Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1990 Dec;62(6):885–890. doi: 10.1038/bjc.1990.403

Tumour scanning with indium-111 dihaematoporphyrin ether.

M R Quastel 1, A M Richter 1, J G Levy 1
PMCID: PMC1971587  PMID: 2147858

Abstract

Photofrin II (dihaematoporphyrin ether/ester, DHE) was labelled with indium-111 and its biodistribution in tumour bearing mice compared with that of 111In chloride. The uptake and clearance of 111In labelled DHE differed markedly from that of indium-111 chloride in that the former was not taken up by the tissues as much as the latter. Scintillation scanning with a gamma-camera showed marked uptake of both 111In agents at the site of the tumour, but a much lower tissue background (excluding the abdominal organs) for the mice given 111In DHE. Tumour:muscle ratios of dissected tissues were 2-3 times higher in 111In DHE treated animals as compared to the uptake of 111In chloride. There was a distinct difference in the pattern of distribution of the two 111In preparations in the tissues. The major accumulation of 111In chloride was in the kidneys, whereas the highest uptake of 111In DHE was in the liver, the organ in which unlabelled porphyrins accumulate. Extraction and testing of materials from tumours of 111In DHE treated animals indicated that most of the tumour extractable 111In had remained associated with the porphyrin in vivo up to 4 days after injection.

Full text

PDF
885

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando A., Ando I., Hiraki T., Takeshita M., Hisada K. Mechanism of tumor and liver concentration of 111In and 169Yb: 111In and 169Yb binding substances in tumor tissues and liver. Eur J Nucl Med. 1982;7(7):298–303. doi: 10.1007/BF00253424. [DOI] [PubMed] [Google Scholar]
  2. BASES R., BRODIE S. S., RUBENFELD S. Attempts at tumor localization using Cu 64-labeled copper porphyrins. Cancer. 1958 Mar-Apr;11(2):259–263. doi: 10.1002/1097-0142(195803/04)11:2<259::aid-cncr2820110206>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  3. Bellnier D. A., Ho Y. K., Pandey R. K., Missert J. R., Dougherty T. J. Distribution and elimination of Photofrin II in mice. Photochem Photobiol. 1989 Aug;50(2):221–228. doi: 10.1111/j.1751-1097.1989.tb04152.x. [DOI] [PubMed] [Google Scholar]
  4. Bugelski P. J., Porter C. W., Dougherty T. J. Autoradiographic distribution of hematoporphyrin derivative in normal and tumor tissue of the mouse. Cancer Res. 1981 Nov;41(11 Pt 1):4606–4612. [PubMed] [Google Scholar]
  5. Denechaud M., Laval M., Dabadie M., Ducassou D., Pommier J. C. Intérêt d'une métallo-porphyrine en cancérologie expérimentale. Bull Cancer. 1981;68(1):40–48. [PubMed] [Google Scholar]
  6. Diamond I., Granelli S. G., McDonagh A. F., Nielsen S., Wilson C. B., Jaenicke R. Photodynamic therapy of malignant tumours. Lancet. 1972 Dec 2;2(7788):1175–1177. doi: 10.1016/s0140-6736(72)92596-2. [DOI] [PubMed] [Google Scholar]
  7. Dougherty T. J., Mang T. S. Characterization of intra-tumoral porphyrin following injection of hematoporphyrin derivative or its purified component. Photochem Photobiol. 1987 Jul;46(1):67–70. doi: 10.1111/j.1751-1097.1987.tb04737.x. [DOI] [PubMed] [Google Scholar]
  8. Dougherty T. J. Photosensitizers: therapy and detection of malignant tumors. Photochem Photobiol. 1987 Jun;45(6):879–889. doi: 10.1111/j.1751-1097.1987.tb07898.x. [DOI] [PubMed] [Google Scholar]
  9. Foster N., Woo D. V., Kaltovich F., Emrich J., Ljungquist C. Delineation of a transplanted malignant melanoma with indium-111-labeled porphyrin. J Nucl Med. 1985 Jul;26(7):756–760. [PubMed] [Google Scholar]
  10. Gal D., MacDonald P. C., Porter J. C., Simpson E. R. Cholesterol metabolism in cancer cells in monolayer culture. III. Low-density lipoprotein metabolism. Int J Cancer. 1981 Sep 15;28(3):315–319. doi: 10.1002/ijc.2910280310. [DOI] [PubMed] [Google Scholar]
  11. Gomer C. J., Dougherty T. J. Determination of [3H]- and [14C]hematoporphyrin derivative distribution in malignant and normal tissue. Cancer Res. 1979 Jan;39(1):146–151. [PubMed] [Google Scholar]
  12. Hambright P., Fawwaz R., Valk P., McRae J., Bearden A. J. The distribution of various water soluble radioactive metalloporphyrins in tumor bearing mice. Bioinorg Chem. 1975;5(1):87–92. doi: 10.1016/s0006-3061(00)80224-0. [DOI] [PubMed] [Google Scholar]
  13. Hosain F., McIntyre P. A., Poulose K., Stern H. S., Wagner H. N., Jr Binding of trace amounts of ionic indium-113m to plasma transferrin. Clin Chim Acta. 1969 Apr;24(1):69–75. doi: 10.1016/0009-8981(69)90142-9. [DOI] [PubMed] [Google Scholar]
  14. Jori G., Beltramini M., Reddi E., Salvato B., Pagnan A., Ziron L., Tomio L., Tsanov T. Evidence for a major role of plasma lipoproteins as hematoporphyrin carriers in vivo. Cancer Lett. 1984 Oct;24(3):291–297. doi: 10.1016/0304-3835(84)90025-9. [DOI] [PubMed] [Google Scholar]
  15. Kessel D., Cheng M. L. On the preparation and properties of dihematoporphyrin ether, the tumor-localizing component of HPD. Photochem Photobiol. 1985 Mar;41(3):277–282. doi: 10.1111/j.1751-1097.1985.tb03485.x. [DOI] [PubMed] [Google Scholar]
  16. Kessel D. Porphyrin-lipoprotein association as a factor in porphyrin localization. Cancer Lett. 1986 Nov;33(2):183–188. doi: 10.1016/0304-3835(86)90023-6. [DOI] [PubMed] [Google Scholar]
  17. Kessel D. Proposed structure of the tumor-localizing fraction of HPD (hematoporphyrin derivative). Photochem Photobiol. 1986 Aug;44(2):193–196. doi: 10.1111/j.1751-1097.1986.tb03585.x. [DOI] [PubMed] [Google Scholar]
  18. LIPSON R. L., BALDES E. J., OLSEN A. M. The use of a derivative of hematoporhyrin in tumor detection. J Natl Cancer Inst. 1961 Jan;26:1–11. [PubMed] [Google Scholar]
  19. Lavallee D. K., Fawwaz R. The synthesis and characterization of 111In hematoporphyrin derivative. Int J Rad Appl Instrum B. 1986;13(6):639–641. doi: 10.1016/0883-2897(86)90039-5. [DOI] [PubMed] [Google Scholar]
  20. McIntyre P. A., Larson S. M., Eikman E. A., Colman M., Scheffel U., Hodkinson B. A. Comparison of the metabolism of iron-labeled transferrin (Fe-TF) and indium-labeled transferrin (In-TF) by the erythropoietic marrow. J Nucl Med. 1974 Oct;15(10):856–862. [PubMed] [Google Scholar]
  21. Norata G., Canti G., Ricci L., Nicolin A., Trezzi E., Catapano A. L. In vivo assimilation of low density lipoproteins by a fibrosarcoma tumour line in mice. Cancer Lett. 1984 Dec;25(2):203–208. doi: 10.1016/s0304-3835(84)80046-4. [DOI] [PubMed] [Google Scholar]
  22. Reyftmann J. P., Morliere P., Goldstein S., Satus R., Dubertret L., Lagrange D. Interaction of human serum low density lipoproteins with porphyrins: a spectroscopic and photochemical study. Photochem Photobiol. 1984 Dec;40(6):721–729. doi: 10.1111/j.1751-1097.1984.tb04643.x. [DOI] [PubMed] [Google Scholar]
  23. Vaum R., Heindel N. D., Burns H. D., Emrich J., Foster N. Synthesis and evaluation of an 111In-labeled porphyrin for lymph node imaging. J Pharm Sci. 1982 Nov;71(11):1223–1226. doi: 10.1002/jps.2600711110. [DOI] [PubMed] [Google Scholar]
  24. Zanelli G. D., Kaelin A. C. Synthetic porphyrins as tumour-localizing agents. Br J Radiol. 1981 May;54(641):403–407. doi: 10.1259/0007-1285-54-641-403. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES