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Abstract
T lymphocyte activation is associated with nitric oxide (NO) production that plays an essential role
in multiple T cell functions. NO acts as a messenger, activating soluble guanyl cyclase and
participating in the transduction signaling pathways involving cyclic GMP. NO modulates
mitochondrial events that are involved in apoptosis and regulates mitochondrial membrane potential
and mitochondrial biogenesis in many cell types, including lymphocytes. Mitochondrial
hyperpolarization (MHP), an early and reversible event during both T lymphocyte activation and
apoptosis, is regulated by NO. Here, we discuss recent evidence that NO-induced MHP represents
a molecular switch in multiple T cell signaling pathways. Overproduction of NO in systemic lupus
erythematosus (SLE) induces mitochondrial biogenesis and alters Ca2+ signaling. Thus, while NO
plays a physiological role in lymphocyte cell signaling, its overproduction may disturb normal T cell
function, contributing to the pathogenesis of autoimmunity.
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Introduction
The mitochondrion, the site of oxidative phosphorylation, has long been identified as a source
of energy and cell survival [1,2]. The electrochemical gradient across the inner mitochondrial
membrane is maintained by the electron transport chain (ETC) and Δψm (negative inside and
positive outside) [3]. The Δψm is subject to regulation by an oxidation-reduction equilibrium
of ROI, pyridine nucleotides (NADH/NAD + NADPH/NADP) and GSH levels [4]. Controlled
levels of ROI modulate various aspects of cellular function and are necessary for signal
transduction pathways, including those mediating T-cell activation and apoptosis [5] (Fig. 1).
Elevation of Δψm or mitochondrial hyperpolarization (MHP) was discovered in our laboratory
[6]. MHP in T cells is facilitated by depletion of GSH and NADPH triggered by over-expression
of the PPP enzyme transaldolase (TAL) [6,7]. Transient MHP is an early event preceding
caspase activation, phosphatidylserine (PS) externalization, and disruption of Δψm in Fas-
[6] and H2O2-induced apoptosis of Jurkat human leukemia T cells and normal human
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peripheral blood lymphocytes (PBL) [8]. These observations were widely confirmed and
extended to other apoptosis pathways [9,10,11,12,13,14]. Transient MHP is also triggered by
activation of T cells by Con A [6] and CD3/CD28 costimulation [15] via ROI- and Ca2+-
dependent production of NO [16]. Thus, MHP represents an early and reversible switch not
exclusively associated with apoptosis. In contrast, as recently revealed in our laboratory, T
cells of SLE patients show persistent MHP and ATP depletion which cause abnormal T-cell
death, shifting susceptibility from apoptosis to necrosis [15]. ATP depletion in lupus T cells
was recently confirmed by Krishnan et al [17]. Increased necrosis rates could play a central
role in enhanced inflammatory responses in SLE [18]. Necrotic cell death stimulates
macrophages [19] and dendritic cells [20] and leads to inflammation [15,18,21] and
development of murine SLE [22]. We proposed that increased release of necrotic materials
from T cells would activate macrophages and dendritic cells (DCs) and enhance their capacity
to produce NO and IFN-α̣ in SLE [18]. Indeed, DCs exposed to necrotic, but not apoptotic,
cells induce lupus like-disease in MRL mice and accelerate the disease of MRL/lpr mice
[22]. These data suggest that principal mitochondrial functions are involved in T cell activation.
Nitric oxide (NO) is produced by T cells during activation and it regulates T cell signal
transduction [1,16,18]. NO affects both crucial functions of the mitochondrion, the generation
of energy and the control of cell death through modulating production of reactive oxygen
intermediates and of ATP. This review will focus on the central role of NO in mitochodrial
control of activation and cell death pathway selection in human T lymphocytes.

TCR activation, Ca2+ signaling
Engagement of the T cell antigen receptor (TCR) leads to activation of multiple protein tyrosine
and serine kinases resulting in phosphorylation of intracellular substrates. The subsequent
hydrolysis of phospholipids and elevation of cytoplasmic Ca2+ ultimately leads to clonal
expansion of antigen-specific T cells [23]. An increase in cytoplasmic Ca2+ is essential for and
is an early marker of T cell activation. The TCR is associated with a multimeric receptor
module, comprised of the CD3 γδε and TCR ζ-chains. The cytoplasmic domain of CD3 and
ζ-chains contain a common motif termed IgR family tyrosine based activation motif (ITAM)
[24,25]. Each ζ homodimer possesses 3 ITAMS, whereas other CD3 chains each contain 1
ITAM.

The most proximal biochemical event following T cell activation is the activation of protein
tyrosine kinases. The interaction of the T cell specific CD4 or CD8 with P56lck, a member of
the src family of PTKs, leads to an increase in P56lck kinase autophosphorylation, leading to
phosphorylation of ITAM. Overexpression of an activated form of P56lck enhances TCR
mediated activation. A signaling mutant of the Jurkat T cell line JaCam1, that fails to
demonstrate an elevation of the intracellular Ca2+ upon TCR signaling has been shown to lack
P56lck protein [26]. Phosphorylation of ITAM motifs are required for Src homology 2 domain-
mediated binding by ζ-associated protein (ZAP70). ZAP 70 is activated through
phosphorylation by P56lck. Activated ZAP-70 phosphorylates LAT adaptor protein, followed
by the direct binding of LAT to phospholipase C-γ1.

Activation of the TCR by monoclonal antibodies, mitogenic lectins, or specific antigen on the
surface of appropriate antigen-presenting cells elicits substantial, sustained increases in IP3
and in the concentration of cytoplasmic free Ca2+ within T lymphocytes. Phospholipase C-γ1
mediates IP3 dependent Ca2+ signal in T cells, similarly to B cells [27,28]. Ca2+ serves as an
intracellular messenger regulating different signaling pathways that leads to activation of
protein kinase C (PKC), calmodulin and calmodulin dependent protein kinases, as well as
calcineurin and translocation of the nuclear factor of activated T cells (NFAT) into the nucleus
[29].
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Activation of T cells through the TCR initiates rapid increase in cytoplasmic and mitochondrial
Ca2+ levels (within 5−10 min), followed by a plateau phase, lasting at least 48 h [27]. Inhibition
of the endoplasmic reticulum Ca2+ ATP-ase by thapsigargin results in emptying of the
intracellular Ca2+ stores and capacitative Ca2+ influx from extracellular space.

Mitochondrial Ca2+ and mitochondrial transmembrane potential
Isolated mitochondria increase their rate of ATP production several-fold in response to
increasing concentrations of ADP and Pi with unlimited supply of substrate and oxygen [30].
In addition to ADP, mitochondrial Ca2+ is another important regulator of mitochondrial ATP
production. Exposure of isolated mitochondria to artificially created Ca2+ pulses, like those
seen in the cytosol of the cells led to the discovery of mitochondrial Ca2+ uptake. Mitochondria
take up Ca2+ primarily through an uniporter, whose molecular nature is still controversial. This
might act like a channel, opening with increased probability once the local Ca2+ rises [31]. The
major targets of the mitochondrial Ca2+ import pathway are the dehydrogenases of the citric
acid cycle, as the rate limiting enzymes are all upregulated by Ca2+ dependent processes. In
addition intramitochondrial Ca2+ activates the ETC, adenine nucleotide translocator (ANT)
and F1F0-ATP-ase [32] thus oxidative phosphorylation is rapidly stimulated by pulses of
Ca2+. The continuous charging of mitochondria with Ca2+ will sustain the activation state of
the mitochondrial dehydrogenases and may be important in sustaining mitochondrial energy
production [Fig 1.]. Mitochondrial Ca2+ uptake is primarily driven by the electrochemical
potential gradient and a relatively low intramitochondrial Ca2+ concentration. Typically,
mitochondrial Ca2+ uptake follows the cytosolic signal. Since re-equilibration of mitochondrial
Ca2+ is relatively slow, mitochondria effectively integrate cytosolic Ca2+ signals over time
[33].

The process of mitochondrial respiration establishes a large potential gradient across the inner
mitochondrial membrane, the mitochondrial membrane potential (Δψm), generally estimated
to be in the order of 150−200mV, negative inside [1]. The biochemical mechanism of oxidative
phosphorylation involves two main steps: the transduction of chemical redox potentials into
an electrochemical H+ gradient across the inner mitochondrial membrane and the ATP
synthesis by the H+ driven molecular rotor of F0F1-ATP-ase. While the principal function of
the mitochondrial potential is clearly to drive ATP synthesis, it also provides the major
mechanism to handle Ca2+.

The mitochondrial membrane potential lies at the heart of all the major bioenergetic functions
of the mitochondrion, from the synthesis of ATP to accumulation of Ca2+. The collapse of
Δψm as a response to pathological states, such as anoxia or as a response to disordered
mitochondrial respiration, will limit mitochondrial Ca2+ uptake and may contribute to cellular
pathophysiology [32,34]. Mitochondrial Ca2+ import is an electrogenic process, as the
movement of Ca2+ is not countered by any other ion exchange and therefore acts like an inward
current, tending to depolarize the mitochondrial membrane through increasing the permeability
of the voltage-dependent anion channel (VDAC) [35]. This is observed as a small and transient
depolarization of the mitochondrial membrane in response in the early phase of the Ca2+ flux.
Although the activation of dehydrogenases stimulates mitochondrial respiration, leading to
mitochondrial hyperpolarization (MHP) and increased ATP production, following the above
mentioned initial depolarization in many cell types [1], Ca2+ influx by ionomycin or Ca2+

release from intracellular stores by thapsigargin alone failed to induce Δψm elevation in
lymphocytes [16].
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Role of nitric oxide in T cell activation, mitochondrial biogenesis and
hyperpolarization

Nitric oxide is a diffusible, multifunctional, transcellular messenger that has been implicated
in a numerous physiological and pathological conditions [36]. NO is synthesized from L-
arginine by NO synthases (NOS). Three distinct cytoplasmic isoforms of NOS are known,
including neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS)
enzymes. nNOS and eNOS are expressed constitutively and generate NO for constitutive cell-
signaling purposes, while iNOS releases NO in larger quantities during inflammatory or
immunological defense reactions and is involved in host tissue damage [37]. The physiological
role of NO in the maintenance of vascular tone, in synaptic transmission and in cellular defense
is firmly established. Recent evidence indicates that NO regulates mitchondrial biogenesis.
NO competes with molecular oxygen (O2) and reversibly inhibit cytochrome C oxidase,
suggesting that this competitive interaction has a physiological role in the control of
mitochondrial respiration [36].

Crosslinking of the TCR has been associated with elevation of the cytosolic Ca2+, ROI and
nitric oxide (NO) production and mitochondrial hyperpolarization [16]. NO chelator C-PTIO
(carboxy-2-phenyl-4,4,5,5-tetrametyl-imidazoline-1-oxyl-3-oxide) profoundly inhibited TCR
crosslinking induced mitochondrial hyperpolarization, cytoplasmic and mitochondrial Ca2+

response, ROI production and NO levels, suggesting that TCR activation induced MHP is
mediated by NO [16]. In addition, NO signal was required for CD3/CD28 induced Ca2+ fluxing,
suggesting an essential role of NO in T cell activation. Western blot analysis revealed
expression of eNOS and nNOS and absence of iNOS in human PBL. eNOS and nNOS protein
levels were stimulated up to 15-fold by CD3/CD28 costimulation [16,38]. Ibiza and colleagues
recently showed that within minutes of binding to antigen, T cells produce NO via endothelial
NO synthase (eNOS) [39]. NO promoted mitochondrial hyperpolarization, ATP depletion and
relative resistance to apoptotic stimuli in astrocytes, lymphocytes and Jurkat cells [13,40].
Although pretreatment of normal T cells with NO resulted in elevation of mitochondrial and
cytoplasmic Ca2+ levels, Ca2+ by itself was insufficient to induce NO synthesis or
mitochondrial hyperpolarization in lymphocytes [16,39].

NO has been recognized as a key signal for mitochondrial biogenesis. This operates through
the cGMP-dependent peroxisome proliferator-activating receptor γ coactivator-1α, a master
regulator of mitochondrial biogenesis [41]. NO was shown to induce mitochondrial biogenesis
in brown adipocytes, U937 and HeLa cells and human lymphocytes [42,43]. Studies of T
lymphocytes lacking eNOS will be important to establish an absolute requirement of this NOS
isoform in T-cell activation.

T cell activation involves considerable reordering of cell surface and cytoplasmic components
into an immunological synapse [44]. Synapse formation is dependent on TCR mediated signals
that, in concert with costimulatory signals, cause the cellular polarization of the T cell
cytoskeleton, membrane receptors and selected cytoplasmic signaling effectors towards the T
cell – antigen presenting cell interface. Although not required for TCR signal initiation, synapse
formation has been associated with the induction of T cell proliferation, cytokine production
and lytic granule release. Quantitative subcellular analysis of NO production in T cell APC
conjugates showed that local NO production was 2-fold higher at cell-cell contact than in the
cytoplasm [39]. The localized production of NO by eNOS at the immunological synapse is a
newly recognized checkpoint of T cell activation which leads to increased phosphorylation of
CD3 ζ chain, ZAP-70, and extracellular signal-regulated kinases and increased IFN-γ synthesis,
but reduced production of IL-2 [39] (Fig 1.).
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In addition to the NO originating from the cytoplasm, now it is clear that mitochondrion has
its own NO production. NO production by the co-oxidation of L-arginine and NADPH by
O2 has been observed in mitochondrial membranes isolated from a series of mammalian organs.
The responsible enzyme has been named initially mitochondrial nitric oxide synthase (mtNOS)
referring to its intracellular localization, in contrast to nNOS, eNOS and iNOS, that were
defined according to the cell type of origin [45]. The mitochondrial NOS isoenzyme is a
constitutive protein of the mitochondrial outer membrane that generates NO in a Ca2+

dependent reaction. mtNOS activity shows very strong and exponential dependence on
mitochondrial membrane potential in physiological potential range (150−200mV), which
observation suggests that mtNOS is regulated by Δψm [46]. However, a distinct mNOS gene
has not yet been cloned and its very existence is controversial. Recent findings suggest that
mtNOS may correspond to eNOS selectively targeted to the outer mitochondrial membrane
[47].

Mitochondrial oxidative stress
In most cell types, mitochondria appear to represent one of the mayor sources of generation of
reactive oxygen intermediates (ROI), such as superoxide anion O2

− [1] (Fig 1.). Formation of
the superoxide anion in the mitochondrion occurs at the level of complex I and complex III of
the ETC [48]. Although they are well known for their destructive effect on biomolecules, ROI
are more and more accepted as necessary constituents in signaling pathways and modulators
of responses in physiological and pathological conditions [49 ]. In T cells, it has been reported
that the radical scavenger N-acetyl cysteine (NAC) inhibited the activation of NF-κB by
phorbol 12-myristate 13-acetate, tumor necrosis factor-α, and interleukin-1, strongly
supporting the idea that oxygen radicals are implicated in physiological activation processes
[50,51]. ROI species trigger several proximal and distal signaling pathways in T lymphocytes,
affect the activities of transcription factors, and lead to expression of specific genes (Fig 1.).
In Jurkat T cells ROI induce increases in protein tyrosine phosphorylation and activity of
p56lck, ZAP-70, and protein kinase C as well as elevations in intracellular Ca2+ levels [52].
ROI are known to mediate the activation of NF-κB, but chronic exposure to ROI inhibits NF-
κB phosphorylation and activation.

As it was mentioned above, increased intramitochondrial Ca2+ activates the ETC, thereafter it
stimulates mitochondrial respiration and ROI production [1]. Superoxide is effectively
converted to hydrogen peroxide (H2O2) by the mitochondrial superoxide dismutase (SOD)
(Fig 1.). H2O2 has no unpaired electrons and, by itself, is not a ROI. H2O2 could leave the
mitochondrion and act as a second messenger that can mediate gene transcription and cell
proliferation. Induction of apoptosis or necrosis by H2O2 requires transformation into an ROI,
e.g., OH−, through the Fenton reaction [53].

The role of NO in apoptosis has been widely investigated, and both pro and anti-apoptotic
actions have been reported [54,55,56]. Fas-induced apoptosis was found to be associated with
an early, concentration dependent NO production in Jurkat cells [57]. NO can induce apoptosis
in a variety of cell lines including macrophages, thymocytes, T cells, myeloid cells. Low
concentrations of NO may specifically inhibit cytochrome c oxidase, leading to ATP depletion
[58]. A site for NO modulation of the apoptotic process that has received little attention is the
controlled release of cytochrome c from the mitochondria [59]. The release of cytochrome C
from mitochondria leads to activation of caspases 9 and 3, thus the proapoptotic effect of NO
may be connected to its effect on mitochondrial respiration.

NO reacts rapidly with superoxide (O2
−) to produce peroxynitrite (ONOO−), which may act

as an oxidant itself, or it may isomerise to nitrate. Peroxynitrite reacts with protein and non
protein thiols, tyrosine residues, unsaturated fatty acids, as well as DNA, and it was reported
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to cause Ca2+ efflux from liver mitochondria [60,61,62]. Addition of peroxynitrite to the
mitochondria also causes opening of the permeability transition pore (PTP) and opening of this
pore contributes to the aforementioned loss of cytochrome C from the mitochondrion.
Furthermore peroxynitrite inhibits, or damages mitochondrial complexes and SOD (Fig 1.).
ROS may cause lipid peroxidation and damage to cell membranes and to DNA, so that
mitochondria represent not only a major source of ROS generation, but also a major target of
ROS induced damage.

Mitochondrial hyperpolarization and increased NO production in sytemic
lupus erythematosus (SLE)

Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by
production of antinuclear autoantibodies, clinical involvement in multiple organ systems and
increased NO production in monocytes [43]. Lupus T cells exhibit persistent MHP or elevation
of the mitochondrial transmembrane potential, increased ROI levels and ATP depletion [15].
T lymphocytes of patients with SLE showed increased spontaneous and decreased activation-
induced apoptosis [63]. Upon T cell activation, cell death preferentially occurred via necrosis
rather than apoptosis in patients with SLE. ATP levels and ATP/ADP ratios were profoundly
diminished in lupus PBL, which accounts for predisposition to necrosis [64].

Persistent MHP has been associated with increased mitochondrial mass of T lymphocytes in
patients with SLE [43]. Mitochondria can take up, store and release Ca2+, thereafter increased
mitochondrial mass may account for altered Ca2 handling [2]. Although SLE T cells and normal
T cells produce comparable amount of NO, lupus monocytes were found to produce a
significantly higher amount of NO than normal monocytes [43,65]. In comparison to control
monocytes, lupus monocytes increased Δψm and Ca2+ of normal T cells after co-culture [43],
suggesting that NO produced by monocytes is responsible for mitochondrial dysfunction and
predisposition to necrosis by lupus T cells. Release of necrotic materials from T cells activates
monocytes and dendritic cells which may operate as a positive feed-back loop sustaining a pro-
inflammatory state in SLE [2,18].

Baseline cytoplasmic Ca2+ levels are increased in SLE T cells. While the early phase of
Ca2+ signal was enhanced, sustained elevation of CD3/CD28-induced Ca2+ signaling was
markedly reduced in lupus T cells [43]. Rapamycin (RAPA), a macrolide immunosuppressant
that has been shown to interfere with T cell activation events, on the course of spontaneous
disease progression in the MRL/lpr mouse model of lupus. RAPA sensitive pathway ha been
shown to regulate mitochondrial membrane potential in irradiated human breast cancer
(MCF-7) cells [66]. RAPA significantly reduced or prevented many pathologic features of
lupus normally seen in the MRL/lpr mouse [67]. RAPA treatment of patients with SLE
normalized cytosolic and mitochondrial Ca2+ levels and T cell activation-induced rapid Ca2+

fluxing, without influencing MHP [68], indicating that increased Ca2+ fluxing is downstream
or independent of MHP in the pathogenesis of T-cell dysfunction in SLE. Interestingly, the
mammalian target of rapamycin (mTOR) may be activated by enhanced production of NO
[69]. The effectiveness of RAPA in murine and human SLE suggest that mTOR is a potential
sensor [70] and down-stream effector of MHP and activation of mTOR may precede T cell
dysfunction and autoimmunity in SLE. These new data suggest that the clinically beneficial
role of RAPA may be related to its selective effect on Ca2+ fluxing in SLE.
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Abbreviations used in this paper:
ANT, adenine nucleotide translocator; C-PTIO, carboxy-2-phenyl-4,4,5,5-tetrametyl-
imidazoline-1-oxyl-3-oxide; ETC, electron transport chain; ITAM, IgR family tyrosine based
activation motif; LAT, linker for activation; IP3, inositol-1,4,5-triphosphate; PI3K,
phosphatodylinositol 3-hydroxyl kinase; ROI, reactive oxygen intermediate; SOD, superoxide
dismutase; Δψm, Mitochondrial transmembrane potential; MHP, Mitochondrial
hyperpolarization; NOS, NO synthase; nNOS, neuronal NOS; eNOS, endothelial; iNOS, iNOS
inducible NOS; PTP, permeability transition pore; MPA, mycophenolic acid; RAPA,
Rapamycin; TACI, transmembrane activator and calcium modulating and cyclophillin ligand
interactor; SLE, systemic lupus erythematosus; TCR, T cell antigen receptor; ZAP-70, ζ-
associated protein-70; ΔΨm, mitochondrial transmembrane potential..
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Legend to Fig 1.
Schematic diagram of T cell activation, NO production, and mitochondrial hyperpolarization.
NO is produced in the cytosol, the mitochondrial membrane, and at the immunological synapse
of T cells. Localized NO production has been linked to targeting of eNOS to the outer
mitochondrial membrane and to the T-cell synapse. NO decompose superoxide via ONOO-
formation, thereby limiting the steady state concentrations of this oxygen-derived free radical.
Furthermore, the interaction of superoxide with NO will result the elimination of superoxide-
derived H2O2. Indeed, these types of interactions would likely extend the life of the T-cell by
providing a NO-dependent mechanism to reduce both superoxide and H2O2. NO can freely
diffuse through biological membranes and NO produced by other cells, such as monocytes and
dendritic cells can affect T-cell activation. NO regulates many step of T cell activation,
production of cytokines, such as IL2, and mitochondrial hyperpolarization and mitochondrial
bioegenesis. Mitochondrial hyperpolarization is associated with depletion of ATP which
predisposes T cells to necrosis. In turn, necrotic materials released from T cells activate
monocytes and dendritic cells. Altered T-cell cytokine production also influences activation
of B cells.
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