Fig. 2).(8,11) After this reaction, the newly
exposed α-carboxyl group of the C-terminal cysteine residue becomes methylesterified by the
carboxyl methyltransferase Icmt (Fig. 2).(8,12) In some cases (i.e. RhoB), Rho/Rac proteins
are further modified in the endoplasmic reticulum by the attachment of palmitate groups on
additional cysteine residues present nearby the CAAX motif.(8) The enzyme responsible for
this step is still uncharacterized in mammals. Recent results have shown that the incorporation
of farnesyl or geranyl-geranyl groups is a conditio sine qua non for proper membrane anchoring
and biological activity of the majority of Ras superfamily members. Instead, the
endoproteolytic and methylation steps are only essential for the subcellular localization and
biological responses of farnesylated GTPases.(13)

The final destination of the post-translationally-modified GTPases depends on the computation
by cells of other ancillary signals present in the GTPase C terminus (Fig. 2). In the case of
palmitoylated GTPases, one of these additional signals is the nature of the isoprenyl group
attached to the CAAX box. Perhaps the best example for this type of regulation is RhoB, since
this protein is localized preferentially in endomembranes when geranyl-geranylated and at the
plasma membrane when farnesylated.(14) In other cases, the signal mediating proper
membrane localization is a polybasic amino acic sequence located just upstream of the CAAX
box. This is the case of Rac subfamily proteins, where small differences in those regions are
responsible for the differential localization of Rac1, Rac2 and RhoG in lipid rafts, endosomes,
and caveolar vesicles, respectively.(15,16) Finally, in the case of Rac1, a proline-rich domain
located near the CAAX box contributes to the translocation of this GTPase to focal adhesion
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complexes via its interaction with SH3 domain proteins such as β-Pix, a Rac1-specific GEF
that is constitutively located in those subcellular regions.(17)

In addition to the presence of the above structural cues, Rho/Rac proteins need additional
upstream signals in order to move from the cytosol to target membranes and, subsequently, to
remain stably anchored in those structures. RhoGDIs play important roles in this regulatory
context, because they hide the isoprenyl groups of the GTPases, an action that favors the
sequestration of the inactive GTPases in the cytosol or organelles (Fig. 2). This property is also
important for the removal of the GTPase from the plasma membrane at the end of the signaling
process (Fig. 2). Due to the interaction of RhoGDIs with the GTPase switch regions, they also
impede the release of GDP from the GTPase and, consequently, contribute to the maintenance
of the GTPases in an inactive state in non-stimulated cells (Fig. 2).(18)

The dissociation of the RhoGDI from the GTPase, an essential requisite for the activation of
GTPases by GEFs and for their subsequent association with membranes, is regulated at
different levels during signal transduction. These regulatory steps have been mapped out
extensively in the case of Rac1. Thus, it has been shown that integrins play an important role
in this process, because they increase the affinity of Rac for lipid rafts, a process that in turn
favors the displacement of the geranyl-geranyl motif of the GTPase from the hydrophobic
pocket of the RhoGDI and its insertion into the phospholipid bilayer of the target membrane
(Fig. 2).(19,20) Other factors cooperating in this dissociation step include RhoGDIs
displacement factors (i.e. the cytoplasmic tail of the low-affinity nerve growth factor receptor)
(21) and the decrease of the RhoGDI affinity towards Rac1 upon phosphorylation of RhoGDI
molecules by protein kinase C(22) and Pak1,(23) a Rac1 downstream element(24) (Fig. 2).
Some Rho/Rac GTPases also require the cooperation of additional pathways to remain
anchored to membranes once they have been liberated from the RhoGDIs. In the case of Rac1,
its residence at the plasma membrane requires in some instances integrin-dependent signals
that block the co-internalization of the GTPase with lipid rafts(25) (Fig. 2). Taken together,
these observations indicate that the localization of Rho/Rac GTPases is tightly modulated in
time and space by a complex system of cell type-dependent regulatory pathways.

Transcriptional regulation and/or differential degradation
Many Rho/Rac GTPases show cell-type-specific and/or stimulus-dependent expression. For
instance, Rac2 is mostly restricted to hematopoietic cells.(26) Rac3 is preferentially expressed
in neurons of ganglia and the central nervous system.(27) Moreover, RhoG and RhoB proteins
have been shown to have fluctuations during the cell cycle.(28,29) RhoB expression undergoes
further regulation by extracellular stimuli such as UV irradiation, growth factors, cytokines
and oncogenes,(30–34) a control that is facilitated by the relatively instability of its mRNA
(t1/2=20 min).(32) Finally, rhoU (also known as wrch 1) is a Wnt-regulated gene.(35) Some
Rho/Rac proteins are also controlled through degradation at specific sites in the cell. Thus,
RhoA can be degraded by the ubiquitin ligase Smurf1 in a Rac1- and Cdc42-dependent manner
(Fig. 2). This regulation contributes to inhibit the inappropriate formation of stress fibers in
certain areas of the leading edge of the cell during the process of cell migration.(36) Partial
proteolytic cleavage also plays regulatory roles on Rho/Rac proteins. This is the case for Cdc42,
whose proteolytic degradation by caspases following the activation of the Fas death receptor
contributes to the activation of Fas-dependent apoptotic events(37)(Fig. 2).

Other regulatory events
Rho/Rac GTPases can be also regulated by additional signaling mechanisms. Thus, RhoU has
a putative autoinhi-bitory domain at its N-terminus that can be released by the binding of Grb2,
an SH3–SH2 adaptor protein. This interaction is mediated by the recognition of an N-terminal
proline-rich region of RhoU by one of the Grb2 SH3 domains. This interaction does not alter
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GDP/GTP exchange in RhoU but, instead, promotes a more-efficient binding of this GTPase
to the downstream serine/threonine kinase Pak1.(38) Rho/Rac proteins can also undergo
phosphorylation in specific residues, a post-translational event that may influence their
interaction with RhoGDIs,(39) stability in the membrane(39,40) and effector functions(40)
(Fig. 2).

The understanding of all these regulatory steps has allowed the development, for the first time,
of drugs that can control the signaling output of Rho family GTPases in specific pathological
states by interfering with their GDP/GTP exchange,(41) post-translational modification,(8)
and sub-cellular localization.(42) Given the important contribution of Rho/Rac GTPases to the
progression of some human diseases, it is likely that these current efforts will eventually
crystallize into new therapeutic agents.

Effector molecules of Rho/Rac proteins
Once activated and translocated to their specific subcellular locations, Rho/Rac proteins
interact with downstream effector molecules to engage specific signaling cascades.(5,24) To
date, more than 70 potential effectors have been identified for members of the Rho/Rac family
(Table 1). From a structural point of view, it is known that these effectors use distinct residues
within the switch I and switch II regions as the major docking/recognition sites.(5,24) This
structural property has made it possible to generate GTPase point mutants that can bind only
to a subset of effectors and engage only a limited number of downstream effects (Fig. 3A). In
some instances, the stable association of effectors requires the participation of additional
structural cues located in the polybasic C-terminal region, the b2 sheet and/or the helices α3,
α3´ and α5 of the upstream GTPases(24) (Fig. 3A,B). In other cases, it requires the localization
of the upstream GTPase in specific sites of the cell. For instance, the functional specificity
found for Rac1 and Rac2 in neutrophils is mainly due to their differential subcellular
localization within these hematopoietic cells.15)

Despite the large structural diversity of Rho/Rac effectors, we have learned a number of
common regulatory themes that take place during the activation of the downstream effectors
by Rho/Rac GTPases. Thus, the tethering of effector molecules to membranes is part of the
mechanism by which they become activated (Fig. 4). Indeed, translocation of Pak, Pkn, citron,
Rock and other effector proteins to signaling hot spots of cells has been shown recently.(43–
47) Moreover, it has been shown that the activation of Pak1 only occurs when active Rac1 is
at the plasma membrane but not when free in the cytosol.(19)Other results indicate that the
interaction of effectors with Rho/ Rac GTPases provokes conformational changes that shift
them from autoinhibitory conformations to fully active structures (Fig. 4). Such regulatory
mechanism has been observed for a wide collection of both catalytic (i.e. Pak, Rock, Pkn) and
non-catalytic, adaptor-like (i.e. Diaphanous, Was, and Baiap2) effectors.(24) These changes
could be self-sufficient for activation or, alternatively, may cooperate with other signals to
promote optimal effector activation (Fig. 4A). For example, Pkn needs RhoA binding, lipid
association and autophosphorylation events to became fully active.(24,48) Some downstream
signaling elements are also activated by the release of trans-inhibitory factors upon the binding
of the GTPase (Fig. 4B). This is at least the case of Wasf/Wave/Scar proteins, which get
released from an inhibitory complex formed with Nckap1–Nap125, Cyfip2–Pir121 and
C3orf10–Hspc300 upon the binding of GTP-bound Rac1 to Nckap1 and Cyfip2.(49) It should
be noted, however, that the binding of the activated GTPase results in the inhibition, not the
stimulation, of the bound effector (Fig. 4C). This is the case, for instance, of the interaction of
Cdc42 with Cdc42Eps (also referred to as Borgs).(50)

The final result of the modulation of the activity of these effectors is the generation of
multibranched signals that promote, among other responses, cytoskeletal change, vesicle
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trafficking and cell cycle entry (Table 1). All these pathways have been extensively reviewed
before and will not be re-mentioned here.(2,5) However, it should be noted that the activation
of effectors might fire back on the GTPases themselves, thus contributing to the generation of
balanced and time-restricted signals by Rho/Rac proteins. Pak family proteins are very active
in this regulatory context, since they can modify the activity of both RhoGDIs and Rho/Rac
GEFs(23,51) (Fig. 2). These results underscore the high level of plasticity and large number
of feed-back loops taking place in the signal transduction pathways of these GTPases.

As in the case of the regulatory elements that mediate Rho/ Rac activation, the understanding
of the mode of action of the downstream molecules has allowed the development of inhibitory
molecules for Pak and Rock family proteins.(52–54) One of the Rock inhibitors, fasudil (also
known as HA-1077 and AT877), is already being used for the treatment of patients with
cardiovascular disorders.(55)

Genetic analysis of Rho/Rac GTPase functions in vivo
Most of the functional observations obtained with Rho/Rac proteins have been derived from
cultured cells. While this approach has allowed the discovery of important aspects of their
regulation and function, it has obvious limitations. For instance, it is rather difficult to verify
whether the observations obtained using in vitro conditions can be extrapolated to more
complex situations in which primary, non-immortalized cells are exposed to limited amounts
of stimuli or to different tissue-and cell-type crosstalk. These approaches do not provide faithful
information regarding the level of functional overlaps among closely related GTPases, either
to verify the role of specific GTPases in the tissues where they are actually expressed, or to
study their participation in complex physiological responses. To surmount some of these
problems, different research groups have generated animal models in which specific members
of the Rho/Rac subfamily and effectors have been disrupted using homologous recombination
techniques. Below, we summarize the most-recent results achieved in this area. As a note of
caution, please be adviced that the strict comparison of the phenotypes displayed by different
genetically modified mouse strains cannot be interpreted in absolute terms, because the lack
of effect of a null gene may not necessarily indicate less-important roles of its encoded protein
but, rather, functional complementation events by related proteins or parallel signal
transduction pathways. The reader can find additional information about phenotypes of
transgenic mice expressing Rho/Rac proteins and knockout animals lacking genes for Rho/Rac
GEFs in recent review articles.(6,56,57)

Genetic analysis of members of the Rac subgroup
The inactivation of the rac1, rac2, rac3 and rhoG loci has been already achieved in mice using
standard homologous recombination techniques or, in some cases, via the use of either tissue-
specific or inducible knockout strategies. In addition, some Rac1 effectors belonging to the
Pak and Wasf families have also been knocked out to address their role in vivo.

The deletion of the rac1gene provokes embryonic lethality caused by both gastrulation defects
and apoptosis of mesodermal cells.(58) In contrast, the inactivation of the other Rac subfamily
members gives rise to more limited defects, which are usually found in the tissues where these
GTPases are preferentially expressed. Thus, rac2–/– mice show hematopoietic defects (see
below), rac3–/– animals present slight motor coordination problems and enhanced learning
abilities,(59) and rhoG–/– mice have some hyperactivation of T-cell responses to antigens and
minor defects in the super-oxide pathway of neutrophils,(60,61) the cells responsible for
inflammatory responses.

The generation of inducible, cell-type-specific knockouts for the rac1gene and their side-by-
side comparison with both rac2–/– and double rac1–/–; rac2–/– mutant animals has permited a

Bustelo et al. Page 5

Bioessays. Author manuscript; available in PMC 2007 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



comprehensive understanding of the physiological roles of these two GTPases and their level
of signaling overlap/specificity (Fig. 5). In the case of HSCs, the role of Rac1 and Rac2 has
been addressed using reconstitution experiments in sublethaly irradiated immunocompromised
mice and inducible approaches of gene inactivation. These studies revealed important
functional differences between these two family members. Rac1 has been shown to be
important for the optimal reconstitution of the hematopoietic system, having roles both in the
engraftment and retention of HSCs in the bone marrow. Instead, rac2–/– HSCs show normal
behaviour in all these reponses. Rac1 and Rac2 also differ in the type of intracellular responses
that they regulate in HSCs. Thus, Rac1 is essential for the entry of HSCs into the cell cycle
upon extracellular stimulation as well as for their progression through S and G2/M phases
whereas Rac2 is important for cytoskeletal responses, adhesion, spreading and Akt-dependent
HSC survival(62,63) (Fig. 5).

In the case of T-cells, rac2–/– mice show no apparent problems in the differentiation of those
cells in the thymus. In contrast, mature rac2–/– T-cells display defects in T-cell receptor
clustering, actin polymerization, generation of Ca2+ fluxes and Erk activation upon
engagement of the T-cell receptor(64) (Fig. 5). These defects are rather marginal, probably due
to the compensation exerted by the endogenous Rac1 protein present at high levels in those
cells. Rac2 is also important for the differentiation of helper T-cells to the TH1 subtype because
it regulates the p38- and NFkB-dependent induction of interferon-γ, an important mediator of
this maturation step(65) (Fig. 5). The effects of the Rac1 deficiency in T-cells have not been
addressed as yet. However, as inferred from the results obtained by Rac1 GEFs,(57) we can
predict that this GTPase will have roles in T-cell differentiation, positive and negative selection,
stimulation of phosphatidylinositol-3 kinase/Akt and the Ras/Erk routes, and overall responses
to antigens.

In the case of B-cells, rac2-deficient animals show defects in the B-cell compartment,
displaying reduced numbers of peripheral B-cells, peritoneal B1 cells and IgM-secreting
plasma cells. Mature rac2–/– B-cells respond poorly to stimulation of the B-cell receptor,
showing reduced levels of Ca2+ fluxes and of cell proliferation.(66) Rac1 seems to have only
a marginal and overlapping role with Rac2 in these cells.(67) In agreement to this, the
simultaneous elimination of rac1 and rac2 genes induces an aggravation of the rac2–/–

phenotype, leading to a developmental block of B-cell development at very immature stages.
(67) This is caused by low survival rates derived from the improper activation of the Akt route
and the inefficient expression of two anti-apoptotic molecules, Bcl2L1 (most commonly known
as Bcl-xL) and the BAFF receptor.(67) Instead, the single rac1 gene knockout has no detectable
effects per se in this lymphoid lineage(67) (Fig. 5).

Unlike the case of B-cells, Rac1 and Rac2 exert non-overlapping functions in the neutrophil
lineage. rac2 null neurophils show a severe impairment of motility, adhesion, chemotaxis and
phagocytosis as well as a drastic reduction (≈60%) in the activity of the NADPH oxidase, the
enzyme complex responsible for the generation of anti-bacterial superoxide molecules.(68,
69)Recent results have shown that the residual level of NADPH oxidase activity found in these
animals is due to the action of RhoG and, to a minor extent, of Rac1(61,70) (Fig. 5). rac1–/–

neutrophils have milder problems, with defects detectable only in chemokine-dependent
responses.(70,71) Unlike rac2–/– neutrophils, these cells do not show significant problems in
the cytoskeleton in the absence of chemokines with the exception of defects in the RhoA-
dependent retraction of the uropod during stochastic migration(70,72) (Fig. 5).

The role of rac genes in macrophages has only begun to be elucidated. Available reports
indicate that Rac2 is important for superoxide production and phagocytosis to some (i.e. Fc
γR stimulation, IgG-sensitized sheep red blood cells) but not all (i.e. serum-opsonized
zymosan) stimuli.(73) In addition, it is important for the migration of these cells, as evidenced

Bustelo et al. Page 6

Bioessays. Author manuscript; available in PMC 2007 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



by the lack of the accumulation of exudate macrophages during the peritoneal inflammation
of rac2–/– mice(73) (Fig. 5). Contrary to Rac2, Rac1 seems to be important for regulating
macrophage cell morphology and proper lamellipodia formation(74) (Fig. 5). However, these
defects do not induce any significant defect on the migration and chemotactic responses of this
cell type.(74)

In agreement with the high levels of expression in platelets, Rac1 seems to be the major player
of the Rac subfamily in this cell type. Its functions include the generation of lamellipodia upon
the stimulation of platelets with ADP, the induction of proper spreading and aggregation of
platelets, and the formation of thrombi in vivo (Fig. 5). These defects are not very severe,
because Rac1-deficient animals do not experience hemorrhages.(75)

More recently, other tissue-specific rac1 gene knockouts have begun to shed light on its
function in non-hematopoietic tissues. Thus, it has been shown that Rac1 is important for the
formation of myelin sheaths in the central nervous system.(76) In the case of the skin, Rac1
has been shown to be important for the integrity of hair follicles and, as consequence, mice
with a keratinocyte-specific inactivation of the rac1 locus develop a hairless phenotype.(77)
Finally, it has been shown that Rac1 and Rac2 proteins play important roles in the dendritic
cells that present antigens to T-cells.(78) Due to this, dendritic cells lacking expression of both
Rac1 and Rac2 show defective cytoskeletal change, migration and antigen presentation that,
as a result, preclude adequate cell contacts with T-cells. The development of this defect requires
the simultaneous deletion of both rac1 and rac2 genes, indicating that these two proteins exert
similar and additive roles in dendritic cells.(78)

Consistent with the important role of Pak and Wasf family proteins in Rac1 signaling, the
deletion of some of those cytoskeletal regulators has dire consequences during embryonic
development. Thus, the elimination of the pak4 gene leads to embryonic lethality due to heart
development problems. This protein is also important for the migration, differentiation and
axogenesis of spinal cord neurons (both motorneurons and interneurons) and for the proper
folding of the caudal region of the neural tube.(79) The disruption of the wasf2 gene also leads
to embryonic lethality at later stages (E12.5). These embryos show growth retardation, brain
ventricle malformations and vascularization deficiencies when compared to wild-type
embryos.(80,81) As expected from the previous functional characterization of Wasf proteins,
the analysis of wasf2–/– mouse embryonic fibroblasts (MEFs) indicates that this cytoskeletal
regulator is important for the generation of lamellipodia, Rac1-dependent actin polymeriza-
tion, and cell migration events.(81)Despite these examples, the disruption of other Rac
effectors in mice induces milder phenotypes. Thus, wasf1–/– adult mice develop normaly but
have reduced size and experience anxiety, sensorimotor retardation and deficits in
hippocampal-dependent learning and memory.(82)pak5–/– mice are fully viable and display
no obvious abnormalities.(83)

Genetic analysis of members of the Rho subgroup
The phenotypes of mice lacking functional rhoB and rhoC genes have been recently described.
These two mouse strains are fully viable and fertile. When MEFs from these animals were
studied in vitro, it was found that RhoB is important for proper cell motility but not for adhesion
or spreading.(84) However, these latter functions became diminished when MEFs were
transformed by both E1A and ras oncogenes, suggesting that RhoB function is probably
required for oncogenic-dependent cytoskeletal responses.(84)rhoC–/– MEFs show only
cytoskeletal defects under serum-starved conditions.(84) In contrast to these apparently mild
phenotypes, it has been observed that rhoB and rhoC have important, although antagonistic,
roles in tumor progression. RhoB-deficient animals are more susceptible to developing tumors
when tested in skin carcinogenesis assays, indicating that this GTPase may have tumor-
suppressor properties, at least in the case of skin.(84) Using crosses with transgenic mice
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expressing the oncogenic polyomavirus middle T-antigen, it was observed that the absence of
RhoC is not important for tumor development.(85) Despite this, rhoC–/–tumor cells are less
metastatic than the wild-type counterparts, a phenotype attributed to the reduced migration,
lower invasiveness and poor survival of RhoC-deficient cells.(85) Despite these advances,
more work will be required to assess the relative contributions of RhoB and RhoC to the life
and pathogenesis of animals. An important step in that direction will be the side-by-side
comparison of these two strains using identical genetic backgrounds and conditions. In
addition, it will be interesting to generate the double RhoB/RhoC knockout to corroborate that
their functions are not overlapping in vivo.

Although the rhoA locus has not been targeted as yet, several of the main RhoA effectors have
been inactivated by homologous recombination. These studies have revealed that Rock1 and
Rock2 are important for eyelid closure and fusion of the ventral body wall, because the
disruption of any of those two genes give rise to neonates with omphalocele and open eyes.
(86,87) In agreement with the described routes modulated by Rocks, keratinocytes derived
from these tissues show defective stress fiber formation and low myosin light chain
phosphorylation upon EGF stimulation.(87) This mild phenotype is highly dependent of the
genetic background, because the inactivation of the rock2 gene in another mouse strain leads
to placental defects and embryonic death.(88) cit–/– animals also develop normally but they
succumb to lethal epileptic seizures during the first postnatal month.(89) This is due to a marked
reduction in the number of GABAergic interneurons and of both dentate gyrus and cerebellar
neurons, a phenotype caused by cytokinesis defects in neuroblast subsets.(89) More recently,
it has been shown that cit–/– also have defects in both the survival and cytokinesis of
spermatogenic precursors, leading to a severe impairment of testicular function.(90) The
knockout of limk2, a locus encoding a serine/threonine kinase that is activated by Rock,(5,
24) also induces defects in spermatogenesis, although they develop normally and show no
major disturbances in the adult period.(91) Finally, rhpn2–/– animals show no detectable
defects.(92) The relatively mild phenotype of Rock-, Cit- and Limk2-deficient animals is
somewhat surprising, given the crucial role attributed to these three kinases in general
cytoskeletal and cytokinesis events. At least in the case of Limk2, this mild phenotype cannot
be attributed to compensation effects by other Rho/Rac effectors, because Limk2-deficient
cells show a total impairment in the phosphorylation of the main substrate of this kinase family,
the cytoskeletal regulator cofilin.(91) An intriguing possibility derived from these results is
that, at least during embryonic development, the migration and adhesion of cells may follow
different pathways to those described in immortalized cultured cells.

Genetic analysis of members of the Cdc42 subgroup
The knockout of the cdc42 locus leads to embryonic lethality prior to the E6.5 stage.(93) The
isolation of embryonic stem cells from E3.5 cdc42–/– blastocysts has allowed a glimpse of the
functional relevance of Cdc42 inside cells. Under these conditions, it has been shown that
Cdc42 is essential for the phosphatidylinositol bisphosphate-mediated polymeriza-tion of actin
and, due to this, its deletion induces a highly disorganized cytoskeleton, round-up
morphologies, and smaller cell sizes.(94) In contrast to these results, the cell-specific
inactivation of the cdc42 locus in fibroblasts does not induce any impairment on cytoskeletal
structures or cell migration.(94) It has been argued that this result is due to functional
redundancy with other Rho/Rac proteins, because the expression of a dominant negative mutant
of Cdc42 in the cdc42–/– fibroblasts significantly impairs most of those biological processes.
(95)cdc42–/– cells do show defects in polarity, including minor disturbances in establishment
of the proper directionality and relocation of the Golgi apparatus in migrating fibroblasts.
(95) These results seem to be however highly dependent on the fibroblast type, because a more
recent study has shown that primary fibroblasts do show problems in filopodia formation,
migration and proliferation in the absence of Cdc42 expression.(94) More recently, the specific
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inactivation of the cdc42 gene in oligodendrocytes and neuronal precursors has revealed a role
for Cdc42 in the central nervous system.(76) In the case of oligodendrocytes, Cdc42 is
important for the correct formation of myelin sheaths.(76) In the case of neuronal precursors,
Cdc42 plays crucial roles in the establishment of Par6-dependent apico-basal polarity processes
of stem cells.(96) In contrast, it does not seem important for the adhesion, cell-cycle regulation
or cytokinesis of this stem cell population.(96)

Several Cdc42 effectors have been also targeted by homologous recombination. Was-deficient
mice show reduced numbers of thymocytes, mature lymphocytes and platelets. The reduced
production of thymocytes is due to impaired progression from the CD44–/CD25+ to the
CD44–/ CD25– stage of differentiation. Was–/– thymocytes and mature T cells show impaired
T-cell receptor capping and endocytosis, generation of Ca2+ fluxes and actin polymeriza-tion.
As a consequence, they proliferate poorly upon engagement of the T-cell receptor(97) (Fig.
5). Probably due to all these immunological disturbances, was–/– mice develop colitis as they
age.(97) These animals have also neurophils with reduced phagocytic activity and osteoclasts
with severe cytoskeletal defects that generate abnormal patterns of bone resorption.(98,99)
Iqgap1–/– animals show no detectable phenotypic defects with the exception of the
development of gastric hyperplasia,(100) a result that suggests that this Cdc42 effector may
exert inhibitory properties for the proliferation of intestinal epithelial cells.

Taken together, these studies confirm the important role of specific Rho/Rac family members
in the biological pathways related to cytoskeletal dynamics, polarity, cell survival/apoptosis,
cell proliferation, immune system responses and oncogenesis. In addition, they show that
despite the high structural homology, these proteins exert related, but not identical, functions
in vivo at least in certain cell types.

Conclusion
Since the isolation of the first Rho/Rac family more than 20 years ago, substantial information
has been gained regarding the number of family members, the type of effectors they engage,
the main regulatory layers controling their activities and the biological processes that they are
implicated on. Despite these advances, more information remains to be gathered in the near
future. For instance, we have to delineate the dynamics and kinetics of engagement of the
different interactive Rho/Rac-dependent networks during cell signaling. Likewise, we need to
get additional information regarding the type of signaling networks engaged and signaling
outputs generated in function of the type, concentration, and/or combination of the extracellular
stimuli received by cells. Given the complex array of signaling molecules involved and, in
some instances, the multifunctional nature of them, the execution of this aim will not be an
easy task. Fortunately, the high-throughput techniques that are being developed in the cellomics
field to monitor the behavior of molecules in real time will probably help tackling these issues.
Likewise, proteomic and genomic techniques will be also useful for isolating all the signaling
complexes and regulatory molecules involved in these pathways. Given that most of the studies
done up to now have focused on few GTPases, more work remains be done to elucidate the
functions of the less-studied family counterparts. In this context, the generation of new animal
models will help assigning specific functional tasks to these GTPases and, in addition, provide
information about the level of signaling overlap and/or cooperativity existing among them.
Given the important roles that these GTPases play in different pathologies, it is likely that the
progress in these areas of research will contribute to a better understanding and treatment of
human disease.
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Akt  

v-akt murine thymoma viral oncogene homolog
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BAFF  
B-cell activating factor

Baiap  
brain-specific angiogenesis inhibitor 1-associated protein

Bcl  
B-cell chronic lymphocytic leukemia/lymphoma 2 (Bcl2) like

Bcl2L  
Bcl2 like

Borg  
binder of rho GTPases

Cdsc42Ep  
Cdc42 effector protein

C3orf10  
chromosome 3 open reading frame 10

Cyfip  
cytoplasmic fragile X mental retardation 1 (FMR1) interacting protein

Erk  
extracellular-regulated MAP kinase

GAP  
GTPase activating protein

GEF  
Guanosine nucleotide exchange factor

GTPase  
GTP hydrolase

HSC  
Hematopoietic stem cell

Hspc  
Hematopoietic stem progenitor cell

Ictm  
Isoprenylcysteine carboxyl methyltransferase

Ig  
immunoglobulin

IQGAP  
IQ motif containing GTPase activating protein

Limk  
LIM (Lin-11, Isl-1 and Mec-3) domain kinase 2

NADPH  
nicotinamide adenine dinucleotide phosphate

Nap  
non-catalytic region of tyrosine kinase (Nck)-associated protein
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Nckap  
Nck-activated protein

Pak  
p21-activated kinase

Pir  
p53-inducible mRNA

Pix  
Pak-interacting exchange factor

Pkn  
protein kinase N

Rce  
Ras and a factor converting enzyme

RhoGDI  
Rho GDP dissociation inhibitor

Rhpn  
Rhophilin

Rock  
Rho-associated, coiled-coil containing protein kinase

Smurf  
Smad ubiquitination regulatory factor

Was  
Wiskott-Aldrich syndrome protein

Wasf  
Was protein family

Wave  
Was protein family verprolin-homologous protein

Wrch  
Wint-1 responsive Cdc42 homolog
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Figure 1.
Dendrogram showing the classification of Rho/Rac subfamily members according to structural
similarity criteria. Members of each subfamily are highlighted using the same color code and
grouped by shaded areas. The first symbol used for each GTPase corresponds to that approved
by the Human Genome Organization Gene Nomenclature Committee. When appropriate, other
commonly used names are also included. The same criterium has been followed in the rest of
this review article.
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Figure 2.
Schematic representation of the biosynthesis (top), sequestration (middle) and regulatory
(bottom) cycles of Rho/Rac proteins. In the latter case, we have included the prototypical GDP/
GTP cycle as well as other regulatory steps mediated by the action of either effectors or other
biological pathways (ubiquitination, protease cleavage, internalization). The main steps in each
cycle are highlighted using dark-gray arrows. Other less common regulatory interactions are
indicated in light-gray arrows (when resulting in an activation signal) or blunted lanes (when
resulting in a downmodulation signal). The enzymes catalyzing those steps are shown in green.
For the sake of simplicity, we have not included here other post-translational events of Rho/
Rac proteins that have been described in the main text such as palmitoylation. It is also still
unclear whether the insertion of the GTPase into the docking membrane is achieved when in
the GDP or GTP-bound state. The latter case is not contemplated in the scheme and would
require the activation of the GTPase by GEFs, the re-association of the GTP-bound GTPase
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with either RhoGDI or other carrier proteins, and the subsequent delivery of the GTPase to the
target membrane. Abbreviations used are: CAAX, an acronym derived from the combination
of C=cysteine, A=aliphatic amino acids and X=Met, Ser, Ala or Gln; Cyt, cytosol; EM,
endomembranes; ER, endoplasmic reticulum; FT, farnesyl transferase; GGT, geranyl-geranyl
transferase; PM, plasma membrane; PRR BP, proline rich region binding protein. Consult main
text for further details.
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Figure 3.
Structural determinants for the interaction of Rho/Rac proteins with downstream effectors.
A: Scheme showing the residues of the switch (F37 and Y40) and α3′ regions involved in the
selective interaction of GTP-bound Rac1 with effectors. Similar data have been obtained with
other GTPases, including RhoA, RhoG and Cdc42. B: Crystal structure of GTP-bound Cdc42
associated to the Cdc42-binding region of Was. The reader can observe the extensive contacts
established by Was with the switch I, switch II, β2 sheet and α5 helix of the GTPase.
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Figure 4.
Examples of the types of signaling outputs derived from the interaction of Rho/Rac subfamily
proteins and effectors. See main text for further details. I, inhibitor.
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Figure 5.
Representation of the main developmental routes for hematopoietic cells and the steps that are
dependent on either Rho/Rac subfamily proteins or Rho/Rac effectors. The GTPases and/or
effectors involved in those steps are highlighted in blue. The processes impaired by the gene
inactivations in each hematopoietic lineage are summarized into light-brown boxes.
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