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ABSTRACT It is expected that any irreducible polyno-
mial with integer coefficients assumes infinitely many prime
values provided that it satisfies some obvious local conditions.
Moreover, it is expected that the frequency of these primes
obeys a simple asymptotic law. This has however been proven
for only a few special classes of polynomials. In the most
famous unsolved cases the sequence of values is ‘‘thin’’ in the
sense that it contains fewer than Nu integers up to N for some
constant u< 1. Quite generally it seems to be difficult to show
the infinitude of primes in a given thin integer sequence and
there is no polynomial for which this has hitherto been done.
The polynomial x2 1 y4 is an example of such a thin sequence;
here, specifically, u 5 3y4. We report here the development of
new methods that rigorously demonstrate the asymptotic
formula in the case of this polynomial and that are applicable
to an infinite class of polynomials to which this one belongs.
The proof is based partly on a new sieve method that breaks
the well-known parity problem of sieve theory and partly on
a careful harmonic analysis of the special properties of
biquadratic polynomial sequences.

The prime numbers that can be written in the form a21 b2 were
characterized more than 300 years ago by Fermat. It is quite
easy to see that no prime of the form 4m 1 3 can be a sum of
two squares, and Fermat proved the much more difficult result
that every prime of the form 4m 1 1 can be so written. In the
eighteenth and nineteenth centuries, mainly due to the efforts
of Lagrange and Gauss, this result was found to be a special
case of a more general phenomenon: Given any irreducible
binary quadratic form w(a, b) 5 aa2 1 bab 1 gb2, the primes
represented by w are characterized by congruence and class
group conditions. This fact made it possible, following the
nineteenth century breakthroughs on prime counting by Dir-
ichlet, Hadamard, and Vallée-Poussin, to give asymptotic
formulae for the number of primes up to x, which are repre-
sented by such a form. Apart from a minority of w that fail to
satisfy some local condition and hence cannot represent more
than one prime, one finds that a positive density of all primes
are represented by such a form.
For more general polynomials one cannot expect such a

simple characterization; nevertheless, one may quite generally
formulate expected asymptotic formulae for the frequency of
primes represented. Success in proving these has however been
limited; even proving the representability of infinitely many
primes seems no easier. In the case of two variables the result
is known for general quadratic polynomials, as given by
Iwaniec (1). For polynomials in one variable the problem is
harder still and only the case of linear polynomials, that is
arithmetic progressions, is settled thanks to Dirichlet.

Here we describe new methods that prove that there are
infinitely many primes of the form a2 1 b4 and give the
asymptotic formula, the first such results for any thin polyno-
mial sequence.
THEOREM 1. We have, with L the von Mangoldt function,

OO
a.0 b.0
a21b4#x

L~a2 1 b4! 5 4p21kx3/4H1 1 OS log log xlog x DJ ,
where k 5 E01(1 2 t4)1y2dt.
We remark that by comparing this with the well-known

asymptotic formula for the case of a21 b2 (change x3y4 to x and
t4 to t2), we see that the ‘‘probability’’ of an integer a2 1 b2
being prime is the same when we are told that b is a square as
it is when we are told that b is not a square.
The proof of Theorem 1 is based on a sieve method. In its

classical format the sieve is unable to detect primes for a very
basic reason known as the parity problem. In the case where
the sequence is close to positive density and has extremely
good regularity properties the sieve very barely fails, whereas
in the case of a thin sequence like the one we consider the
failure is by a wider margin. The former case was analyzed very
precisely by the asymptotic sieve of Bombieri (2). By adding an
additional axiom to those already present, we are able to
modify Bombieri’s sieve to the point that we can produce
asymptotic formulae for primes even in thin sequences.
Having this sieve at hand, there remains the still more

difficult problem of proving that the sequence of integers a2 1
b4 satisfies the additional axiom. This occupies the greater part
of the work and incidentally gives rise to a number of results
of independent interest.

The Sieve

Given a general sequence ! 5 (an) of nonnegative reals, we
should like to evaluate asymptotically the sum

S~x! 5 O
n#x

anL~n!. [1]

In the case of our application we have an being the number of
representations of n 5 a2 1 b4. Thus, we want to allow the
sequence ! to be quite thin. Setting

A~x! 5 O
n#x

an [2]

we make the very mild assumption

A~x! .. A~Îx!~log x!2. [3]

Inserting in Eq. 1 the formula L(n) 5 Odunld we obtain, after
an interchange of order,
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S~x! 5 O
d#x

ldAd~x!, [4]

where ld 5 2m(d)log d. This reduces the problem to a
sufficiently precise evaluation of the sums

Ad~x! 5 O
n#x

n[0 ~mod d!

an. [5]

We assume that, for some nice function g, Ad(x) is closely
approximated by g(d)A(x), say

Ad~x! 5 g~d!A~x! 1 rd~x!, [6]

where rd(x) is small. This last vague statement must be made
more precise in several respects. There are a number of
standard ways to do this and we do not attempt to choose a
minimal set of axioms. We assume that, uniformly in d # x1y3

we have

Ad~x! ,, g~d!A~x!. [7]

The function g is assumed to have a number of properties
[think of g(d) 5 d21 as the prototypical example]. We assume
g is multiplicative with 0 # g(p) , 1 for all primes p, that

g~d! ,, d21t~d!B, [8]

for some constant B, where t is the divisor function, that for
y $ 2,

O
d#y

m2~d!g~d! 5 c1 log y 1 c0 1 O~~log y!28! [9]

for some constants c1 . 0 and c0, and finally that, for y $ 2,

O
d#y

m~d!g~d! ,, ~log y!28. [10]

All of the above axioms are easy to verify for a great many
sequences A to which the sieve has been applied and, in
particular, to the sequence we consider here. In our case one
has g(p) 5 1

p
1 (x(p)yp)(1 2 1

p
), where x is the Dirichlet

character of conductor 4.
About the remainder terms rd we assume

O
d#D

m2~d!urd~t!u # A~x!~log x!21996 [R]

for all t # x, with some D 5 D(x) such that x2y3 , D(x) , x.
This assumption, or something very much like it, is the final
and pivotal assumption of classical sieve theory. In contrast to
the earlier assumptions, this one is much more important and
usually more difficult to verify. In the case of our application
the assumption [R]was recently proven by Fouvry and Iwaniec
(3) with D 5 x3y42«, for every « . 0. It was this surprising and
best-possible result that gave us the courage to attempt this
project.
The additional assumption that gives the asymptotic for

primes is an estimate for bilinear forms. We assume

O
m
U O
N,n#2N
mn#x

g~n!m~mn!amnU# A~x!~log x!21996 [B]

for every N with

D21ÎD , N , d21Îx,
for some d 5 d(x) $ 2 and D 5 D(x) $ 2, and where

g~n! 5 g~n, C! 5 O
dun,d#C

m~d!.

This is required for every C with 1 # C # xD21.
THEOREM 2. If the an are supported on squarefree integers, then

under the above assumptions

O
p#x

aplog p 5 HA(x)H11OS log d(x)
log D(x)DJ ,

where H 5 Pp(1 2 g(p))(1 2 1
p
)21 and the implied constant

depends only on the function g.
We remark that by modifying slightly the assumptions we

can remove the requirement that an be supported on square-
free integers.
For the proof of Theorem 2 we decompose the function L

by means of a combinatorial identity. Such identities have been
used before by many people including Vinogradov, Linnik,
Vaughan, and Heath-Brown. In our case, we choose a param-
eter z and can write, for n . z, L(n) essentially as a sum of
several sub-sums, the most difficult and important of which are
of the type Sde|nm(d)L(e), where d and e are either both small
or both large. Inserting this into the formula (Eq. 1), we get a
decomposition of that sum. It is not hard to see that the pieces
where d and e are small can be handled by [R], roughly when
their product is less than D, and that these give the main term
in Theorem 2. If one assumed [R] held to a sufficiently high
levelD this would take care of matters since the remaining case
of d, e both large would not happen often, or at all, since de u
n and n # x. This would however require an unrealistically
strong assumption and the resulting theorem would be without
application. Any more realistic assumption about D necessi-
tates a more careful treatment and even then still leaves
uncovered the contributions where one of d, e come from a
mid-sized range. These however can be estimated by the
bilinear form occurring in the assumption [B]. The presence
of d and D in this assumption is necessary to avoid making it
unreasonably strict.
There are a number of technical details we have not yet

mentioned. The most essential is the following: In dealing with
the contribution where d, e are both large it is difficult to keep
control of a certain cancellation coming from the Möbius
function and this necessitates attaching sieve weights |n to an
right from the beginning. This device was used by Bombieri (2)
serve the analogous function of allowing one to assume [R]
only up to a realistic level.

The Bilinear Form

The various assumptions of the previous section, other than
[R] and [B], are easily verified for our sequence and [R] was
demonstrated with D 5 x3y42« in ref. 3. Our remaining task is
to prove that [B] holds for all N with

x1/41« , N , x1/2~log x!2A.

This is actually stronger than needed for Theorem 1. It would
suffice in this lower bound to cover the range N . xa for some
a , 3y8.
The double sum occurring in [B] is easily transformed into

sums of the form

OO
~m,n!51

ambnamn,

where bn 5 gnm(n), am replaces the absolute value, and where
it is convenient for technical reasons to break up the ranges for
m, n into subintervals and restrict to integers free from small
prime factors. To attack the above double sum we have little
choice but to rid ourselves of the set of coefficients am by
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Cauchy’s inequality but to do so at once would be too costly.
It is more natural and also more efficient to first write this in
terms of Gaussian integers obtaining by the unique factoriza-
tion in that ring

amn 5
1
4 O
uwu25m

O
uzu25n

q~Re w̄z!,

where w, z run through Z[i], the factor 1y4 takes account of the
units and q is the characteristic function of the squares. Now
applying Cauchy’s inequality, introducing a smooth majorant
f(w), and squaring out, we are led to the problem of bounding
the sum

OO
~z1,z2!51

bz1b̄z2#~z1, z2! [11]

with

#~z1, z2! 5 O
w

f~w!q(Re w̄z1)q(Re w̄z2),

where bz5 b uzu2 and the condition (z1, z2)5 1 can be introduced
with acceptable error because b lives on integers without small
prime factors. We may also, by a splitting argument, restrict z1,
z2 to a small (polar coordinate) box.

The Error Term

We give in this section a type of Fourier expansion for the sum
of Eq. 11 and then bound all but one term in this expansion.
The remaining ‘‘main’’ term is arithmetic in nature and does
reduce in size due to the oscillation of sign in the sequence b.
The treatment of this main term, which is much more difficult,
we defer to future sections.
The problem of obtaining an asymptotic formula for

#(z1, z2) reduces to the counting of lattice points inside the
‘‘biquadratic ellipse’’

t1
4 2 2gt1

2t2
2 1 t2

4 5 x

for fixed g, 0 , g , 1. We put

D 5 D~z1, z2! 5 Imz̄1 z2,

and Re w# z1 5 b1
2, Re w# z2 5 b2

2. These determine w by the
equation iDw5 b1

2z22 b1
2z1. As w ranges over Z[i], this equation

is equivalent to a congruence modulo uDu and we have

#~z1, z2! 5 OO
b1
2z2[b2

2z1 ~moduDu!

f~~b1
2z2 2 b2

2z1!/D!. [12]

Since uDu may be very large there are few lattice points relative
to the volume and the problem may be expected to be difficult.
An application of the Poisson summation formula trans-

forms Eq. 12 into

uz1z2u21/2O
h1

O
h2

G~h1, h2!F~h1uDz2u21/2, h2uDz1u21/2!,

where G(h1, h2) is the sum

uDu21 OO
a1
2z2[a2

2z1~moduDu!

e~~a1h1 1 a2h2!uDu21! [13]

and F(u1, u2) is the integral

EE fS z2uz2u
t1
2 2

z1
uz1u
t2
2De~u1t1 1 u2t2!dt1 dt2. [14]

The main term comes from h1 5 h2 5 0. The integral F turns
out not to be a difficult problem. In the case of F(0, 0) it may
be explicitly evaluated and for the other (error) terms it
suffices to input a bound that is derived by repeated partial
integration, together with a crude bound for G in terms of the
divisor function t(D); however, the fact that the divisor func-
tion is occasionally fairly large forces us to bound this error
only on average over z1, z2. Thus, we don’t quite solve the lattice
point problem, but solving it in this average sense suffices for
our main concern. The final result is that the sum of Eq. 11 is,
apart from an admissible error, given by the main term

2 f̂~0!

uD0u ÎN
log S 2NuD0u

DT~b!,

where

T~b! 5 OO
~z1,z2!51

bz1b̄z2G~0,0!.

Here we have used the fact that with z1, z2 confined inside a
small box we can treat D as though it may be replaced by a
constant D0.

Reduction of the Main Term

Our next task is to simplify and transform the sum T(b) in the
main term. This requires us to penetrate the arithmetic nature
of the sum G(0, 0) from Eq. 13. The latter is closely related to
|(z2yz1; D), where |(z; D) counts the number of solutions in
rational residue classes of v2 [ z(mod uDu) (actually we need
to also consider | to moduli dividing D to take care of a
technical problem involving coprimality). The number | is, as
is well known, expressible as a sum of the Jacobi symbol over
the divisors d of D. Following Dirichlet we separate these
divisors into two sets d , =uDu and d $ =uDu, and transform
the latter into their complementary divisors d 3 uDuyd. The
first set gives rise to sums of the shape

OO
~z1,z2!51

bz1b̄z2 O
duD

d,ÎuDu

Sr1r2d D,

whereas, after some manipulation, the latter give sums

OO
~z1,z2!51

bz1b̄z2S s1r1DS s2r2D O
duD

d#ÎuDu

S r1r2d D .
Here, for j 5 1, 2, we write zj 5 rj 1 isj, r odd, s even, and in
case of even integers d, the 2 part is ignored in the Jacobi
symbol. In reducing to these sums (and later in estimating
them) all of the basic properties of the Jacobi symbol, multi-
plicativity, periodicity, and quadratic reciprocity, are used in
an essential fashion.
We split into segments D , d # 2D, detect the condition

d uD by additive characters, interchange the order of summa-
tion, and apply Cauchy’s inequality. This leads to the problem
of giving nontrivial bounds for various D for the sum

SI 5 O
D,d#2D

O
a ~mod d!

U OO
r̄s[a ~mod d!

bzS rdDU 2 [15]

and also for the sum

SII 5 O
D,d#2D

O
a ~mod d!

U OO
r̄s[a ~mod d!

bzS srDS rdDU 2, [16]

where z 5 r 1 is with s even, r odd, R , r # 2R, S , s # 2S.
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Twisted Sums Over Arithmetic Progressions

In case the range D for the modulus is neither too small nor
too large we are able to obtain results where the coefficients
b are replaced by arbitrary complex numbers ars. This means
in particular that, for such D, the sums SI, SII may be treated
simultaneously, since the Jacobi symbol (syr) may be incor-
porated into bz and here we name the resulting sum S(D).
In the event that the ars factorized and the symbol

(ryd) were absent this would be a result of Barban type and
would follow from the large sieve. Now however new ideas are
required.
We proceed in three steps. In the first place, using duality,

Poisson summation, and a number of elementary but non-
trivial arguments one obtains a bound which covers the range
(log RS)A , D , (RS)1/22«. At the second stage one replaces,
in the sum S(D), the congruence r1s2 [ s1r2(mod d) by the
equation r1s2 2 r2s1 5 dm and then makes the change of
variable d 3 m. If the modulus d of the old congruence is in
the range (RS)1/21« , d,RS(logRS)2A, then the newmodulus
m is in the range treated in the first step. This idea was first
used in the context of Barban–Davenport–Halberstam Theo-
rems by Hooley but of course appears already in Dirichlet’s
work on the divisor problem.
The first two steps leave uncovered a middle range (RS)1/22«

, D , (RS)1/21«. Because (rydp2) 5 (ryd) for all primes p not
dividing r, it turns out to be possible for any P $ 2 to bound
S(D) in terms of S(DP2) by averaging over the primes in the
dyadic interval P , p # 2P. Now, if D is in the middle range,
we may, by choosing P appropriately, place DP2 in the range
of larger moduli covered by the result of step two.
Combining these results we obtain for each of SI and SII a

bound, which, as opposed to the trivial bound, saves an amount
(log RS)A, A arbitrary, throughout the whole range

~log RS!B~A! , D , RS~log RS!2B~A!,

and saves quite a bit more when D is not too close to the
boundary of this region. Of course, because of the Dirichlet
involution and the fact that we treat general coefficients, we do
not really need to cover the range D . (RS)1/21«. This would
not however allow us to skip any of the three steps in the
argument.

Siegel–Walfisz

We still need to treat the small moduli where D , (log RS)B,
B arbitrary. Now the two cases SI, SII need very different
treatments and in both cases the special shape of the coeffi-
cient b is heavily used. In the case of SI the cancellation comes
from the sign changes of the Möbius function, which is
embedded into b and we are able to succeed, even for each
individual d, by giving a Siegel–Walfisz Theorem in the
Gaussian domain. The fundamentals of such a result are due
to Hecke and to Siegel, although we need to do some work to
get the result in a form that is applicable to the problem at
hand. Grossencharacters enter naturally at this point and as a
result of taking them into account our final results on primes
a2 1 b4 demonstrate also their uniform distribution in sectors
in the Gaussian plane.

Jacobi–Twisted Sums

Our final chore, and rather an interesting one, is the treatment
of the small moduli D , (log RS)B in the case of sums SII.
Recall that these were originally the large moduli before
application of the Dirichlet involution. As in the previous case,
the special shape of the coefficients is crucial, although now
our cancellation will come not from the Möbius function but

instead from the oscillation in sign coming from the Jacobi
symbol.
We say the Gaussian integer z5 r1 is is primary if s is even

and r is congruent to s 1 1 modulo four. The product z 5 z1z2
of primary numbers is primary. The symbol [z] defined by
[z] 5 i(r 2 1)y2 (sy|r|) for primary z enjoys the multiplicativity
property

@z1z2# 5 «@z1#@z2#SRez1z2uz2u2
D , [17]

where « 5 61 depends only on the quadrants in which z1, z2,
and z1z2 are located. This follows from some manipulations,
which again make use of all of the basic properties of the Jacobi
symbol, and in particular the law of quadratic reciprocity.
In dealing with the sum SII for small moduli we shall, as in

the case of SI, be able to treat individual d. Thus, referring to
the definition of Eq. 16 and incorporating the factor (ryd) into
the b, we are left to estimate sums O

z
bz[z]. Because of its

resemblance to the Möbius function we are able to decompose
b in much the same fashion as we did with L in the treatment
of the sieve. This reduces the problem to bounding linear forms
O
z
[wz] and bilinear forms O

w
O
z
awgz[wz], where in both cases the

variables are constrained by their product being required to
belong to a given box. The multiplicativity property of Eq. 17
is basic for the study of such sums. There are a number of
alternative treatments. In the case of the linear forms we are
able to neglect the summation in all but one variable and
reduce the problem to the estimation of the sum of the Jacobi
symbol over an interval to which we apply the Polya–
Vinogradov inequality. The estimate of Burgess could be used
here to improve the result, but this is not necessary for the final
goal. For the bilinear forms it is also possible to reduce the
problem to a similar one variable sum and here it would suffice
to apply the Burgess bound. There is however another method
that is more elementary yet, because it takes advantage of a
second variable, also gives stronger results.
Combining these bounds we complete the proof of the final

step to the main theorem. Because the function L can also be
decomposed in essentially the same fashion as b (in fact, more
simply), we get the following by-product of the work in this
section. Define l(n) 5 OO

r21s25n
(syr), where r is odd and

positive and s is even. Then for some absolute constant h . 0,
for example h 5 1/77, we have

O
p#x

l~p! ,, x12h. [18]

Discussion

As indicated earlier the methods yield incidentally the uniform
distribution of the Gaussian primes a 1 ib2 in sectors and for
that matter within any region having a reasonable boundary.
One also obtains the expected distribution on restricting the
variables a and b to residue classes having moduli either fixed
or growing less quickly than some power of log x.
It seems certain that the methods extend to cover the case

of the prime values of w (a, b2) for any binary quadratic form
w. We have not checked this in detail. One should certainly
expect some complications regarding composition of forms in
case of nontrivial class group.
A more interesting extension would be the proof of the

asymptotic formula, or even a lower bound of the expected
order for primes of the form a2 1 b6. The arguments herein
carry over to a considerable extent, provided that quadratic
reciprocity is replaced by cubic reciprocity. One has, thanks
again to the work of Fouvry and Iwaniec (3), the level D(x) 5
x2/32« in [R]. Although also best-possible, this is smaller than
before. Thus, one faces more effort in the combinatorics to
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avoid the restriction D . x2/3 in the sieve part and, of greater
significance, one has to settle for lesser results in bounding the
sums occurring in the bilinear form [B].
In the event that one can produce primes a2 1 b6 then this

would have an interesting application to elliptic curves, since
it is morally certain that trivial modifications would allow
treatment of the polynomial 27a2 1 b6, which is the negative
of the discriminant of the elliptic curve y25 4x31 b2x1 a. One
would thus deduce the existence of infinitely many elliptic
curves over Q having prime discriminant. Here we would not
get the expected magnitude for the number of such curves
since we are not able to directly touch the polynomial x2 1 y3.
After all, three is not an even number!
Although the proofs of our results are rather lengthy and

complicated we are able to avoid much of the high-powered

technology frequently used in modern analytic number
theory such as the bounds of Weil and Deligne. We also do
not appeal to the theory of automorphic functions although
experts will, in several places, detect it bubbling just beneath
the surface.
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