Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1990 Jul;62(1):37–41. doi: 10.1038/bjc.1990.225

Transport of the multidrug resistance modulators verapamil and azidopine in wild type and daunorubicin resistant Ehrlich ascites tumour cells.

M Sehested 1, T Skovsgaard 1, P B Jensen 1, E J Demant 1, E Friche 1, N Bindslev 1
PMCID: PMC1971743  PMID: 1975202

Abstract

Verapamil has been proposed to modulate the multidrug resistance phenotype by competitive inhibition of an energy dependent efflux of cytotoxic drug. However, the accumulation of both 14C-verapamil and 3H-verapamil was similar in wild type EHR2 and multidrug resistant EHR2/DNR+ Ehrlich ascites cells, and was much less in both cell lines in energy deprived medium than in medium containing glucose. Azidopine accumulation was also similar in both EHR2 and EHR2/DNR+ cells but, in contrast to verapamil, did not differ significantly with changes in cellular energy levels. Azidopine photolabelled a 170 kDa protein in EHR2/DHR+ plasma membrane vesicles which was immunoprecipitated by monoclonal antibody towards P-glycoprotein. Azidopine increased daunorubicin accumulation and modulated vincristine resistance in EHR2/DNR+ cells in a similar fashion to verapamil. Azidopine photolabelling was inhibited by vincristine and verapamil, but not by daunorubicin. Vincristine, but not daunorubicin, was able to increase both azidopine and verapamil accumulation in EHR2/DNR+ cells only. Finally, though both verapamil and azidopine are a substrate for P-glycoprotein in EHR2/DNR+ cells, they do not themselves appear to be transported by the multidrug resistance efflux mechanism to any significant extent in these cells.

Full text

PDF
41

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asoh K., Saburi Y., Sato S., Nogae I., Kohno K., Kuwano M. Potentiation of some anticancer agents by dipyridamole against drug-sensitive and drug-resistant cancer cell lines. Jpn J Cancer Res. 1989 May;80(5):475–481. doi: 10.1111/j.1349-7006.1989.tb02339.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradley G., Juranka P. F., Ling V. Mechanism of multidrug resistance. Biochim Biophys Acta. 1988 Aug 3;948(1):87–128. doi: 10.1016/0304-419x(88)90006-6. [DOI] [PubMed] [Google Scholar]
  3. Broxterman H. J., Pinedo H. M., Kuiper C. M., Kaptein L. C., Schuurhuis G. J., Lankelma J. Induction by verapamil of a rapid increase in ATP consumption in multidrug-resistant tumor cells. FASEB J. 1988 Apr;2(7):2278–2282. doi: 10.1096/fasebj.2.7.3350243. [DOI] [PubMed] [Google Scholar]
  4. Bruggemann E. P., Germann U. A., Gottesman M. M., Pastan I. Two different regions of P-glycoprotein [corrected] are photoaffinity-labeled by azidopine. J Biol Chem. 1989 Sep 15;264(26):15483–15488. [PubMed] [Google Scholar]
  5. Cano-Gauci D. F., Riordan J. R. Action of calcium antagonists on multidrug resistant cells. Specific cytotoxicity independent of increased cancer drug accumulation. Biochem Pharmacol. 1987 Jul 1;36(13):2115–2123. doi: 10.1016/0006-2952(87)90139-0. [DOI] [PubMed] [Google Scholar]
  6. Dano K. Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim Biophys Acta. 1973 Oct 25;323(3):466–483. doi: 10.1016/0005-2736(73)90191-0. [DOI] [PubMed] [Google Scholar]
  7. Dano K. Development of resistance to daunomycin (NSC-82151) in Ehrlich ascites tumor. Cancer Chemother Rep. 1971 Apr;55(2):133–141. [PubMed] [Google Scholar]
  8. Fojo A. T., Ueda K., Slamon D. J., Poplack D. G., Gottesman M. M., Pastan I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci U S A. 1987 Jan;84(1):265–269. doi: 10.1073/pnas.84.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Friche E., Skovsgaard T., Nissen N. I. Effect of verapamil on daunorubicin accumulation in Ehrlich ascites tumor cells. Cancer Chemother Pharmacol. 1987;19(1):35–39. doi: 10.1007/BF00296252. [DOI] [PubMed] [Google Scholar]
  10. Kamiwatari M., Nagata Y., Kikuchi H., Yoshimura A., Sumizawa T., Shudo N., Sakoda R., Seto K., Akiyama S. Correlation between reversing of multidrug resistance and inhibiting of [3H]azidopine photolabeling of P-glycoprotein by newly synthesized dihydropyridine analogues in a human cell line. Cancer Res. 1989 Jun 15;49(12):3190–3195. [PubMed] [Google Scholar]
  11. Kessel D. Interactions among membrane transport systems: anthracyclines, calcium antagonists and anti-estrogens. Biochem Pharmacol. 1986 Aug 15;35(16):2825–2826. doi: 10.1016/0006-2952(86)90196-6. [DOI] [PubMed] [Google Scholar]
  12. Kessel D., Wilberding C. Mode of action of calcium antagonists which alter anthracycline resistance. Biochem Pharmacol. 1984 Apr 1;33(7):1157–1160. doi: 10.1016/0006-2952(84)90533-1. [DOI] [PubMed] [Google Scholar]
  13. Mukhopadhyay T., Kuo M. T. Expression of the P-glycoprotein gene in multidrug-resistant Chinese hamster ovary cells. Anticancer Res. 1989 May-Jun;9(3):575–578. [PubMed] [Google Scholar]
  14. Reeve J. G., Wright K. A., Rabbitts P. H., Twentyman P. R., Koch G. Collateral resistance to verapamil in multidrug-resistant mouse tumor cells. J Natl Cancer Inst. 1989 Oct 18;81(20):1588–1590. doi: 10.1093/jnci/81.20.1588. [DOI] [PubMed] [Google Scholar]
  15. Roed H., Christensen I. B., Vindeløv L. L., Spang-Thomsen M., Hansen H. H. Inter-experiment variation and dependence on culture conditions in assaying the chemosensitivity of human small cell lung cancer cell lines. Eur J Cancer Clin Oncol. 1987 Feb;23(2):177–186. doi: 10.1016/0277-5379(87)90012-5. [DOI] [PubMed] [Google Scholar]
  16. Safa A. R., Glover C. J., Sewell J. L., Meyers M. B., Biedler J. L., Felsted R. L. Identification of the multidrug resistance-related membrane glycoprotein as an acceptor for calcium channel blockers. J Biol Chem. 1987 Jun 5;262(16):7884–7888. [PubMed] [Google Scholar]
  17. Schurr E., Raymond M., Bell J. C., Gros P. Characterization of the multidrug resistance protein expressed in cell clones stably transfected with the mouse mdr1 cDNA. Cancer Res. 1989 May 15;49(10):2729–2733. [PubMed] [Google Scholar]
  18. Sehested M., Bindslev N., Demant E. J., Skovsgaard T., Jensen P. B. Daunorubicin and vincristine binding to plasma membrane vesicles from daunorubicin-resistant and wild type Ehrlich ascites tumor cells. Biochem Pharmacol. 1989 Sep 15;38(18):3017–3027. doi: 10.1016/0006-2952(89)90010-5. [DOI] [PubMed] [Google Scholar]
  19. Sehested M., Jensen P. B., Skovsgaard T., Bindslev N., Demant E. J., Friche E., Vindeløv L. Inhibition of vincristine binding to plasma membrane vesicles from daunorubicin-resistant Ehrlich ascites cells by multidrug resistance modulators. Br J Cancer. 1989 Dec;60(6):809–814. doi: 10.1038/bjc.1989.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shiraishi N., Akiyama S., Nakagawa M., Kobayashi M., Kuwano M. Effect of bisbenzylisoquinoline (biscoclaurine) alkaloids on multidrug resistance in KB human cancer cells. Cancer Res. 1987 May 1;47(9):2413–2416. [PubMed] [Google Scholar]
  21. Skovsgaard T. Mechanism of cross-resistance between vincristine and daunorubicin in Ehrlich ascites tumor cells. Cancer Res. 1978 Dec;38(12):4722–4727. [PubMed] [Google Scholar]
  22. Skovsgaard T. Transport and binding of daunorubicin, adriamycin, and rubidazone in Ehrlich ascites tumour cells. Biochem Pharmacol. 1977 Feb 1;26(3):215–222. doi: 10.1016/0006-2952(77)90306-9. [DOI] [PubMed] [Google Scholar]
  23. Tsuruo T., Iida H., Tsukagoshi S., Sakurai Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 1981 May;41(5):1967–1972. [PubMed] [Google Scholar]
  24. Twentyman P. R., Fox N. E., Bleehen N. M. Drug resistance in human lung cancer cell lines: cross-resistance studies and effects of the calcium transport blocker, verapamil. Int J Radiat Oncol Biol Phys. 1986 Aug;12(8):1355–1358. doi: 10.1016/0360-3016(86)90170-7. [DOI] [PubMed] [Google Scholar]
  25. Warr J. R., Anderson M., Fergusson J. Properties of verapamil-hypersensitive multidrug-resistant Chinese hamster ovary cells. Cancer Res. 1988 Aug 15;48(16):4477–4483. [PubMed] [Google Scholar]
  26. Yang C. P., Mellado W., Horwitz S. B. Azidopine photoaffinity labeling of multidrug resistance-associated glycoproteins. Biochem Pharmacol. 1988 Apr 1;37(7):1417–1421. doi: 10.1016/0006-2952(88)90803-9. [DOI] [PubMed] [Google Scholar]
  27. Yoshimura A., Kuwazuru Y., Sumizawa T., Ichikawa M., Ikeda S., Uda T., Akiyama S. Cytoplasmic orientation and two-domain structure of the multidrug transporter, P-glycoprotein, demonstrated with sequence-specific antibodies. J Biol Chem. 1989 Sep 25;264(27):16282–16291. [PubMed] [Google Scholar]
  28. Yusa K., Tsuruo T. Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res. 1989 Sep 15;49(18):5002–5006. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES