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PROTEMPA: A Method for Specifying and Identifying Temporal
Sequences in Retrospective Data for Patient Selection

ANDREW R. POST, MD, PHD, JAMES H. HARRISON, JR., MD, PHD

A b s t r a c t Objective: To specify and identify disease and patient care processes represented by temporal
patterns in clinical events and observations, and retrieve patient populations containing those patterns from
clinical data repositories, in support of clinical research, outcomes studies, and quality assurance.

Design: A data processing method called PROTEMPA (Process-oriented Temporal Analysis) was developed for
defining and detecting clinically relevant temporal and mathematical patterns in retrospective data. PROTEMPA
provides for portability across data sources, “pluggable” data processing environments, and the creation of
libraries of pattern definitions and data processing algorithms.

Measurements: A proof-of-concept implementation of PROTEMPA in Java was evaluated against standard SQL
queries for its ability to identify patients from a large clinical data repository who show the features of HELLP
syndrome, and categorize those patients by disease severity and progression based on time sequence
characteristics in their clinical laboratory test results. Results were verified by manual case review.

Results: The proof-of-concept implementation was more accurate than SQL in identifying patients with HELLP
and correctly assigned severity and disease progression categories, which was not possible using SQL only.

Conclusions: PROTEMPA supports the identification and categorization of patients with complex disease based
on the characteristics of and relationships between time sequences in multiple data types. Identifying patient
populations who share these types of patterns may be useful when patient features of interest do not have
standard codes, are poorly-expressed in coding schemes, may be inaccurately or incompletely coded, or are not
represented explicitly as data values.
� J Am Med Inform Assoc. 2007;14:674–683. DOI 10.1197/jamia.M2275.
Introduction
Health care institutions store large volumes of patient data
that represent phenotypic responses associated with disease
presentation and progression, and response to therapy.1,2

These responses may be reflected by time sequences of
laboratory test results, medical observations, clinical orders,
coded diagnoses and other time-stamped data elements that
are mathematically and temporally related.3–7 Common
clinical data retrieval systems that are implemented in
standard relational databases do not provide tools for char-
acterizing such data sequences or retrieving groups of
patients whose data sequences have similar features.1,8–12

As a result, patient characteristics that are not explicitly
coded and are represented as mathematical patterns or
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temporal relationships between data elements are difficult to
include in clinical, quality assurance or outcomes research
studies.

The need for an improved ability to represent and query
temporal relationships in databases has been recognized for
many years.13 Unfortunately, attempts to add standard
temporal extensions to Structured Query Language (SQL)14

have been unsuccessful and the current SQL standard sup-
ports only limited temporal features (for a brief review, see
Adlassnig et al. 2006).13 Separate development efforts spe-
cifically targeting clinical data have resulted in several
systems that provide sophisticated temporal query layers on
top of relational databases. Such systems, for example
AMAS,9 DXtractor15 and Chronus II,16 generally implement
a query language with temporal capabilities. While these
languages are expressive for temporal and sequential rela-
tionships between specified data elements, they typically do
not support recognizing and querying for time series that
express shared characteristics such as frequency relation-
ships or trends. SQL-based temporal query languages also
embed database schema information within queries, limit-
ing their portability unless an intermediate relational repre-
sentation is used to abstract local databases.17 Though
designed for a different purpose, the Arden Syntax18,19 can
specify rules (medical logic modules, MLM) that identify
patients based on temporal relationships between individual

data values. Detecting some types of patterns within data
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sequences is technically possible, though awkward, using
Arden’s limited set of mathematical functions. Arden MLMs
also suffer limited portability resulting from embedded
database-specific information.20

A second group of temporal data analysis systems has been
developed specifically to recognize the characteristics of
time sequences, using a method called temporal abstrac-
tion.21 Temporal abstraction systems (for a recent survey,
see Stacey and McGregor)22 infer states or processes implicit
in subsequences of time-stamped data and represent them
with abstractions that specify an interval of time over which
a state or process exists. Abstractions may be inferred from
raw data sequences based on mathematical relationships in
the data (low-level abstractions), or from combinations of
previously-inferred abstractions based on temporal relation-
ships between their intervals (high-level abstractions). Exist-
ing systems generally offer a built-in set of low-level abstrac-
tion primitives (e.g., state and trend) that are used by
knowledge experts as templates for defining low-level ab-
stractions. To date, temporal abstraction has been employed
primarily for the identification of data patterns of interest in
individual patients for data summarization in patient mon-
itoring and decision support,7,23–29 and information visual-
ization.30–32

Temporal abstraction systems have the potential to identify
patient populations that show patterns in time sequences of
interest for research and quality assurance studies, but this
possibility has not been demonstrated. Chronus II (men-
tioned above) contains a temporal abstraction module and
can combine temporal query with temporal abstraction,16,33

but the performance of this approach for identifying groups
of patients with similar temporal profiles has not been
described. The IDAN architecture34 supports specifying
high-level abstractions in temporal queries, but its use has
been demonstrated only for monitoring tasks in individual
patients. Existing temporal abstraction implementations also
have limitations for application to research queries. The
built-in primitives from which low-level abstractions are
constructed appear to reflect the intended use of those
systems (e.g., patient monitoring) and may not be designed
optimally for other settings. In addition, primitives and
low-level abstractions may not be accessible to users for
modification and experimentation. Clinical research queries
are difficult to predict and may be problem-specific, they
may involve processing longer time sequences using more
complex algorithms than monitoring tasks, and they may
involve data exploration in which abstraction definitions
must be iteratively optimized.

We believe that temporal abstraction can be an important
complement to standard database query methods in clinical
research settings. This complementary relationship35 has
been recognized in decision support, but has not been
clearly articulated or demonstrated with respect to research
queries. As a proof of this concept, we present a method,
called PROTEMPA (Process-oriented Temporal Analysis),
for specifying temporal and mathematical relationships be-
tween data elements in standard time-stamped databases,
and retrieving populations of patients who show those
relationships. PROTEMPA builds on the features of the
temporal abstraction systems described above but is applied

here to retrospective analysis. It does not depend on built-in
temporal abstraction primitives, but instead provides a
framework for defining, storing, and modifying a library of
primitives and abstractions that may be general-purpose or
task-specific. To determine whether our approach facilitates
identification of patient populations containing temporal
intervals of interest, we implemented PROTEMPA in soft-
ware and evaluated its ability to 1) identify a subset of
patients from a large clinical data repository who show the
features of HELLP (Hemolysis, Elevated Liver enzymes, and
Low Platelets) syndrome and 2) stratify those patients by
disease severity and progression, based on the time se-
quence characteristics in their clinical laboratory test results.

Design Objectives
Our goal is to create tools that identify sequences of clinical
events and observations based on mathematical and tempo-
ral relationships between their data elements, and retrieve
patient populations containing those sequences from clinical
data repositories. These tools should support a variety of
tasks, including clinical research, and should not constrain
future research questions. They should therefore provide
substantial flexibility in specifying the relationships that are
used to define data sequences, and these definitions should
be portable across underlying databases of varying struc-
ture.

We believe these goals are best met by extending existing
temporal abstraction strategies to support retrospective
query and user management of abstraction definitions. To
simplify the creation and maintenance of knowledge about
data sequences and to allow reuse of abstraction definitions
across multiple settings, the system should provide an
internal model for time series data, and a framework for
building and modifying a library of temporal abstraction
primitives and abstraction definitions. Abstraction primi-
tives containing algorithms that recognize time series char-
acteristics should be straightforward to construct and use in
defining low-level temporal abstractions. Because disease
and clinical care processes may be reflected by multiple
related data sequences, each with characteristic features
(e.g., time courses of change in several laboratory tests
following a clinical procedure), the framework must also
allow specification of temporal relationships between
groups of abstractions to define higher-level abstractions. To
be broadly useful, the design must support interoperability
with existing data stores and integration into standard
networked computing environments.

Design
PROTEMPA is a software library with a modular archi-
tecture that is callable through defined Application Pro-
gramming Interfaces (APIs). The following description
provides a generic overview of PROTEMPA’s structure
and the subsequent section describes our implementation
in Java. PROTEMPA has four modules, shown in Figure 1,
that provide 1) a framework for defining temporal abstrac-
tion primitives and processing time-stamped data with
those primitives (the Algorithm Source), 2) a framework for
specifying algorithm parameters and interval relationships
that define abstractions of interest (the Knowledge Source),
3) a connection to an existing data store (the Data Source),
and 4) a data processing environment for managing the

abstraction-finding routines (the Abstraction Finder). The
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first three modules have back ends that implement environ-
ment- or application-specific features.

A program using PROTEMPA initiates a temporal abstrac-
tion search by passing a list of abstraction names and a date
range to an API provided by the Abstraction Finder. The
Abstraction Finder retrieves definitions and data require-
ments for each abstraction from the Knowledge Source. It
then extracts the data needed to compute those abstractions
from the Data Source, performs temporal abstraction (calling
the Algorithm Source as required), and returns a chronolog-
ical list of named time interval objects.

PROTEMPA’s Abstraction Finder decomposes temporal ab-
straction into three mechanisms: a low-level mechanism that
applies temporal abstraction primitives defined in the Algo-
rithm Source to time-stamped data, and two high-level
mechanisms (discussed below) that apply interval relation-
ships defined in the Knowledge Source to temporal intervals
previously identified during processing. The low-level
mechanism scans a sequence of time-stamped data using a
sliding window to select successive data subsequences,36,37

as shown in Figure 2. A default length for the sliding
window is specified as part of the primitive definition and
may be modified in an abstraction definition (see below).
The subsequence beginning with each data element is
passed to the Algorithm Source for processing, and found
abstractions that are overlapping or adjacent are joined (see
interval combination procedure, below). The identity of the
temporal abstraction primitive, arguments for the primi-
tive’s algorithm and constraints on permissible sequence
lengths and temporal spans for each abstraction are speci-
fied in abstraction definitions in the Knowledge Source.
When a data subsequence matches the mathematical con-
straints specified by an algorithm, argument and constraint
set, the low-level mechanism returns an interval element

scanning a time series of platelet counts. In this example a
jacent platelet values are increasing (PLT incr) or decreasing

ccessive sequences with lengths specified in the primitive or
val combination procedure (see Design) combines adjacent
F i g u r e 1. PROTEMPA architecture. PROTEMPA is a
modular software library that implements an extension of
the temporal abstraction method40 for retrospective clinical
data retrieval. The Abstraction Finder controls data process-
ing and is supported by the Data Source, Knowledge Source,
and Algorithm Source modules. Backends provide inter-
faces to specific data or knowledge stores. Arrows represent
dependencies between modules. A PROTEMPA application
is a program that calls the PROTEMPA library through a
defined API.
F i g u r e 2. Illustration of the low-level abstraction mechanism
trend primitive (TREND) is used with criteria for determining if ad
(PLT decr). The sliding window mechanism (see Design) selects su
abstraction definition. After the intervals are identified, the inter
vals.
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that includes the name of the abstraction and start and end
times corresponding to the timestamps of the earliest and
latest data values in the matching subsequence.

Processing for the high-level abstraction mechanisms is con-
tained within the Abstraction Finder module. The first mech-
anism, temporal pattern, scans for groups of intervals with
sequential, overlap, or co-occurrence temporal relationships.
Relationships are specified in the Knowledge Source as mini-
mum and maximum temporal distances between the end-
points of pairs of participating intervals,38,39 and constraints
may also be specified on the minimum and maximum duration
of each interval in the group. When a group of intervals is

F i g u r e 3. Activity diagram of PROTEMPA’s processin
stamped data sequences (A) for time intervals that corresp
(Figure 1). Found intervals (B) are subsequently scanned by
ing to defined temporal pattern and temporal slice abstractio

F i g u r e 4. Class diagrams of PROTEMPA’s temporal abst
for abstractions (A) are provided to represent low level, tem
abstracted intervals (Elements, B) belong to Patients a
numerical or textual Value, including floating point (Doubl
values with associated units, categorical values (NominalVa
codes from standard vocabularies (CodedValue). Time-stam
time units; intervals (IntervalElement) are associated wi

gender and race are represented as ConstantElements.
found that satisfies the defined relationships and constraints,38

a named interval is created that typically encompasses the
temporal extent of the group but may alternatively be tempo-
rally offset relative to the intervals in the group. A returned
interval might best correspond to the full temporal extent of the
group, to one of the contributing intervals, or to a newly-
defined time span that represents the anticipated extent of a
clinical response or a period of risk. The ability to offset the
returned interval using existing intervals as references sup-
ports this flexibility.

The second high-level mechanism, temporal slice, processes
all intervals of a given type as a chronological list and

uence. The low-level abstraction mechanism scans time-
o low-level abstractions defined in the Knowledge Source
gh-level mechanisms, which add new intervals correspond-
, repeatedly processing all intervals until no more are found.

n definitions (A) and data model (B). Three types of classes
pattern and temporal slice abstractions. Data elements and

ve one or more Attributes, each of which may have a
ue) and inequality numerical (InequalityDoubleValue)
ordinal values (OrdinalValue) and values represented as
data (DataElement) are associated with a time point with
rt and finish times with time units. Atemporal data such as
g seq
ond t
the hi
ractio
poral
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returns new intervals that are copies of an ordinal range, or
“slice,” of the intervals in the list (e.g., the first two intervals
of therapy with a particular drug among multiple courses of
therapy). This mechanism can return the first, last or other
intervals of a particular abstraction based on arguments
specified in the Knowledge Source. The high-level mecha-
nisms are similar to the temporal pattern matching40 and
cardinality constraint41 mechanisms described previously.

The Abstraction Finder also implements an interval combina-
tion procedure that joins pairs of intervals of the same type if
their nearest endpoints are within a defined maximum time
limit, similar to previously described horizontal temporal
inference and temporal interpolation mechanisms.40 When
the limit is satisfied, the pair of intervals is replaced by a new
interval of the same type that spans the two intervals’
temporal extent. These optional combination limits are spec-
ified for the low-level and temporal pattern mechanisms as
part of the definition of an abstraction in the Knowledge
Source.

The Abstraction Finder module implements a data process-
ing sequence that incorporates the three abstraction mecha-
nisms (Figure 3). When processing is initiated, the low-level
mechanism scans time-stamped data and identifies intervals
corresponding to low-level abstractions. The temporal pat-
tern and slice mechanisms then operate on these intervals,
repeatedly adding new intervals until no more are found.
When new intervals are created, they become available for
further processing. Intervals are cached so that subsequent
calls to the Abstraction Finder’s API do not cause the same
intervals to be re-computed. Specific examples of the low-
and high-level abstractions are discussed in the Evaluation
section, below.

The Abstraction Finder is supported by the Algorithm
Source, Knowledge Source and Data Source modules (Fig-
ure 1). The Algorithm Source provides a method for storing,
and a run-time environment for executing, temporal abstrac-
tion primitives that support the low-level temporal abstrac-
tion mechanism described above. Primitives consist of an
algorithm in an arbitrary programming language, a default
sequence length for the sliding window mechanism and an
optional set of parameters that define arguments the algo-
rithm can receive at run time. Algorithms without parame-
ters identify a specific mathematical data pattern and are
essentially self-contained; parameters allow for algorithms
that detect a general pattern (e.g., a trend) and are passed
arguments (starting or ending cutoff values, slope, etc.) at
run time that define particular instances of the pattern for
different settings. Low-level abstractions that use primitives
with arguments include the name of the primitive and
specific arguments for it in their definition (see below). The
Algorithm Source backend manages the transfer of data to
and from the primitive storage and algorithm run-time
environments.

The Knowledge Source provides for storage and retrieval of
abstraction definitions, each of which specifies an abstrac-
tion mechanism, a set of mechanism-specific parameters as
shown in Figure 4A, and the data or interval types it uses.
Abstractions that use the low-level mechanism specify the
name of a temporal abstraction primitive, a set of constraints

for the abstraction that include duration and sequence
length limits (which may override the default sequence
length in the primitive), and, if appropriate, arguments for
the primitive’s parameters. Abstractions that use the tempo-
ral pattern mechanism specify a set of temporal relation-
ships between a group of previously defined abstractions
and, if appropriate, constraints on the durations of the
abstractions in the group. Abstractions that use the temporal
slice mechanism specify a previously defined abstraction
and an ordinal range. Abstractions that use the low-level or
temporal pattern mechanisms also optionally specify inter-
val combination limits for use by the interval combination
procedure. A Knowledge Source backend connects to a
knowledge base for storage of these definitions.

The Knowledge Source additionally defines a general-pur-
pose model, shown in Figure 4B, for representing time-
stamped data and intervals within PROTEMPA’s modules
and abstraction definitions. Time-stamped data types have
one or more attributes, each of which may have a numerical
or textual value. In addition to, for example, a laboratory test
result, these attributes provide data “slots” for information
about the event and designators such as standard terminol-
ogies. Interval types may have one such attribute for repre-
senting a value associated with the interval, and start and
finish times with time units. PROTEMPA supports standard
time units from second to year, automatically converts
between time units, and automatically resolves time granu-
larity in comparison operations to the coarsest unit.42

The Data Source provides a connection to a physical data-
base containing time-stamped clinical data, a mapping from
the schema and terminologies of the database to the data
model described above, and any necessary data processing
methods (e.g., unit conversion routines). The database con-
nection, mapping and processing methods are implemented
in the Data Source backend. The other PROTEMPA modules
call the Data Source’s API to request specific patient data
over a defined date range.

Implementation
We implemented PROTEMPA using the Java Software De-
velopment Kit version 1.4.1 (java.sun.com) on Apple Power
Mac G5 hardware running Mac OS X 10.3 (Apple Computer,
Inc.). PROTEMPA’s modules (Figure 1) are Java classes that
run in a single process, and the PROTEMPA API can be
called from any Java program. Abstraction finding incre-
mentally matches intervals and raw data to abstraction
definitions using the Rete algorithm43 as implemented by
the Drools rules engine.44 PROTEMPA has been successfully
deployed on Mac OS X and on standard PC hardware
running Windows XP (Microsoft Corp.).

The backends (Figure 1) are also Java classes; their class
names are specified in a configuration file and loaded
dynamically into the Java virtual machine. Abstraction def-
initions are stored in a knowledge base implemented in the
Protégé ontology environment,45 which provides for object-
oriented storage, representation of complex interrelation-
ships between objects, and evolution of schemas over time.
The Knowledge Source backend connects to Protégé using
its built-in Java API. The Data Source backend maps PRO-
TEMPA’s data type designators to local terminologies and
implements a connection to a MySQL relational database

(www.mysql.org) via JDBC. The Algorithm Source backend

http://www.mysql.org
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provides the R statistical computing system46 as the execu-
tion environment for temporal abstraction primitive algo-
rithms, using software from the RoSuDa project47 that
supports execution of R source code from Java programs.
The algorithms are written as functions in the R language
and stored as text in another Protégé knowledge base that is
accessed through the Algorithm Source backend.

Evaluation
We evaluated PROTEMPA’s performance by using it to
identify patients with laboratory signs of HELLP syn-
drome48 in a clinical data repository and categorize those
patients according to specific features of their platelet count
profiles. HELLP is a dangerous complication of pregnancy
that appears during the latter part of the third trimester or
after childbirth.48 There is no standard diagnosis code
(ICD-9) for HELLP. Diagnosis and management are based
on monitoring clinical symptoms and three clinical labora-
tory tests: platelet count (PLT), serum lactate dehydrogenase
(LDH), and serum aspartate aminotransferase (AST).
HELLP syndrome has been defined as pre-eclampsia with
PLT � 100,000/�L, LDH � 600 U/L, and AST � 70
U/L,49,50 and rising PLT indicates recovery.50 The PLT nadir
can be used to classify a HELLP patient by disease severity:
class 1 HELLP, PLT � 50,000/�L; class 2 HELLP, PLT ��
50,000/�L and � 100,000/�L.51 There is clinical interest in
our facility in the characteristics and therapeutic circum-
stances of HELLP patients who show a partial recovery of
PLT followed by a second suppression. Formerly, identify-
ing these patients required extracting patients by pregnancy
diagnosis code and inspecting their laboratory results by
hand.

To determine whether PROTEMPA could be used to iden-
tify and categorize patients with laboratory signs of HELLP,
we retrieved a set of cases from the University of Virginia’s
Clinical Data Repository (CDR)12 that occurred between
2000 and 2005, had ICD-9 codes indicating pregnancy and
had at least one LDH � 300 U/L. All available laboratory
test results and diagnosis codes for each case were exported
from the CDR and imported into our test implementation’s
data store. Laboratory data were originally obtained as part
of routine clinical care using standard analysis methods.
Institutional Review Board approval was obtained.

We defined five temporal abstractions (Figure 4A) that
distinguish between the two disease severity categories
(HELLP 1 and HELLP 2, as defined above) and four PLT
response categories: 1) those that recovered after PLT sup-
pression (First recovering), 2) those that partially recovered,
recurred and then recovered (Recurring with recovery), 3)
those that partially recovered, recurred and then did not
recover (Recurring), and 4) those that showed no evidence of
recovery (all others). These five abstractions are defined
using general primitives for detecting states, trends, and the
minimum value in a data sequence, with arguments specific
for PLT, LDH, and AST. The HELLP 1 and HELLP 2
abstractions use the temporal pattern mechanism, and spec-
ify intervals of elevated AST, elevated LDH, and low PLT
occurring within 7 days of each other with a minimum PLT
value of less than 50,000/�L or between 50,000/�L and
100,000/�L, respectively. The First recovering abstraction

uses the temporal slice and temporal pattern mechanisms. It
specifies the first trend interval in platelet values, beginning
after the start of a class 1 or 2 HELLP interval, that has an
increase of more than 9,000/�L per day and a duration of at
least 12 hours. The Recurring abstraction uses the temporal
pattern mechanism and specifies an interval of First recover-
ing followed by a platelet trend with a decrease of more than
9,000/�L per day to an endpoint of less than 100,000/�L.
The Recurring with recovery abstraction uses the temporal
pattern mechanism and specifies an interval of Recurring
followed by a platelet trend with an increase of more than
9,000/�L per day to an endpoint of at least 100,000/�L. A
platelet profile with these abstractions is shown in Figure 5,
and the definition of the Recurring abstraction is illustrated
in Figure 6.

A simple Java application invoked the PROTEMPA library
with database connection information, Protégé knowledge
bases defining the abstractions and algorithms, and a list of
abstractions to find; and it output found intervals for each
case to a text file. The abstraction definitions were adjusted
after a preliminary processing run to optimize patient cate-
gorization and accommodate typical variations in laboratory
values. After PROTEMPA identified a set of cases and their
abstractions, its output file was passed to a post-processing
script, which categorized the cases according to the types
and sequence of intervals found (Table 1).

The data set included 761 eligible cases (pregnancy and LDH
above 300 U/L). A standard SQL query identified 87 cases as
potential HELLP diagnoses based on the presence of at least
one low PLT, high AST, and high LDH consistent with the
HELLP definition. In comparison, PROTEMPA identified 81
cases as likely HELLP. The PROTEMPA cases were all
included in the SQL-identified data set; in the six additional
SQL-identified cases, laboratory results meeting the re-
quired thresholds were more than seven days apart. Of the
761 eligible cases, 190 included an ICD-9 code for severe
pre-eclampsia. In this case subset, SQL and PROTEMPA
both detected the same 72 cases as having HELLP, and their
correctness was confirmed by manual inspection of all 190
cases. Of the nine cases identified by both PROTEMPA and
SQL that were not part of the pre-eclampsia subset, five
were consistent with HELLP based on manual review and
four were complex patients whose laboratory patterns could
have resulted from multi-system disease without HELLP.

The post-processing step correctly classified the 81 cases
found by PROTEMPA into severity and platelet response
pattern categories (see Table 1), as compared with manual
inspection of each case’s PLT data sequence. Overall,
PROTEMPA identified the “recurring” pattern (partial
platelet recovery followed by a subsequent platelet suppres-
sion) in about 20% of the patients (6.2% of HELLP 2 and a
total of 13.6% of HELLP 1 patients, Table 1). Stratifying
patients into platelet response categories based on the pro-
file of the PLT data sequence was not possible using SQL.

Discussion
We have developed a data processing strategy and software
library (PROTEMPA) that meet most of our primary design
goals, including flexible specification of low- and high-level
temporal abstractions for clinical data sequences, and re-
trieval of groups of patients from a retrospective clinical

data repository based on these abstractions. We tested
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PROTEMPA in a proof-of-concept implementation that was
more accurate than SQL in identifying patients with HELLP
syndrome, a disease with no ICD-9 code, and accurately
assigned severity and disease progression categories based
on the temporal characteristics of laboratory test profiles
(platelet count, AST, and LDH; see Table 1 and Figure 5).
This clinical setting favors SQL because substantial elevation
in AST and LDH, and platelet count suppression, are
relatively unlikely to occur within the same hospital admis-
sion in pregnancy apart from HELLP. PROTEMPA could
well perform even better against SQL in other scenarios.

F i g u r e 6. Composition of the Recurring abstraction (see
Evaluation and Figure 5), defined as an interval of decreas-
ing platelet values (PLT decr) occurring after the first interval
of recovering platelets (First recovering) and overlapping an
interval of platelet values less than 100,000/�L (PLT low).
Intervals are illustrated as in Figure 5. Recurring intervals
have the same endpoints as the contributing PLT decr
interval (gray dashed arrows). Gray dotted arrows denote
temporal relationships defined between endpoints of inter-
vals and are labeled with minimum and maximum time
constraints. For example, (0, �) indicates that the second
time point in the relationship must occur on or after the first
point (� � largest possible time distance). This type of
abstraction is recognized by the temporal pattern high-level

abstraction mechanism (see Design).
Furthermore, the assignment of disease progression catego-
ries based on the temporal pattern of laboratory results was
not possible using SQL only, and highlights the unique
capabilities of temporal abstraction systems. Previous sys-
tems9,15,52 have applied temporal abstraction to the identi-
fication of temporal characteristics in data sequences of
individual patients, using pre-defined temporal abstraction
primitives. Our study extends this work by demonstrating a
general-purpose framework for specifying and optimizing
temporal abstractions to successfully query a retrospective
data repository for patient populations that would be diffi-
cult to identify by other methods.

Table 1 y HELLP Syndrome Cases Categorized by
Laboratory Result Profile

Severity Category
Number (percent

of total)

HELLP 2* Recurring† 5 (6.2%)
Not recurring‡ 33 (40.7%)
Total 38 (46.9%)

HELLP 1* Recurring with recovery§ 7 (8.7%)
Recurring without recovery¶ 4 (4.9%)
Not recurring with recovery‡ 31 (38.3%)
Not recurring without recovery# 1 (1.2%)
Total 43 (53.1%)

All HELLP Total 81 (100%)

*Patients were categorized as HELLP 1 or HELLP 2 based on
co-occurring intervals of elevated LDH and AST, and suppressed
platelet count (see Evaluation). All HELLP 2 patients recovered
based on normalization of platelet counts.
†Final platelet interval is Recurring or Recurring with recovery.
‡Final platelet interval is First recovering.
§Final platelet interval is Recurring with recovery.
¶Final platelet interval is Recurring.

F i g u r e 5. Example time series of platelet
(PLT) counts in class 1 HELLP syndrome with
the intervals that PROTEMPA identified. In-
tervals found by the low-level abstraction
mechanism (solid lines) were inferred from
mathematical patterns in the raw time-
stamped data shown at the bottom of the
figure, and are labeled as in Figure 2. Intervals
found by the high-level mechanism (dashed
lines) were identified as in Figure 6 and are
labeled with the corresponding abstraction’s
name. Superscripts refer to the ordinal posi-
tion of the intervals accessible through the
temporal slice mechanism (see Design). AST
and LDH test results and associated intervals
are omitted for clarity. This profile was classi-
fied Recurring with recovery (Table 1).
#All patients not classified as above.
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PROTEMPA’s temporal abstraction primitives and abstrac-
tion definitions are managed in knowledge bases separate
from the abstraction-processing environment, to allow their
convenient creation and modification. Primitives may em-
ploy algorithms that are fully specified (“hard coded”), or
that receive arguments. The latter supports the use of
“template” algorithms that can be configured to identify
general types of data sequence patterns (e.g., state, trend,
peak, trough, frequency) with desired specific characteris-
tics. Primitives may be written to target relatively short
intervals, similar to primitives in other systems,40 but may
also process longer data sequences. Theoretically, the algo-
rithms may be of arbitrary complexity and may be imple-
mented in any programming language, as long as an appro-
priate runtime environment is provided by the Algorithm
Source backend (Figure 1). We used the R statistical process-
ing environment in our proof-of-concept, but other inter-
preted or compiled programming environments suitable for
statistical, scientific or modeling applications (e.g., Math-
ematica, Matlab, Python and Ruby) could be implemented
similarly via the Algorithm Source backend using existing
connectors.53–57

New temporal abstraction primitives are defined by storing
an algorithm and a listing of its parameters in a knowledge
base record in the Algorithm Source backend. Low- and
high-level abstractions (Figure 4A) are defined by creating
entries in the Knowledge Source knowledge base with
duration parameters and the identity of a primitive with
appropriate arguments (low-level) or a set of interval types
and their relationships (high-level). Currently, these defini-
tions are created directly within PROTEMPA’s knowledge
bases. Future development will include end-user interfaces
for defining primitives and abstractions (see further discus-
sion below). With such interfaces, statisticians or others
familiar with the locally-implemented run-time environ-
ment could develop or modify primitives, and researchers
and other domain experts could use these primitives and
existing abstraction definitions to specify new abstractions.
Thus PROTEMPA’s design supports the notion of a library
of primitive and abstraction definitions, implemented in our
proof-of-concept as Protégé knowledge bases, which is mod-
ifiable and extensible by users. Because abstractions refer to
PROTEMPA’s internal data model (Figure 4) rather than
site-specific database terminology, schema and connection
details, abstraction libraries should be portable between
PROTEMPA deployments that implement similar knowl-
edge bases. PROTEMPA’s support for an extensible and
portable library of primitives and abstractions appears to be
unique among reported temporal abstraction systems.

Abstraction of the details of the local environment by the
Data Source backend also supports portability of the
PROTEMPA framework across different data sources. Cur-
rently, deploying PROTEMPA in a local environment re-
quires creating a site-specific Data Source backend that 1)
incorporates local terminology into its terminology transla-
tion table, 2) adds any necessary data-conversion methods
(e.g., unit conversion), and 3) implements appropriate SQL
calls to the local clinical data store to retrieve data for
processing. Installations will also provide a front end that
calls the Abstraction Finder API with the desired abstraction

retrieval requests, and implements any necessary post-
processing steps. Once the site-specific install is complete,
temporal primitive and abstraction definitions are entered or
imported into the Algorithm and Knowledge Source back-
ends. Future development of PROTEMPA is intended to
provide a default (but replaceable) front end that offers
query creation and results review capabilities. Because data
sources for clinical research currently use a variety of
terminologies and data models, manually mapping local
environments to PROTEMPA’s internal model through a
backend adapter is necessary for portability. Standardiza-
tion of terminologies and data models in the future may
allow pre-built backends to provide more of the necessary
mappings a priori, and decrease the requirement for site-
specific work. Using a back end developed as above,
PROTEMPA was previously deployed at the University of
Pittsburgh Medical Center for detecting quality assurance
problems in clinical laboratory testing.58 Other systems use
analogous techniques for portability: IDAN34 provides a
generic data model and a pluggable database access module,
and Chronus II16 may be deployed against an intermediate
abstract database representation for portability as described
above. DXtractor15 and the Arden Syntax20 are less portable
because some details of the underlying local database
schema and terminology are incorporated into their queries.

PROTEMPA is a code library that may provide developers
with knowledge representation expertise a useful founda-
tion for building systems to specify and detect temporal
sequences. It is designed to be general-purpose, and there-
fore could be incorporated into several different types of
temporal query processing systems. In clinical practice set-
tings, where decision support, patient monitoring and qual-
ity assurance needs may be relatively well-defined,
PROTEMPA could identify abstractions that are pre-defined
by knowledge experts and are used to trigger system
responses, or stored in a database for query using standard
techniques. Alternatively, PROTEMPA can support retro-
spective queries in a clinical research setting. In this appli-
cation, queries are less predictable and may be developed in
the setting of data exploration. In addition, useful abstrac-
tions may be relatively specific to a particular application
(for example, the Recurring with recovery abstraction we
define in the Evaluation section) and therefore difficult for
knowledge experts to pre-construct. Thus a research query
system should support construction, execution and evalua-
tion of queries directly by research users. Temporal abstrac-
tion systems with these characteristics have not been de-
scribed previously.

The proof-of-concept system that we demonstrate here is a
first step toward a clinical research query system based on
temporal abstraction. In its current implementation, con-
structing and executing queries requires significant technical
knowledge and thus PROTEMPA does not completely fulfill
our design goals. To do so, PROTEMPA would need to be
incorporated into a system that provided 1) a query interface
that allowed research users to define temporal abstractions
and combine them to construct complex queries, 2) a report-
ing interface with temporal display and summarization
features that allowed users to evaluate data sets returned
from queries as part of an iterative process of data explora-
tion and query refinement, and 3) a management interface

that allowed users to classify, store, recall and share abstrac-
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tion definitions. Each of these system components would
have novel elements and each would be a significant chal-
lenge to construct.

Though temporal abstraction can be a powerful method for
specifying and identifying the characteristics of time se-
quences in clinical data, it also has several limitations.
PROTEMPA uses an approach similar to Knowledge-Based
Temporal Abstraction40 and therefore key details of tempo-
ral primitive algorithms, abstraction definitions and abstrac-
tion relationships such as cutoff values, rates of change in
trends, and both qualitative and quantitative interval rela-
tionships are based on literature values and expert experi-
ence. These relationships and cutoff values are generally
estimates and have not been verified or optimized for use
with temporal abstraction. In addition, while a temporal
relationship between a set of clinical observations may be
characteristic of a particular condition, a similar relationship
might occur for other reasons (as, for example, in the four
patients we identified with multi-system disease, see Eval-
uation). The prevalence of these “false positives” is difficult
to predict and will generally depend on the patient popula-
tion and research question under study. Thus the sensitivity
and specificity of temporal abstractions for distinguishing
between different groups of patients, or appropriately dis-
tinguishing patients with borderline values, are not well
established. PROTEMPA may correctly identify temporal
abstractions, but misidentify cases because of suboptimal
abstraction definitions or actual similarities between differ-
ent types of patients. A related problem would occur if
abstraction definitions were shared without modification
between sites that use different measurement techniques for
clinical observations, resulting in inadvertent misapplication
of abstractions. PROTEMPA also does not distinguish be-
tween cases in which an abstraction is not identified because
the data is present but fails to satisfy the abstraction defini-
tion, or because the data is not present. Thus it may miss
cases in which key data about the patient was not collected.
Future development may be able to address some of these
limitations by providing tools for clinical researchers that
support, for example, query optimization and validation,
and summarization and exploration of the hierarchy of
abstractions contributing to a final query result.

PROTEMPA’s performance characteristics have not yet
been fully evaluated. Its data processing mechanism (Fig-
ure 3) has exponential worst-case complexity, but other
temporal abstraction systems show significantly better
average-case complexity21,40 and we expect this to be true
for PROTEMPA. Performance issues may be mitigated in
part because clinical research questions usually require
searching for a limited set of abstractions, as was the case
in our proof-of-concept. Intelligently sequencing the ab-
straction search might also optimize performance. For
example, dynamic interpretation contexts might be used
to trigger searching for some abstractions only after
certain other abstractions or data have been found.59

Finally, for large data sets or high search volumes, PRO-
TEMPA’s algorithms are parallelizable by patient23 and
could be implemented in a straightforward manner on

clustered hardware.
Conclusions
PROTEMPA is a flexible temporal abstraction software
library designed for querying implicit temporal relation-
ships in clinical data. Its design provides a number of
features useful for retrospective research, including defin-
able algorithms for abstracting raw data with “pluggable”
data processing environments, iterative higher-level abstrac-
tion, flexible knowledge-based temporal abstraction defini-
tion with abstraction configuration via arguments, abstrac-
tion storage and reuse, standard connectivity mechanisms
for relational databases and an internal data model that is
independent of local database details. In a preliminary study
focused on retrieval of patient populations in retrospective
data, it supported the development of abstractions that
accurately identified and categorized patients with a com-
plex disease based on temporal relationships between mul-
tiple laboratory results. Temporal abstraction has not been
commonly applied to clinical data retrieval, but it may
provide significant advantages when used to augment stan-
dard data retrieval methods. The ability to automate identi-
fication of patient populations based on the temporal char-
acteristics of clinical data may substantially decrease the
effort required to retrieve and classify patients for a wide
range of clinical studies, outcomes research, and quality
assurance evaluations. This capability may be particularly
useful when patient features of interest are those, such as
clinical severity, disease progression, and response to ther-
apy, that do not have standard codes, are poorly expressed
in commonly used coding schemes, may be inaccurately or
incompletely coded, or are not represented explicitly as data
values.
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