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Abstract
Spinal γ-aminobutyric acid (GABA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptors have been implicated in the mechanisms of neuropathic pain after nerve
injury; however, how these two receptors interact at the spinal level remains unclear. Here we show
that intrathecal midazolam through activation of spinal GABAA receptors attenuated the expression
and function of spinal AMPA receptors in rats following peripheral nerve injury. Thermal
hyperalgesia and mechanical allodynia induced by chronic constriction nerve injury (CCI) in rats
were attenuated by the short-acting benzodiazepine midazolam (20=10>5 μg > vehicle) administered
intrathecally once daily for seven postoperative days. CCI-induced upregulation of AMPA receptors
within the spinal cord dorsal horn was also significantly reduced by the intrathecal midazolam (10,
20 μg) treatment. The inhibitory effects of midazolam (10, 20 μg) on neuropathic pain behaviors and
AMPA receptor expression were prevented by co-administration of midazolam with the GABAA
receptor antagonist bicuculline (3 μg), whereas intrathecal treatment with bicuculline (1 or 3 μg)
alone in naive rats induced the upregulation of spinal AMPA receptor expression and nociceptive
responses, indicating a tonic regulatory effect from endogenous GABAergic activity on the AMPA
receptor expression and spinal nociceptive processing. These results indicate that modulation of
spinal AMPA receptor expression and function by the GABAergic activity may serve as a mechanism
contributory to the spinal nociceptive processing.
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Introduction
Neuropathic pain after peripheral nerve injury is a chronic pain condition, which remains very
difficult to treat. Spinal glutamatergic and γ-aminobutyric acid (GABA)ergic systems are
among several proposed mechanisms of neuropathic pain and have been extensively
investigated over the last two decades (Dubner, 1991;Dougherty and Willis, 1991;Yamamoto
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and Yaksh, 1992;Mao et al., 1995;Woolf and Mannion, 1999;Hammond 2001). Evidence exists
indicating that either activation of the glutamatergic system or a possible loss of GABAergic
activity, or both, after peripheral nerve injury contributes to the development and maintenance
of neuropathic pain behaviors in rats (Mao et al., 1995;1997;Bridges et al., 2001;Cronin et al.,
2004;Polgar et al., 2005;Scholz et al., 2005). These earlier studies suggest a possible interaction
between these regulatory systems within the central nervous system.

Ionotropic glutamate receptors including alpha-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors are localized both presynaptically and
postsynaptically within superficial laminae of spinal cord dorsal horn. AMPA receptors have
been shown to play a significant role in the mechanisms of neuropathic pain and spinal
nociceptive processing (Mao et al., 1992a,b;Leem et al., 1996;Kondo et al, 2002;Garry et al.,
2003). The AMPA receptor consists of several subunits and previous studies have indicated
that spinal AMPA receptor expression was altered after either peripheral nerve injury or
inflammation, which contributed to the development of pathological pain conditions in rats
(Harris et al., 1996;Alvarez et al., 2000).

On the other hand, it has been demonstrated that activation of spinal GABAergic system
negatively regulated spinal nociceptive processing (Kontinen and Dickenson, 2000;Hammond
2001;Nishiyama et al., 2003), suggesting an important role for the GABAergic system in the
balance between spinal excitatory and inhibitory elements after peripheral nerve injury.
Benzodiazepines activate GABAA receptors, reduce excitatory transmitter release
presynaptically as well as excitatory activity postsynaptically in spinal dorsal horn neurons
(Haefely, 1988). Indeed, intrathecal midazolam (a benzodiazepine-GABAA receptor agonist)
attenuated neuropathic pain behaviors (Hwang and Yaksh, 1997). Recently, presynaptic
AMPA receptors on GABAergic terminals have been shown to have a bidirectional role in
neuronal activity with the superficial spinal cord dorsal horn and contributed to the mechanisms
of central sensitization and hyperalgesia (Lu et al, 2005). Moreover, the effect on GABA
receptors may interact with that of AMPA receptor antagonists in rats (Nishiyama et al,
1999). Thus, it is possible that there might be interactions at the spinal level between the GABA
and AMPA receptors and such interactions may have a functional role in neuropathic pain
behaviors.

Utilizing a rat model of chronic constriction nerve injury (CCI) (Bennett and Xie, 1988), we
examined whether midazolam (a clinically available short-acting benzodiazepine and GABA
analogue) given intrathecally would modulate the expression of spinal AMPA receptors and
neuropathic pain behaviors in CCI rats through activation of spinal GABAA receptors.

Material and Methods
CCI model

Adult male Sprague Dawley rats weighing 275–325 gm (Charles River Laboratories,
Wilmington, MA) were used. The animal room was artificially lighted from 7 AM to 7 PM.
The experimental protocol was approved through our Institutional Animal Care and Use
committee. Rats were anesthetized with sodium pentobarbital (50 mg/kg, intraperitoneally).
CCI was produced by loosely ligating one common sciatic nerve (using 4-0 chromic gut sutures,
4 ligatures) according to the method of Bennett and Xie (1988), and sham operation was
performed following the same surgical procedure for CCI except for nerve ligation.

Intrathecal catheterization and drug delivery
An intrathecal catheter was implanted in each rat under the same surgical condition. A PE-10
catheter was inserted onto the lumbar enlargement (about 8.5 cm from the incision site for this
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rat size) according to the method described previously (Yaksh and Rudy, 1976;Mao et al.,
2002). Those rat exhibiting postoperative neurological deficits (e.g., paralysis) or poor
grooming and eating were excluded from experiments as described previously (Mao et al.,
2002). Midazolam was purchased from Sigma (St. Louis, MO) and bicuculline and S-AMPA
were purchased from Tocris (Ellisville, MO). Bicuculline was dissolved in 10% DMSO diluted
in normal saline (vehicle) and S-AMPA was dissolved in normal saline. Midazolam was diluted
in normal saline as indicated. All drugs were injected intrathecally in a 10-μl volume followed
by a 10-μl saline flush. The doses for each agent used in this study are: 1) midazolam (a GABA
agonist, 5, 10, 20 μg), bicuculline (a GABAA receptor antagonist, 0.3, 1, 3 μg), S-AMPA (an
AMPA receptor agonist, 0.1 μg).

Behavioral test and statistical analysis
Rats were habituated to the test environment (one 60 min session per day) for two consecutive
days before the baseline testing. Testing for thermal hyperalgesia was performed according to
a previously published method (Hargreaves et al., 1988). Radian heat was adjusted to ensure
the baseline latency at 10–12 sec and the cutoff time of 20 sec. At least two trials were made
in each rat. Mechanical allodynia was examined by applying a von Frey filament to the plantar
surface of each hindpaw until the filament was bended and threshold force was established by
examining the bending force that resulted in at least two clear paw-withdrawals out of five
applications (Tal and Bennett, 1994). The cutoff force was 20 gm. All testing was conducted
between 9 AM and 1 PM.

Data from the thermal hyperalgesia (withdrawal latency in sec) test were analyzed by using
repeated measure two-way ANOVA across testing time points to detect overall differences
among treatment groups. Whenever applicable, the data were also examined by using repeated
measure two-way ANOVA across treatment group to examine overall difference among testing
time points. When significant main effects were observed, post hoc Newman-Keuls’s test were
followed. Data from the mechanical allodynia (threshold bending force in gm) test were
analyzed using the non-parametric Mann-Whitney test. The statistically significant level was
set at α = 0.05.

Western blot
Rats were decapitated rapidly (<1 min) under pentobarbital anesthesia and lumbar spinal cord
segments (lumbar 5) were removed. Spinal segments were separated into the ipsilateral and
contralateral side as well as the dorsal and ventral horn and homogenized in SDS sample buffer
containing a mixture of proteinase inhibitors (Sigma). Lumbar segments were harvested
because CCI has a major impact at these sites. Protein samples were separated on SDS-PAGE
gel (4–15% gradient gel; Bio-Rad, Herculed, CA) and transferred to polyvinylidene difluoride
filters (Millipore, Bedford, MA). The filters were blocked with 3% milk and incubated
overnight at 4 °C with a primary antibody (GluR1 - rabbit polyclonal, 1:100, Chemicon,
Temecula, CA; GluR2 - mouse monoclonal, 1:250, BD, Franklin Lakes, NJ; GluR3 - mouse
monoclonal, 1:300, Chemicon) and then 1 hr at room temperature with HRP-conjugated
secondary antibody (1:700, Amersham, Arlington Heights, IL). The blots were visualized in
ECL solution (NEN, Boston, MA) for 1 min and exposed onto hyperfilms (Amersham) for 1–
10 min. The blots were then incubated in a stripping buffer (67.5 mM Tris, pH 6.8, 2% SDS,
0.7% β-mercaptoethanol) for 30 min at 50 °C and reprobed with a polyclonal rabbit anti-β-
actin antibody (1:20,000; Alpha Diagnostic International, San Antonio, TX) as loading control.
The Western analysis was made in triplicates. The density of a specific band was measured
against a corresponding loading control, and differences were compared using repeated
measure one-way ANOVA followed by post hoc Newman-Keuls’s tests.
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Results
Effects of midazolam on neuropathic pain behaviors: reduction by bicuculline

The effects of midazolam on neuropathic pain behaviors were examined in seven groups of
rats including (1) CCI plus vehicle, (2 – 4) CCI plus 5, 10 or 20 μg midazolam, (5) CCI plus
10 μg midazolam and 3 μg bicuculline, (6) sham plus 10 μg midazolam, and (7) sham plus
vehicle. Each agent was given once daily (intrathecally) for seven consecutive postoperative
days, beginning immediately after operation. Midazolam (20 = 10μg > 5μg>vehicle) reduced
thermal hyperalgesia and mechanical allodynia in the hindpaw ipsilateral to CCI, as compared
with vehicle-treated CCI rats on all of postoperative days (Fig. 1, p< 0.05; n=6–7). In contrast,
midazolam (10 or 20 μg) did not change baseline thermal and mechanical nociceptive responses
in sham rats, nor did midazolam (5–20 μg) change thermal and mechanical nociceptive
responses in the hindpaw contralateral to CCI (Fig. 1, P> 0.05; n=5–7).

The effects of midazolam on neuropathic pain behaviors were primarily mediated through the
GABAA receptor, because co-administration of midazolam (10 μg) with the GABAA receptor
antagonist bicuculline (3 μg), given once daily for postoperative day 1–7, reversed the
attenuation of thermal hyperalgesia and mechanical allodynia by midazolam (Fig. 1, P< 0.05,
n=5–7). The bicuculline dose was referenced from previous studies (Hwang and Yaksh,
1997;Kaneko and Hammond, 1997;Malan et al., 2002) and a lower dose of bicuculline (0.3
μg) was ineffective in our pilot experiment. The combined treatment of midazolam (10 μg)
and bicuculline (3 μg) did not alter the thermal and mechanical nociceptive responses in the
hindpaw contralateral to CCI (Fig. 1, p>0.05; n=5–7). These results indicate that intrathecal
midazolam attenuated neuropathic pain behaviors in CCI rats, which was mainly mediated
through the GABAA receptor within the spinal cord dorsal horn.

Effects of midazolam on spinal AMPA receptor expression: reduction by bicuculline
The effects of midazolam on the expression of spinal AMPA receptors after CCI were examined
using Western blot. CCI but not sham operation induced an upregulation of AMPA receptors
(GluR1, GluR2, GluR3) within the spinal cord dorsal horn ipsilateral to CCI on postoperative
day 4 and 8 (not day 1) (Fig. 2, p< 0.05, n=4–6), while there were no significant changes in
the AMPA receptor expression within the contralateral spinal cord dorsal horn (data not
shown). Intrathecal treatment with midazolam (10 = 20 μg, but not 5μg, once daily for seven
postoperative days) reduced the upregulation of AMPA receptors in CCI rats as compare with
CCI rats treated with a vehicle (Fig. 3, p<0.05, n=4–6). Similar to its effects on neuropathic
pain behaviors, the GABAA receptor antagonist bicuculline reduced the effect of midazolam
on spinal AMPA receptor expression when bicuculline (3 μg) was co-administered
intrathecally with midazolam (10μg) once daily for postoperative day 1–7 (Fig. 4, p< 0.05,
n=5–6). These results indicate that the upregulation of spinal AMPA receptor after CCI was
mediated at least in part through the GABAA receptor within the spinal cord dorsal horn.

Effects of bicuculline on nociceptive behaviors and spinal AMPA receptor expression in
naïve rats

In order to examine whether inhibition of GABAA receptor activity within the spinal cord
would alter thermal and mechanical nociceptive responses as well as spinal AMPA receptor
expression in naïve rats, four groups of rats were used including naïve rats treated with 0.3, 1
or 3 μg bicuculline. Each dose was given once daily to naïve rats for seven consecutive days.
Bicuculline (3 μg but not 0.3 μg or 1μg) induced nociceptive responses to thermal and
mechanical stimulation in naïve rats (Fig. 5, P< 0.05, n=5), similar to that observed after CCI.
Interestingly, bicuculline (3 μg but not 0.3 or 1μg) treatment also induced an upregulation of
AMPA receptors (GluR1, GluR2, GluR3) within the spinal cord dorsal horn of naïve rats in
the absence of CCI (Fig. 6, p< 0.05, n=5). Collectively, these results demonstrate a tonic
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influence from spinal GABA activity on both AMPA receptor expression and nociceptive
responses.

Effects of midazolam on nociceptive behaviors induced by S-AMPA in naïve rats
In order to confirm the modulatory effect of spinal GABA activity on AMPA receptor-mediated
nociceptive behaviors, the effects of midazolam on nociceptive responses induced by an
exogenous AMPA receptor agonist (S-AMPA) were examined in the following groups of naïve
rats including (1) 0.1 μg S-AMPA alone, (2) 0.1 μg S-AMPA and 10 μg midazolam, (3) vehicle
alone. S-AMPA dose was referenced from a previous study (Kontien and Meert, 2002). Each
agent was given intrathecally once daily for seven consecutive days.

S-AMPA (0.1 μg) induced nociceptive responses to thermal or mechanical stimulation, as
compared with the vehicle group, when examined on day 8 (Fig. 7, P< 0.05, n=5–7). The S-
AMPA-induced nociceptive behaviors were attenuated by intrathecal co-administration of S-
AMPA (0.1 μg) with midazolam (10 μg) once daily for seven days, when also examined on
day 8 (Fig. 7, P< 0.05, n=5–7). Midazolam (10 μg) alone did not alter nociceptive behaviors
in sham rats (see Fig. 1). Moreover, S-AMPA (0.1 μg) induced an upregulation of AMPA
receptor (GluR1, GluR2, GluR3) within the spinal cord dorsal horn of naïve rats when
examined on day 8, which was also significantly reduced by co-administering midazolam (10
μg) with S-AMPA for seven days (Fig 8, p< 0.05, n=5–7). Similar to that seen in sham rats
(Fig. 3), Midazolam (10 μg) alone did not change the baseline AMPA receptor expression (data
not shown). These results support a functional relationship between spinal GABA activity and
AMPA receptor-mediated nociceptive responses in naïve rats as well.

Discussion
We have demonstrated that 1) intrathecal treatment with midazolam attenuated the
development of thermal hyperalgesia and mechanical allodynia in CCI rats, which was
mediated primarily through spinal GABAA receptors, 2) CCI induced an upregulation of spinal
AMPA receptor (GluR1, GluR2, and GluR3 subunits) expression, which was also attenuated
by midazolam through activation of spinal GABAA receptors, 3) inhibition of spinal GABAA
receptors with bicuculline in naïve rats induced an upregulation of spinal AMPA receptor
expression and nociceptive responses to thermal and mechanical stimulation, and 4) activation
of spinal AMPA receptors with S-AMPA (an exogenous AMPA receptor agonist) induced
both nociceptive responses and the upregulation of spinal AMPA receptor expression in naïve
rats, preventable by intrathecal midazolam treatment. These results indicate a functional
relationship between spinal GABAA and AMPA receptors under both physiological and
pathological (nerve injury) conditions, which contributed to the development of neuropathic
pain behaviors in rats.

A technical concern is an appropriate intrathecal dose range of midazolam. Previous studies
have shown that the effect of intrathecal midazolam on nociceptive behaviors was dose-
dependent such that a low dose range (2–4 μg) did not produce significant antinociceptive
effects (Taira et al., 2000), whereas a high dose range (10–100 μg) was effective in
antinociception (Nishiyama et al., 1999). Previous studies have also shown that intrathecal 30
μg midazolam induced motor dysfunction (Nishiyama et al., 1999) and midazolam at an even
higher dose (e.g., 100 μg/day for 20 consecutive days) caused spinal neurotoxicity (Svenson
et al., 1995). Considering these potential confounding factors, we used a lower but effective
dose range (5, 10, 20 μg) in the present studies and did not observe any motor dysfunction and
abnormal behavioral responses in both sham and CCI rats.

The role of spinal AMPA receptors in neuropathic pain behaviors after nerve injury, as
demonstrated in the present study, is consistent with previous studies (Mao et al.,
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1992a,b;Leem et al., 1996;Kondo et al, 2002;Garry et al., 2003). For instance, activation of
spinal AMPA receptors has been shown to induce nociceptive behaviors including thermal
hyperalgesia (Yamamoto and Sakashita, 1998;Menéndez et al., 2003) and vocalization
(Kontinen and Meert, 2002). Our previous study has indicated that non-NMDA receptors
within the spinal cord are necessary for the development of neuropathic pain behaviors after
CCI, because inhibition of non-NMDA receptors alone prevented the development of thermal
hyperalgesia and spontaneous pain behaviors in CCI rats (Mao et al., 1992a,b). The role of
non-NMDA receptor activation in this process may be in part related to its ability to depolarize
neuronal membrane potentials thereby facilitating the activation of NMDA receptors (Dubner,
1991;Mao, et al., 1995;Garry et al., 2003).

GABA is an important inhibitory neurotransmitter (Sosnowski and Yaksh, 1990;Hammond
2001). Spinal GABAergic activity mediates synaptic inhibition and diminishes AMPA
receptor-mediated acute nociception (Nishiyama et al., 1998), thereby modulating spinal
nociceptive processing (Simmons et al., 1998). A growing body of evidence has suggested a
functional relationship between GABA and AMPA receptor-mediated activities in spinal
nociceptive processing (Izzo et al., 2001;Kovacs et al., 2003;Sanchez et al., 2005). For
example, there is a presynaptic modulatory role of AMPA receptors in the GABA release
(Engelman et al., 2006) and midazolam regulates excitatory transmission in spinal cord dorsal
horn neurons of adult rats (Kohno et al., 2006). In addition, colocalization between GABA and
AMPA receptors has been demonstrated in several spinal and supraspinal regions (Kondo et
al., 1995;Kerr et al., 1998;Bergersen et al., 2003), and ionotropic glutamate receptors are
expressed in GABAergic terminals in the rat superficial dorsal horn (Lu et al., 2006).

In the present study, a short-acting benzodiazepine (midazolam) effectively prevented the
development of neuropathic pain behaviors in CCI rats after repeated administration, which
was blocked by the GABAA receptor antagonist bicuculline. These data provides additional
evidence for a regulatory mechanism regarding the expression and function of spinal AMPA
receptors through activation of spinal GABAA receptors. It should be pointed out that the
present study only examined the regulatory role of spinal GABAA activity on the AMAP
receptor-mediated development of neuropathic pain behaviors after CCI, these results do not
rule out the possibility that spinal GABA activity may also regulate the maintenance of
neuropathic pain behaviors.

Consistent with previous studies, we observed a tonic GABAergic influence on spinal AMPA
receptor expression and spinal nociceptive processing because inhibition of intrinsic GABA
activity in naive rats induced mechanical allodynia and thermal hyperalgesia. However, this
endogenous inhibitory GABAergic activity seen in naïve rats must be limited or insufficient
under pathological conditions, because 1) both thermal hyperalgesia and mechanical allodynia
did develop in CCI rats despite this intrinsic inhibitory GABA activity and 2) activation of
spinal AMPA receptors with exogenous AMPA receptor agonist S-AMPA was able to induce
nociceptive behaviors and upregulation of spinal AMPA receptor expression in naïve rats,
similar to the results observed after CCI. While the endogenous GABAergic activity may play
a role in the regulation of spinal nociceptive processing, it is possible that this function could
be diminished after nerve injury presumably due to a potential loss of spinal GABAergic
interneurons (Sugimoto et al., 1990;Mao et al., 1997;Scholz et al., 2005). These findings add
to the discussion concerning the role of spinal GABAergic neurons in the mechanisms of
neuropathic pain (Polgar et al., 2005;Scholz et al., 2005). It seems reasonable to suggest that
preserving endogenous spinal GABAergic activity alone after nerve injury might be
insufficient to counter-balance spinal excitation induced by glutamatergic activities, as
indicated by our data showing that AMPA receptor-mediated spinal excitation induced
nociceptive responses in naïve rats even in the presence of an intact endogenous GABAergic
system (i.e., without nerve injury).
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Benzodiazepine receptors are coupled with a subpopulation of GABA receptors and
benzodiazepines can enhance spinal GABA activity by increasing Cl− conduction (Unnerstall
et al., 1981) and reducing glutamate release in the spinal cord (Haefely, 1988). These
interactions between benzodiazepines and GABA receptors may be a pharmacological basis
for the midazolam effect that was preventable by the GABAA receptor antagonist bicuculline.
Besides its antinociceptive effects (Kontinen and Dickenson, 2000;Nishiyama et al., 2003),
intrathecal midazolam exhibited a potent synergistic effect with AMPA receptor antagonists
in rats (Nishiyama et al., 1999;Nishiyama et al., 2001). Thus, our data suggest that a combined
treatment with a GABA receptor agonist and an AMPA receptor antagonist may be an effective
approach for managing clinical neuropathic pain.
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Figure 1. Effects of midazolam and bicuculline on mechanical allodynia and thermal hyperalgesia
of CCI rat
Mechanical allodynia (a, b) was dose-dependently attenuated in the ipsilateral hindpaw (a) in
CCI rats treated with midazolam (5, 10 and 20 μg; CCI/M5, CCI/M10 and CCI/M20) but not
vehicle (CCI/Veh) given intrathecally once daily for postoperative day 1–7. Thermal
hyperalgesia (c, d) were attenuated in the ipsilateral hindpaw (c) in CCI rats treated with
midazolam (same as above) but not vehicle (CCI/Veh) given intrathecally once daily for
postoperative day 1–7. Midazolam did not alter baseline nociceptive response in sham rats
(Sham/M10). There were no changes in nociceptive responses in the contralateral hindpaw (b,
d). The attenuation by midazolam (10 μg) of mechanical allodynia (a) and thermal hyperalgesia
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(c) in the ipsilateral hindpaw of CCI rats was reduced by bicuculline (3 μg; CCI/M/B), given
intrathecally once daily for postoperative day 1–7. The combined treatment with midazolam
and bicuculline did not alter the nociceptive responses in the contralateral hindpaw * P< 0.05
as compared with the corresponding sham group. FWL: foot-withdrawal latency; Threshold
force: a measurement for mechanical allodynia (also in other figures). For all figures, the
number of rats per group was shown in the main text.
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Figure 2. Time course of AMPA receptor expression after CCI
The AMPA receptor (GluR1, GluR2, GluR3) expression (Western blot) within the ipsilateral
spinal cord dorsal horn was upregulated in CCI rats but not in sham rats on postoperative day
4 and 8 (not day 1). a: Western blots; β-actin is a loading control. B, c: Statistical data analysis.
* P < 0.05 as compared with the corresponding sham control.
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Figure 3. Effects of midazolam on spinal AMPA receptor expression
The AMPA receptor (GluR1, GluR2, GluR3) expression (Western blot) within the ipsilateral
spinal cord dorsal horn was upregulated in CCI rats, which was reduced by intrathecal
midazolam (10 or 20 μg, not 5μg) given once daily for postoperative day 1–7. Samples were
taken on day 8. a: Western blots; β-actin is a loading control. b-d: Statistical data analysis. S:
sham; S/M; sham rats with 10 μg midazolam; C/M5, C/M10 or C/M20: CCI rats with 5, 10 or
20 μg midazolam; C/V: CCI rats with vehicle. * P < 0.05 as compared with the corresponding
sham group.

Lim et al. Page 13

Brain Res. Author manuscript; available in PMC 2007 September 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Effects of bicuculline on spinal AMPA receptor expression
The effect of midazolam (10 μg) on the AMPA-R expression within the ipsilateral spinal cord
dorsal horn after CCI was attenuated by co-administration of bicuculline (3 μg) once daily for
seven days. Samples were taken on day 8. C/M/B: CCI rats with midazolam and bicuculline;
C/V: CCI rats with vehicle. * P< 0.05 as compared with the corresponding sham group.
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Figure 5. Effect of bicuculline on nociceptive behaviors in naïve rats
Intrathecal treatment with bicuculline (3 μg but not 0.3 μg and 1μg) given once daily for seven
days induced nociceptive responses to mechanical (a) and thermal (b) stimulation. The
behavioral tests were made on day 8. * P< 0.05 as compared with the naïve group.
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Figure 6. Effect of bicuculline on spinal AMPA receptor expression in naïve rats
Intrathecal treatment with bicuculline (3 μg but not 0.3 or 1μg) given once daily for seven days
induced the AMPA receptor (GluR1, GluR2, GluR3) upregulation within the spinal cord dorsal
horn of naïve rats. Samples were taken on day 8. a: Western blot; b: statistical analysis. * P<
0.05 as compared with the naïve rat group.
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Figure 7. Effect of S-AMPA and midazolam on nociceptive behaviors in naïve rats
Intrathecal treatment with the AMPA receptor agonist S-AMPA (0.1 μg) given once daily for
seven days induced nociceptive responses to mechanical (a) and thermal (b) stimulation, when
examined on day 8. The S-AMPA-induced nociceptive responses were attenuated by
intrathecal co-administration of S-AMPA (0.1 μg) with midazolam (10 μg) given once daily
for seven days. * P< 0.05 as compared with the S-AMPA alone group. A/M: S-AMPA
+midazolam; A: S-AMPA alone.
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Figure 8. Effect of S-AMPA and midazolam on spinal AMPA receptor expression in naïve rats
The AMPA receptor upregulation induced by S-AMPA (0.1 μg) was attenuated by intrathecal
co-administration of S-AMPA (0.1 μg) with midazolam (10 μg) given once daily for seven
days. Samples were taken on day 8. a: Western blot; b–d: statistical analysis. * P< 0.05 as
compared with the S-AMPA treated group. A/M: S-AMPA+midazolam; A: S-AMPA alone.
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