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Rapidly Retargetable Approaches to De-identification
in Medical Records

BEN WELLNER, MATT HUYCK, SCOTT MARDIS, JOHN ABERDEEN, ALEX MORGAN, LEONID PESHKIN,
ALEX YEH, JANET HITZEMAN, LYNETTE HIRSCHMAN

A b s t r a c t Objective: This paper describes a successful approach to de-identification that was developed to
participate in a recent AMIA-sponsored challenge evaluation.

Method: Our approach focused on rapid adaptation of existing toolkits for named entity recognition using two
existing toolkits, Carafe and LingPipe.

Results: The “out of the box” Carafe system achieved a very good score (phrase F-measure of 0.9664) with only
four hours of work to adapt it to the de-identification task. With further tuning, we were able to reduce the token-
level error term by over 36% through task-specific feature engineering and the introduction of a lexicon, achieving
a phrase F-measure of 0.9736.

Conclusions: We were able to achieve good performance on the de-identification task by the rapid retargeting of
existing toolkits. For the Carafe system, we developed a method for tuning the balance of recall vs. precision, as
well as a confidence score that correlated well with the measured F-score.
� J Am Med Inform Assoc. 2007;14:564–573. DOI 10.1197/jamia.M2435.
Introduction
De-identification is the process of selecting and redacting all
of the Protected Health Information (PHI) present in a
medical (or other) record so that the record may be shared
outside the limited audience authorized to know the identity
of the record’s subject. De-identification is a key step toward
making clinical data available for many medically important
applications, such as epidemiological investigations or col-
lection of data on drug interactions or side-effects. Corpora
of de-identified clinical data are also important for research
and development of natural language processing systems
that capture and map information in clinical records into
standardized categories or ontologies. De-identification is a
first step towards identification and extraction of other impor-
tant information, such as medications or diagnoses. A long-
term goal is to extract multiple types of information from
clinical records and map them onto standard medical termi-
nologies or ontologies for further information processing.

The Team
This work is the result of collaboration between teams at
MITRE Bedford and the Harvard Center for Biomedical
Informatics, working together on the capture and manage-
ment of free text information for translational medicine. We
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were motivated by a desire to participate in the de-identifi-
cation task of the AMIA Challenges in Natural Language
Processing for Clinical Data,1 which represents the first
shared task for the application of natural language process-
ing technology to clinical data. Our approach grows out of
previous work on information extraction and text mining in
the biomedical area,2,3 as well as work on information
extraction in other domains.

The Approach
Our approach to de-identification focused on the rapid
adaptation of two existing toolkits for named entity recog-
nition. One is based on the Carafe toolkit developed at
MITRE, and the second used LingPipe, a commercial prod-
uct from Alias-I. Specifically, our experiments focused on
what needed to be done to train the systems, how well they
worked “out of the box,” whether there was adequate
training data, and how much work was needed for addi-
tional performance gains. Our previous experiences with a
wide range of information extraction tasks had led us to
expect that it would require significant work to adapt a
toolkit to a new task such as de-identification. However, we
were pleasantly surprised to find that the adaptation process
was quite rapid. We were able to achieve good performance
with only a few hours of work. We attributed this to several
factors, including adequate training data and the structured
nature of the task.

The Task and Metrics
This paper reports on systems that were evaluated on a
specific, artificially constructed de-identification task, de-
scribed in Sibanda et al.4 The data for this task were 910
medical discharge summaries (690 used for training, 220
used for the official evaluation) that had first been de-

identified through a combination of machine and human
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processing, and then repopulated with synthesized identifi-
ers to support the challenge de-identification task. System
performance on the de-identification task was evaluated by
calculating precision, recall, and balanced F-measure per
word (defined below in the Results section) as well as per
PHI. Overall, the systems that we fielded for this application
performed very well, with token balanced F-measures of
well over 0.99 (see Table 1). However, we do not know how
these measures relate to the real costs of false positives vs.
false negatives in an application setting. In such a setting, we
expect that false negatives (failures to locate and redact
critical information) are more serious than false positives.
Overzealous tagging of words in phrases (e.g., including
“M.D.” as part of a “doctor name”) may be less harmful, and
easier to fix, than failing to tag parts of a proper name. For
these reasons, we provided a “high recall” output as one of
our submissions. For future evaluations, it would be useful
to determine the best trade-off between a thorough “smoth-
ering” of protected information and restoration of informa-
tion that has been over-zealously removed. We also expect
that the real value of automated de-identification systems
can only be realized in an interactive environment, where a
person can quickly review and correct the automatically
generated tags.

The following sections of this paper discuss the relationship
of this task to previous evaluations of named entity identi-
fication; the corpus and our experimental methodology; the
use and specialization of the Carafe and LingPipe based
systems; the results on the AMIA de-identification challenge
evaluation data; and future directions. We include a discus-
sion of possible refinements to the method of scoring a
de-identified record as well as the way in which the task and
systems might be configured in a complete application for
interactive de-identification.

Background
The de-identification task shares many attributes with estab-
lished named entity extraction tasks. Both involve automat-
ically finding particular types of noun phrases in texts.
Traditional named entity tasks such as the MUC evaluations5

have mainly focused on finding persons, organizations, and
locations as well as times and dates in newspaper-style
electronic texts such as the Wall Street Journal. However,
de-identification in general, and the AMIA de-identification
task in particular, differs from earlier named entity extrac-
tion tasks in important ways.

In contrast to general named entity tasks, de-identification of

Table 1 y Recall, Precision and F-measure Evaluated P
Phrase Recall P

Official Runs
Carafe-ALL (b � �1.0) 0.9597
LingPipe 0.9212
Carafe-ALL�PP (b � �1.5) 0.9694

Unofficial Runs
Carafe-I (b � �1.0) 0.9610
Carafe-I�L (b � �1.0) 0.9672
Carafe-I�RC (b � �1.0) 0.9574
Carafe-ALL (b � �1.75) 0.9693

Of the official runs, Carafe-ALL�PP achieved our best performanc
medical records involves finding and masking Protected
Health Information, including types of persons (doctors and
patients), organizations (hospitals), and locations, as well as
IDs, ages, dates (but not years), and phone numbers. In
addition to these type differences, there are significant
source text differences to overcome. In journalistic prose,
many named entities may be identified using reliable cues
based on case and titles. By contrast, patient medical records
consist of semi-structured data with headers and shorter free
text fields.

There are further differences that are particular to the
present AMIA de-identification challenge. Many approaches
to traditional named entity tasks include leveraging data-
bases of known person names, organization names, and
location names. Some medical records contain names that
are misspelled or simply are not found in such lexical
resources.4 For this reason, the data for the AMIA challenge
have been re-identified in a way that discourages reliance on
lexical resources, forcing developers to rely on context for
de-identification. Such a data preparation strategy may force
an over-reliance on context; many cases might be well
covered by a lexical approach coupled with a contextual
approach to handle the harder cases.

Methods
This section provides a description of the systems we used
for the task of identifying phrases of personal health infor-
mation in medical records.

Identifying Phrases as Sequence Labeling
The problem of identifying phrases can be viewed as a
sequence labeling problem in which phrases are denoted by
assigning labels to individual words indicating whether the
word is part of a phrase of a particular PHI type or whether
it is not part of any phrase. A common encoding is to use
two labels for each type of phrase: one indicating a word
begins a phrase and another indicating a word is within or
ending a phrase. Figure 1 provides an example of the labels
assigned to a short excerpt from a medical record. In the
figure, O indicates a word outside a phrase, B� indicates that
the word is the beginning of a phrase of type � and I�

indicates the word is inside or at the end of a phrase of
type �. Types of phrases shown include D (doctor) and H
(hospital).

rase and Per Token F-measure
recision Phrase F-measure Token F-measure

839 0.9716 0.99714
430 0.9320 0.99400
778 0.9736 0.99745

719 0.9664 0.99627
822 0.9746 0.99758
810 0.9690 0.99682
818 0.9756 0.99763

fficial development runs are listed below the official runs.

Copy to Dr. Stone , U BATESSE HOSPITAL

O O O BD O BH IH IH
F i g u r e 1. Identifying PHI phrases as a sequence labeling
er Ph
hrase P
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0.9
0.9
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Our experiments in this paper include two different se-
quence labeling systems: Carafe, based on an implementa-
tion of Conditional Random Fields (CRFs); and LingPipe, a
system utilizing hierarchical hidden Markov models. We
describe these systems in the following sections.

Conditional Random Fields
Conditional Random Fields (CRFs) are conditionally
trained, probabilistic finite-state machines that have been
applied successfully to a variety of problems in natural
language, including part-of-speech tagging,6,7 shallow pars-
ing,8 entity tagging in newswire9 and tagging genes and
proteins in the biomedical domain.10 CRFs define the con-
ditional probability of a tag (i.e., label) sequence, y� �
y1,�yn given an observed sequence of tokens, x� � x1,�,xn as
follows:

P�(y� � y1, .. , yn|x� � x1, � , xn) �
exp�t �k �k fk (yt, yt�1, x�, t)

Z(x�)

where

Z(x�) � �
y�

exp�t �k �k fk (yt, yt�1, x�, t)

The probability of a particular label sequence given an
observation sequence is computed by summing over each
position, t, in the sequence, y�, and computing the sum over
a set of feature functions, each of whose value is multiplied by
that feature’s associated weight, �k. The normalization term,
Z�x��, is determined by computing the above sum for all
possible label sequences which can, fortunately, be com-
puted efficiently via dynamic programming.

Each feature function can be viewed most naturally as a
predicate over a particular configuration of the observation,
x�, relative to the current position, t, for a particular label
pair: yt, yt�1. The feature weights indicate how strongly that
predicate over the observations correlates with a particular
label pair. For example, the feature below captures a con-
textual cue for “Dr.” which often indicates that the following
token is the beginning of a DOCTOR phrase:

fk(yt, yt�1, x�, t) � 1 if yt � BD

and yt�1 � O and WORD (x�t�1) � � Dr . �

Note also that a feature may ignore the previous label and
only correlate the observation predicate with the label at the
current position. We call such features node features as they
only pay attention to the current “node” (in a graphical
representation of the model) whereas features associating
observation predicates with the current and previous state
are termed edge features.

The weights for each feature in the model are learned by
maximizing the conditional log-likelihood of the training
data. That is, the weights are set to assign high (log)
probabilities to the label sequences found in the training
data and low (log) probabilities to all other label sequences
over the observations in the training data. The log-likelihood
L� is computed by summing the log-probabilities for a fixed
set of weights, � � �1, � ,�n, over all the training instances in
a data set D:

L�(D) � �
�y�, x���D

logP�(y�|x�) � R	(�)

where the second term, R ���, is a penalty term that biases
	

the model weights towards zero to prevent overfitting. The
degree to which the weights are biased is determined by a
zero-mean Gaussian distribution with variance 	. Lower
variances apply a higher penalty to weights further from
zero providing the model with fewer degrees of freedom
and thus preventing overfitting to a greater degree than
higher variance values. The weights that maximize the
above expression can be found using a variety of numerical
optimization methods. These methods are iterative, requir-
ing at each step: 1) �T, the current set of parameters at
iteration T; 2) the value of the function to optimize, L�T

�D�;
and 3) the value of the gradient of the function 
L�T

�D�.a The
result returned from the optimization procedure is a new set
of parameters, �T�1. This process is repeated until conver-
gence.

Given a trained model, the most likely label sequence y� for a
given observation sequence x� can be found efficiently with
dynamic programming using a slight variation on the Vit-
erbi algorithm.11

Carafe
Carafe is a toolkit implementing CRFs targeted especially to
phrase identification tasks. It includes light-weight, flexible
methods for easily introducing new features, an implemen-
tation of the L-BFGS numeric optimization routine12 for
weight learning and mechanisms for handling SGML data
robustly. This section discusses the steps we took with
Carafe to get an initial de-identification system up and
running, as well as additional, task-specific feature engineer-
ing we carried out to improve performance on this task.

Two questions need to be answered before applying a
sequence labeling approach to any tagging problem: 1) what
constitute the elements (i.e., words) of a sequence, and
2) what constitutes the beginning and end of a sequence?

The first question is one of tokenization. Crucially, tokens
must align properly with the phrases of interest. The system
will not be able to properly identify phrases that do not align
with the tokens. For the de-identification task and the
medical record data provided, the primary tokenization
issue arose with dates. Only the month and day portion of
date expressions were to be tagged, but not the year. This
required modifying our existing tokenizer to split potential
date strings into multiple tokens.

In many tasks, sequences consist of natural language sen-
tences. In the challenge task medical records, however, there
were no obvious sentence boundaries for much of the
record, since it was derived from a set of database fields. As
such, we decided to consider each entire medical record as a
single sequence (sentence) in our model.

For our initial system, we performed the adjustments to
tokenization described above (about four hours of work)
and then applied Carafe, out-of-the-box, to the PHI identi-
fication task using an existing set of features designed for a
different task. Specifically, this other task was Named Entity

aThe gradient of the log-likelihood is a vector where each compo-
nent, corresponding to a particular feature, is the difference between
the observed frequency of that feature in the training data and the
expected frequency of that feature according to the current model
(i.e., the current set of weights). These feature expectations can be
computed efficiently using the forward-backward algorithm. See

Sha and Pereira, 20038 for details.
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recognition over newswire texts requiring identification of
PERSON, ORGANIZATION and LOCATION phrase types.
This constituted the system labeled Carafe-I in Table 1.

Trading Off Precision and Recall
For this application, we believed that recall should be more
important than precision. However, we also believed that
this balance could vary, depending on the specific applica-
tion or end-user. Therefore we wanted to develop a method
to change the balance of recall vs. precision. To achieve this,
we introduced a bias parameter, following Minkov et al.,13

that adjusts the model weight associated with the feature
capturing the “prior probability” of a token being labeled as
O. Specifically, this is the feature f�yt, yt�1, x�, t� � 1 iff yt �
O —i.e., the feature that returns a value of 1 only when the
current label is O and which ignores the previous label and
the observations, x�. Increasing this feature’s weight (positive
bias) makes a token more likely to be labeled as O (i.e., the
label corresponding to other, thus improving precision).
Decreasing the weight (negative bias) makes a token less
likely to be labeled O and more likely to be labeled as
something besides O (i.e., one of labels corresponding to a
phrase type), thus improving recall.

In addition to providing a mechanism to improve recall, we
found in general that biasing the resulting system towards
recall had a tendency to improve overall F-measure.

Despite introducing the bias parameter above, we noticed a
tendency for the system to continue to make certain recall
errors. To address this we developed and applied a number
of regular expressions (detailed in the section “Task-driven
feature customizations” below) as a post-process. This con-
stituted the system labeled Carafe-ALL�PP in Table 1.

LingPipe
LingPipe is a software developer’s toolkit of Java classes and
sample implementations for performing a variety of natural
language processing tasks. For the de-identification task, we
chose to use the named-entity tagging features introduced
with LingPipe version 2.3.0. Named entity tagging is imple-
mented in LingPipe through the use of chunkers that
operate on n-gram based character language models.14

Given an unlabeled sentence or fragment of text, a properly
trained LingPipe Chunker instance will use its hidden
Markov model with the statistics it gathered during training
to output the most likely “chunking” for the text, which
labels each chunk with the best-determined tag. Similarly,
an instance of the NBestChunker can output a list of the n
most likely chunkings instead of just the first best. A res-
coring chunker, implemented by the CharLmRescoringChunker
class, uses the output of the NBestChunker and statistics
gathered from the tag transitions in the training data to
re-score each of the n best chunkings. This rescoring process
produces a better top result than the original first-best
Chunker because it incorporates information from longer-
range relationships in the text.

In order to make predictions about the most likely chunking
for an unlabeled segment of text, the hidden Markov model
relies on statistics about the tagged text that are gathered
during a training phase. Training was accomplished by
converting the XML format provided for the task into a
MUC-like format that was readily digested by the

“TrainMuc6.java” class provided in the LingPipe distribu-
tion. We used the default parameters as supplied except for
the number of chunkings rescored, which we doubled from
256 to 512 to yield a modest improvement in precision. Each
tagged sentence in the MUC-labeled input is taken by
LingPipe’s Muc6ChunkParser class as an independent train-
ing observation. In order to allow the model to use contex-
tual cues from the semi-structured format of the medical
records, we simply labeled the entire text of each medical
record as a single “sentence” as was done with the Carafe
systems described above.

Tagging was performed by invoking the “chunk” method
of the CharLmRescoringChunker for each section of text to
be tagged and writing out each chunk as tagged text in
the proper format. Our implementation followed the
“NamedEntityDemo.java” example supplied with Ling-
Pipe and is embedded in a SAX-based XML parser
adapted for this task. No post-processing was performed.
This constituted the system labeled LingPipe in Table 1.

Results
Evaluation Measures
Phrase extraction tasks can be evaluated at either the phrase-
level or token-level. Phrase-level measures assign credit to
systems based on whether entire phrases of multiple words
(the PHI in this task) appropriately match the answer key.
Token-level evaluation assigns credit based on whether each
individual word is assigned a type matching the answer key
phrase type of the phrase to which they belong, independent
of the other words that constitute the phrase. For each of
these two evaluation paradigms, systems are evaluated
based on precision, recall and F-measure.

Precision and recall are computed as:

precision �
tp

tp � fp
recall �

tp

tp � fn

where tp is the number of true positives, fp is the number of
false positives, and fn is the number of false negatives (i.e.,
misses) as determined from the system output. F-measure is
a metric that balances precision and recall and, for the case
where precision and recall are weighted evenly, is com-
puted as:

f _ measure �
2 * precision * recall

precision � recall

For the token-based evaluation, tp (true positives) are simply
the number of tokens assigned the correct type, fp (false
positives) are the number of tokens assigned an incorrect
type by the system, and fn (false negative or misses) are the
number of tokens that the system fails to assign the appro-
priate type to. Tokens that have a type according to the
answer key, but are mistyped will thus count as both a
precision and a recall error. The official score reported for
the AMIA challenge task was a weighted token balanced
F-score that included all true negatives (unlabelled tokens);
this accounts for the extremely high scores reported for this
measure (see Table 1).

For the phrase-based evaluation, tp is the number of phrases
correctly typed and whose extent matches the answer key; fp
is the number of phrases proposed by the system that do not

match (in both type and extent) a phrase in the answer key;
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and fn is the number of phrases in the answer key that do not
match a phrase in the system response. Thus, a system
response phrase overlapping with a phrase in the answer
key but with a mismatch in either extent or type will count
as both a precision and a recall error. Such a metric effec-
tively doubly penalizes extent and type-mismatch errors.
For our results in this paper, we use the MUC phrase scorer5

which separately penalizes type errors and extent errors.
This measure provides partial credit for response phrases
matching in extent but having the wrong type or for phrases
that have the correct type but only partially overlap the key
phrase.

Official Results
Table 1 shows the results for our three submitted systems on
the evaluation data as well as four unofficial runs that were
part of our development process. Our first submission,
Carafe-ALL, consisted of all available features with a preci-
sion-recall bias (described below) tuned to favor entity
F-measure (bias of �1.0) based on five-fold cross-validation
over the training data. Our second system was the LingPipe
system. Our final official system, Carafe-ALL�PP, used
Carafe tuned for high recall (bias of �1.5), plus the manu-
ally-derived post-processing approach described above to
further improve recall.

Our highest official F-measure was attained with Carafe-
ALL�PP, achieving a phrase-based F-measure of 0.9736.
This system achieved a weighted-F-measure of 0.99745
using the official AMIA Challenge scoring metric, a
weighted token F-measure which counted both true posi-
tives and true negatives as the basis of the score. Counting
only true positives, the F-measure was 0.9755. The token-
level metric is useful since even partial matches of entities
may be useful in practice. Moreover, token-level precision
errors from extent mismatches may not be problematic—this
metric effectively gives partial credit for such cases, com-

Table 3 y Regular Expression Features Used for
Baseline PHI Identification System
Reg. Exp. Feature Reg. Exp.

INITCAP [A-Z].*$
ALLCAPS [A-Z]�$
CAPS_MIX [A-Za-z]�$
HAS_DIGIT .*[0-9].*$
SINGLE_DIGIT [0-9]$
DOUBLE_DIGIT [0-9][0-9]$
FOUR_DIGIT [0-9][0-9][0-9][0-9]$
NAT_NUM [0-9]�$
REAL_NUM [0-9]�.[0-9]�$
ALPHA_NUM [0-9A-Za-z]�$
HAS_DASH .*-.*$

Table 2 y Contextual Features (Word and Character) U
Feature Predicate Type Feat

Word Unigrams �to� �Dr.�
W�2 w�1

Word Bi-grams �Dr., Smith�
w�1, w0

Character affixes up to length 2 at w0 �S�
pre(1,w0)
PUNCTUATION [^A-Za-z0-9]�$
pared to the phrase level metric. A number of unofficial
development system results are also reported in Table 1 for
comparison against our official runs. These systems are
discussed in more detail below.

Carafe Development Experiments
This section describes the development we did for Carafe
prior to submitting our official runs. We begin with the
performance of the Carafe-I system (see Table 1), which was
a quick port to this task from a standard Named Entity task,
and then we examine the contribution of various task
specific features on the performance of Carafe. Note that for
all experiments in this paper with Carafe, we set the Gaus-
sian prior, 	, to 10.0b and all results are reported on the
evaluation data for comparison with our official results.

The contextual features used for the Carafe-I system are
shown in Table 2. The left column indicates the formal
description of the feature types and the right column pro-
vides example feature instantiations for a fragment of text,
“A call to Dr. Smith at 1-5555” where the current position in
the sequence is at the word Smith. Regular expression
features over words are shown in Table 3. These features
were developed for a separate Named Entity recognition
task, as described above.

Task-driven Feature Customizations
Analysis of the errors made by the Carafe-I system revealed
two trends: 1) precision was higher than recall by a consid-
erable margin, and 2) performance was poor for LOCATION
and HOSPITAL, and only fair for DATE, DOCTOR and
PHONE types.

We therefore customized specific features to capture some of
the characteristics of this task. We added features consisting
of regular expressions that matched particular tokens or
token sequences. For example, we introduced regular ex-
pressions to match phone numbers, tokens consisting of
exactly n digits (for phone numbers or zip codes), tokens
with a mix of numbers and letters (often IDs), etc. For
capturing larger PHI phrases, such as addresses or certain
hospital names, we created patterns that matched larger
phrases, such as “�CapWord� Medical Center”. A feature
then indicated whether a token was part of a particular
pattern. We also added features to capture context including
the words (and affixes of words) three to the left and two to
the right as well as additional word bi-grams and uni-grams
in the surrounding context. Finally, we obtained substantial
improvement using a lexicon that included US state names,
months, and a large list of English words. The latter list
appeared to help with words not seen in the training data

bWe carried out a number of experiments with different Gaussian
prior values and noticed remarkably little difference in the results

or Baseline PHI Identification System
tantiations at “Smith” in: A Call to Dr. Smith at 1-5555

�Smith� �at� �1-5555�
w0 w1 w2

�to, Dr.� �at, 1-5555� �Dr., at�
w�2, w�1 w1, w2 w�1, w1

�Sm� �th� �h�
pre(2,w0) suf(2,w0) suf(1,w0)
sed f
ure Ins
with different values on these data.
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that were in fact common English terms. This avoided
confusion with unseen words that might be entity names. A
summary of the additional regular expressions and contex-
tual features are shown in Table 4 and Table 5.

To ascertain the utility of these features, we added the
lexicon features (called Carafe-I�L) and the additional
contextual features, including regular expressions, (called
Carafe-I�RC) separately to the Carafe-I system to deter-
mine the improvement in performance provided by each of
these feature sets. The results of adding these feature groups
are shown in Table 1. Early runs on the development data
did not indicate a strong contribution from the lexicon
features, but the lexicon clearly provided a very large
improvement on the evaluation data for both precision and
recall. There was considerable, but lesser, improvement
from the additional regular expressions and contextual
features.

Effect of Bias and Summary of Performance
After receiving our official evaluation results, we investi-
gated whether or not we selected the optimal bias for our
systems. Using the Carafe-ALL system, we plotted the
precision-recall curve obtained by setting the bias to differ-
ent values. This curve is shown in Figure 2 together with
precision/recall scores for all of the official and unofficial
Carafe runs shown in Table 1. The Carafe-ALL system using
an optimal bias (of �1.75) achieved a balanced phrase
F-measure score of 0.9756 which is slightly better than our
official best run, Carafe-ALL�PP (with a balanced phrase
F-measure of 0.9736). Note that the Carafe-ALL�PP results
are slightly below this curve indicating that although post-
processing rules do improve recall, this comes at a cost in
overall F-measure potential. The Carafe-ALL official run
clearly did not have the optimal bias with respect to the
evaluation data, showing considerably lower recall.

Learning Curves
Typically, manual annotation of training data is expensive
and time consuming. An important question with any
machine learning-based approach is: How much training
data is required to achieve a certain level of performance?
We address this question in this section by examining the
learning curve on the test data. Figure 3 shows the number of
training documents (on the x-axis) and the corresponding

Table 4 y Task-Specific Regular Expressions Features
Feature Name Regular Expression

PHONE_REG1 [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$
PHONE_REG2 [0-9][0-9][0-9]-[0-9][0-9][0-9]-[0-9]

[0-9][0-9][0-9]$
FIVE_DIGIT [0-9][0-9][0-9][0-9][0-9]
NO_VOWELS [^AaEeIiOoUu]�$
HAS_DASH_NUM_ALPHA .*[A-z].*-.*[0-9].*$ | *.[0-9].*-.*[0-9].*$
DATE_SEP [-/]$

Table 5 y Contextual Pattern Features for Capturing H
Example Co

�INITCAP� �Hospital|Health|
�INITCAP� �INITCAP� �Hospital|H

�INITCAP� �INITCAP� �INITCAP� �Hos

�NAT_NUM� �INITCAP� �Dr.|Blvd.|Ln.|etc.� ,
F-measure results (on the y-axis) for the evaluation data. The
subsets of training documents were selected randomly from
the entire training set. These results use the Carafe-ALL
system with a bias value of �1.75.

The results here are somewhat surprising. With only 2
percent of the training data (only 13 medical records), the
performance is over 0.80 F-measure. Additionally, various
adjacent points on the curve are, in fact, statistically insig-
nificant from each other. For example, the system trained
with 60 percent of the training data is statistically indistin-
guishable from the system trained with 70 percent of the
data.

Error Analysis of Carafe System
We performed an error analysis of the output of the Carafe-
ALL system. Errors fall into several broad classes. Instances
where the system assigned the wrong label to an entity
are type errors. An example is “�DOCTOR�Veteran’s
Day�/DOCTOR�”: the extent of tagged material is correct,
but the label should be DATE. Instances of the wrong
amount of text (either too much or too little) are extent errors.
For example, “�HOSPITAL�Tarcet Health�/HOSPITAL�
Systems” is an extent error because in the key the full string
“Tarcet Health Systems” is tagged HOSPITAL. The other
major classes of errors are missing (tag present in key but not
in system output), and spurious (tag present in system
output but not in key). Table 6 shows a summary of all
errors produced by Carafe.

Although the total number of errors produced by Carafe is
small, 50% of the errors are missing tags. From the stand-

als and Locations
al Patterns

enter|Medical Center|Morgue�
Care Center|Medical Center|Morgue�
ealth|Care Center|Medical Center|Morgue�

F i g u r e 2. Phrase precision and recall for the official and
unofficial Carafe systems and precision-recall curve for
Carafe-ALL.
ospit
ntextu

Care C
ealth|

pital|H

�INITCAP�, �INITCAP� , �FIVE_DIGIT�
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point of protecting PHI, missing tags can result in the
disclosure of PHI and are therefore more serious than
spurious tags. Table 7 shows the breakdown by type of
correct, incorrect, missing, and spurious tags produced by
the Carafe system (extent errors appear later in Table 8).

Correctly tagged items can be seen reading down the
diagonal in Table 7. Type errors appear in bold text, missing
tags appear down the right in italic text, and spurious tags
appear along the bottom in italic text. Extent errors are not
visible in Table 7. Type errors are rare, with only eight
occurrences, five of those being LOCATIONs mis-tagged as
HOSPITALs (e.g., “. . .transfer back to Balau for care. . .” or
“returns back to Grovecu And. . .”).

Spurious tags are also rare (indicating high precision) with
the exceptions of DATE (22 spurious tags of of 1929), and
LOCATION (3.9% or 3 out of LOCATION tags are spuri-
ous). Missing tags occur most often for LOCATION (40 out
of 119 tags or 33.6% missed) and HOSPITAL (30 of out of 676
or 4.4% missed), but also affect DATE, DOCTOR, and
PHONE). All missed tags are harmful, but the percentages
and the percentages for PATIENT (3.3% or 8 out of 245), and
ID (0.3% or 3 out of 1143) should be particular cause for
concern in a real application setting.

Table 8 shows a breakdown of extent errors. Numbers in the
short row indicate instances where the tag produced by
Carafe did not span the entire text of the corresponding tag
in the key, while numbers in the long row indicate instances
where the tag produced by Carafe spanned more text than
the corresponding tag in the key.

More than half of the extent errors occurred on HOSPITAL,
with many instances of both long and short errors. For
example, the key has an instance of “Box Memorial Hospital
Nursing Home” tagged as HOSPITAL, while Carafe tagged
just “Box Memorial Hospital” as HOSPITAL (short extent
error). An example long extent error on HOSPITAL is

F i g u r e 3. Learning curve showing the Phrase F-measure
score on the evaluation data for systems trained with
varying percentages of the entire set of training data.
“Kentnaalvet Medical Center” (key), versus “Burn Unit on
Kentnaalvet Medical Center” (Carafe output). Note that
there was one extent error that was both short and long—the
Carafe output was offset compared to the key, failing to
capture the full key string, but was also longer than the key
string. Extent errors for some tag types are skewed in one
direction. All of the sixteen extent errors on DOCTOR are
long (e.g., “NISTE MARHALT”—key; “SURG AG NISTE
MARHALT”—output). There were only 4 extent errors for
PHONE, but they were all short (failure to include either
area code or extension). A breakdown of precision, recall,
and F-measure for each tag type, accounting for all error
types, appears in Table 9. In much the same way that
missing tags are more important that spurious tags for
de-identification, short tags are more potentially harmful
than long tags, because they expose a portion of PHI. It
should be noted however that not all tokens missed because
of a short tag are equally problematic. When the missed
word is very common (such as “hospital”, “clinic”, or even
“John”), there is a very low chance that any real exposure of
the patient’s identity will occur. In the final discussion, we
consider ways to factor this into the scoring.

Discussion
For medical record anonymization, perhaps more than most
other tasks, perfect or near-perfect performance is critical.
Given the privacy protections required by the Health Insur-
ance Portability and Accountability Act (HIPAA), perfect
recall is most essential to prepare the release of de-identified
records: false negatives represent unauthorized disclosure of
PHI. Systems can, of course, be adjusted to provide ex-
tremely high recall, at the expense of precision. The intended
application of the materials will dictate whether the loss of
precision is tolerable at the required recall.

For the foreseeable future, the best solution for most appli-
cations may be an interactive system that combines auto-
mated de-identification with human review. It is important
to understand that even a fully human process will result in
occasional errors and may result in unintentional disclosure
of PHI. The aim of a partially automated system would be to
make the process much more efficient with negligible dan-
ger of revealing sensitive information. One approach to
improving the efficiency of human review is to have the
person review only those records (or portions thereof) that
cannot be confidently marked by automatic means. To do
this, it is important for systems to provide well-calibrated
confidence estimates along with their output. Records with
low confidence estimates will be subject to thorough review;
those with high confidence can be reviewed quickly or not at
all. This approach is used, for example, in Pakhomov et al.,
200615 for partially automated assignment of diagnostic
codes to medical records.

In our system, since we treat entire medical records as

Table 6 y Errors Produced by Carafe System
Count % of Errors

INCORRECT 8 3.1%
MISSING 131 50.0%
SPURIOUS 40 15.3%
EXTENT 83 31.7%
single sequences, we were able to obtain the (negative)
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log-probabilities for each processed record using the
forward-backward algorithm in Carafe. Figure 4 shows
how these tagged records, ranked by conditional log-
probability, correlate with the F-measure from the Carafe-
ALL system. The x-axis indicates the rank for a particular
record based on the probability assigned to it. Importantly,
the top 35 documents ranked by probability were tagged
perfectly. Note also that a record’s length correlates with
F-measure (shorter documents tend to having higher
scores), but this correlation isn’t as strong as with Carafe’s
probability estimates: using Spearman’s rank correlation
statistic (rs), we have rs � 0.7267 for rank correlation with
log-probability and rs � 0.5392 for rank correlation with
record length.

There are a number of refinements in the task scoring
function that might be used to close the gap between system
performance and the requirements of a deployed application
for de-identification. We hinted at some of these earlier
when discussing the types of errors made by our system.
Consider first that type errors (e.g., identifying a hospital as
a location) would not result in unintentional disclosure of
PHI. If the type were used to replace the PHI with synthetic
data, the effect of misclassified types would be potentially
confusing but it is otherwise innocuous. Next consider
extent errors. When the marked extent of some PHI is
over-long, no leakage of PHI occurs. In such a case the token
recall metric with respect to PHI tokens does correctly reflect
the fact that no leakage has occurred, though its effects are
largely obscured because that metric is dominated by all of
the non-PHI tokens that are correctly “not-tagged”.

A closer examination of the extent errors that are too short
suggest several approaches for refining the scoring metric.
The bulk (77%) of our short-tag errors occurred with hospi-
tals. The untagged words for these 33 cases occur in two
groups: 1) common nouns and phrases which disclose
virtually no information about a patient:

Systems (as in “Tarcet Health Systems”)

Table 7 y Breakdown of Carafe Correct, Incorrect (Typ
Row) Tags

Key AGE DATE DOC HOSP

AGE 2
DATE 1906 1
DOC 1050
HOSP 1 645
ID
LOC 5
PT 1
PHONE
spurious 0 22 (1.1%) 6 (0.6%) 5 (0.8%) 3
Total 2 1929 1058 655

Table 8 y Counts of Extent Errors in Carafe Output
AGE DATE DOCTOR HOSP

SHORT 0 1 0 33
LONG 0 3 16 17
S&L 0 0 0 1

Total 0 4 16 51
Services (as in “Lympnanier Health Services”)

Nursing Home (as in “Box Memorial Hospital Nursing
Home”);

or 2) proper names that might allow one to deduce the
relevant PHI:

Fairm of (as in “Fairm of Ijordcompmac Hospital”)

Ingree and Ot (as in “Ingree and Ot of Weamanshy Medical
Center”).

A refinement of the scoring function that distinguished these
cases would better represent the system’s true performance
at protecting PHI. A more accurate metric, used during
system training, might yield improved system performance
as well. From these examples, we can infer that we might
better judge the cost of not tagging these words by under-
standing the likelihood that revealing these words would
allow one to specifically identify a patient’s PHI. We might
model these likelihoods using the “information content” of
the words, using, for example, the a priori probabilities of
the occurrence of these words in relevant corpora. Words
such as “systems,” “services,” and “nursing” are common in
most corpora whereas words such as “Fairm” and “Ingree”
are not. It should be possible then, to more accurately
predict the probability of leaking PHI using information
content measures in the scoring metric. There may be a way
to use these unigram probabilities during training to im-
prove the recall error rate.

A further consideration of the information content approach
could be applied during human review to identify missed tags.
For categories of Doctor, Hospital, and Patient, many of our
misses include low-probability (in fact, previously unseen)
words. In order to catch our misses we could favor showing a
reviewer phrases with these high-content terms.

In an interactive system, we would also have an opportunity to
explore a machine learning paradigm known as active learning.
In active learning, iterative feedback from a human review is

ors), Missing (Right Column), and Spurious (Bottom

Output

LOC PT PHONE Missing Total

1 (33.3%) 3
24 (1.2%) 1931
20 (1.9%) 1070
30 (4.4%) 676

3 (0.3%) 1143
74 40 (33.6%) 119

236 8 (3.3%) 245
53 5 (8.6%) 58

3 (3.9%) 1 (0.4%) 0 40
77 237 53 131 5285

ID LOC PATIENT PHONE Total

2 3 0 4 43
0 2 1 0 40
0 0 0 0
e Err

ID

1140

(0.3%)
2 5 1 4 83



572 WELLNER et al., Rapidly Retargetable De-Identification
used to retrain the automated methods. Examples are selected
for review primarily on the basis of their present ambiguity.
That is, it is usually most advantageous to seek additional
judgments on records (or portion thereof) that will provide the
greatest additional discriminatory power to the algorithm.
Records whose taggings have low-confidence estimates are
often used as review candidates in these systems. Given that
our learning curves demonstrate that we quickly reached a
region of diminishing returns, active learning might be a key to
boosting performance beyond the current level without tag-
ging inordinate amounts of additional data.

Conclusion
De-identification is an important task in medical infor-
matics. Its successful application has the potential to
vastly improve research in many areas of medicine by
making large amounts of clinical data available to re-
searchers while protecting patient privacy. We see the
primary goals of de-identification systems as being: 1)
High performance—systems must perform at very high
levels of overall accuracy to protect privacy and to avoid
removing important medical data; 2) Rapid Retargeting—
systems should require limited task-specific feature engi-
neering and as little annotated training data as possible to
perform well; 3) Adjustability—systems should be adjust-
able, to accommodate different evaluation metrics, since,
for example, recall may be more important than precision
by some degree; 4) Introspectivity—systems should be able
to reliably characterize the certainty of their own output
to allow for more intelligent review, and corrective an-
notation of automatically de-identified data; and 5) Inter-
activity— even very high-performing systems will need to
be subject to human review. This requires a system able to
interact with users to ensure properly de-identified data.
Additionally, interactive annotation would allow the sys-
tem to improve faster by selecting data for user annota-

F i g u r e 4. Scatter plot showing F-measure correlating

Table 9 y Phrase Precision, Recall, and f-measure for C
AGE DATE DOCTOR HOSP

Recall 66.67 98.71 98.13 95.41
Precision 100.00 98.81 99.43 99.08
F-measure 80.00 98.76 98.78 97.21
with rank as determined by negative log-probability.
tion that, when annotated, offers the best chance of
improving the system.

In this paper, we have addressed goals 1– 4 in significant
ways. We have demonstrated a high performing de-
identification system that achieved the best overall results
at the AMIA De-identification challenge workshop. Our
methodology was specifically focused on rapidly tailoring
existing systems for this task with great success: both
Carafe and Lingpipe worked well out of the box with little
tailoring. Additionally, the learning curve for Carafe
indicated that high-performance is achievable on this task
with a fraction of the total training data. We introduced a
bias parameter in this work that begins to address the
notion of cost sensitivity by allowing the system to trade
off precision and recall at runtime. Finally, we have
demonstrated an introspective system by establishing that
Carafe’s confidence scores for its own output correlate
well with performance (F-measure). This positions us well
to pursue the development of interactive de-identification
systems in future work.
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