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ABSTRACT The robustness of eight common food web
properties is examined with respect to web size. We show that
the current controversy concerning the scale dependence or
scale invariance of these properties can be resolved by ac-
counting for scaling constraints introduced by webs of very
small size. We demonstrate statistically that the most robust
way to view these properties is not to lump webs of all sizes,
but to divide them into two distinct categories. For the present
data set, small webs containing 12 or fewer species exhibit
scale dependence, and larger webs containing more than 12
species exhibit scale invariance.

The search for invariant properties has a long tradition in the
natural sciences. In food web ecology, some food web prop-
erties (e.g., the fractions of top, intermediate, and basal
species; the number of links per species; and rigid circuits) have
been shown to be scale-invariant: they remain constant across
webs of different kinds and sizes (1–5). These scaling proper-
ties fostered the formulation of interesting hypotheses on how
food webs are assembled and how they operate (6–14). How-
ever, together with criticisms of the data used to demonstrate
these properties (15, 16), recently compiled food webs have
cast doubt on the validity of the scale-invariant laws (17–22).
One recent study in particular heightened the controversy by
proposing that most food web properties are scale-dependent
(23). Interestingly, this analysis relied on a previously pub-
lished data set (5) for which the properties were found to be
scale-invariant. This discrepancy is due to the addition of small
webs (with ,10 species) to the new analysis, which were
discarded from the original study because of worries about
trivial biases that would affect these properties in small webs.
Thus, the current controversy can be resolved by developing
criteria for whether it is more correct to lump webs of all sizes
for the analysis, or to separate them into two size classes.
Our objective here will be to analyze systematically a suite

of competing models describing the relationship between food
web properties and web size. We shall present quantitative
evidence that the most robust model is a piecewise linear
regression, indicating that food web properties are bounded to
different scaling regions (24, 25) that should not be combined.
This is an important result that both strengthens our under-
standing of the organization of food webs and provides a
resolution to the controversy concerning the scaling behavior
of food web properties.
The following properties will be considered: the link density

(LyS, the total number of links divided by the number of
species); the fraction of top (%T; having no predator), inter-
mediate (%I; being predator and prey), and basal (%B;
autotroph and detritus) species; and the fraction of links
between top and intermediate (%TI), top and basal (%TB),

intermediate and intermediate (%II), and intermediate and
basal species (%IB). The properties are regressed against the
number of species S in the webs. The suite of models that we
consider is as follows: (i) linear regression, (ii) least squares fit
to the power function, (iii) exponential asymptotic regression,
(iv–vi) second- to fourth-order polynomial regression, (vii)
discontinuous piecewise linear regression, and (viii) continu-
ous piecewise linear regression. The properties are regressed
against the number of species S in the webs.
We used the original dataset of Sugihara et al. (5), because

it spans food webs from the very small (2 species) to the large
(83 species) and because the original authors provided taxo-
nomic refinement at the level of individual species in most
cases. For the latter reason, we used biological species and not
trophic species in our analyses (a trophic species is the union
of all species sharing the same predators and prey). The criteria
used for web selection and potential sources of taxonomic and
sampling bias in this collection can be found in Schoenly et al.
(ref. 26, pp. 623–626). In this data set, small webs do not
represent highly aggregated or incomplete webs, as suggested
by some authors (15, 16); most of them are small because they
come from small habitats and are time-specific.
As noted elsewhere (23), simple linear regressions give

non-zero slopes for many of the properties, indicating depen-
dence on web size. As seen in Table 1, however, the fits are very
poor (as indicated by the adjusted coefficients of determina-
tion Radj2 ), and, more importantly, the residuals often exhibit a
U-shaped pattern (Fig. 1A and Table 1), as well as heterosce-
dasticity (i.e., the variance increases with web size; see Fig. 2
and Table 1). These systematic errors indicate that a linear
model is not a robust description of the relationship. Fitting a
power function (Y 5 azSb, with Y being the property, S the
number of species, and a and b fitted constants) provides better
results for most properties, but it does not remove the structure
in the residuals. The exponential asymptotic model (Y 5 a 1
bze2czS, with a, b, and c being fitted constants) performs well for
all properties but the fraction of top species. It is the most
appropriate model for the fraction of links between top and
intermediate species. However, for five of the properties, the
residuals show evidence of heteroscedasticity. The second-
order polynomial is the most suitable model for the fraction of
links between intermediate and intermediate species and
performs well for all but two properties. Nonetheless, for six
of the properties, the residuals continue to exhibit strong
structure (Fig. 1B and Table 1), indicating that second-order
polynomial models are inappropriate here. In general, third-
order polynomials do not represent significant improvements
over second-order polynomials and are not considered further.
However, fitting fourth-order polynomials provides significant
improvements over the second-order polynomials for six of the
properties and removes the higher-order structure in the
residuals. Unfortunately, for four properties, heteroscedastic-
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ity still remains, indicating that these various polynomial
models are inadequate descriptions of the data.
We now show that these problems in model fit or systematic

error can be resolved most simply with a model that assumes
the existence of two distinct scaling regions. The simplest
model of this kind is a piecewise linear regression. For each
food web property, we use a model of the following form:

Y 5 Ha0 1 b0zS
a1 1 b1zS

~S # c!
~S . c!, [1]

with a0, b0, a1, b1, and c being fitted constants. Of particular
interest, the parameter c indicates the position of the break-
point—that is, the natural boundary in web size separating the
scaling regions of small and large webs. To find that boundary,
a trial and error analysis with different values of c is done, and
the performance (as expressed by the coefficient of determi-
nation R2) of the piecewise model is evaluated (first plots of
Fig. 3). For most of the properties, the maximal value of R2 is
obtained at or near c 5 12 (the maximum is at c 5 30 for the
link density, but the value of R2 is very similar to that at c 5
12). For economy, we shall adopt the value of 12 for the
parameter c for all the piecewise regressions of the food web
properties (we do not claim that 12 is a universal limit; rather
it is a concordant characteristic for this data set). As can be
seen in the Table 1, for five out of the eight properties, the
discontinuous piecewise model is the most appropriate model,
and it performs close to the best models for the remaining
three properties.
Finally, we tried the continuous form of the piecewise linear

model, where the intercept a1 in Eq. 1 is replaced by a0 1 b0zc,
thereby eliminating one parameter. As seen from Fig. 3, this

model may provide a good fit as, for all properties except the
fraction of top species (Fig. 3B), the extremities of the first
lines come close to the starting points of the second ones.
However, low values of the AIC indicate that this model is not
the most appropriate and, moreover, the residuals show high-
er-order structure for the LyS property, and heterogeneous
variance for the LyS, %B, %II, and %IB properties (Table 1).
The discontinuous piecewise linear model is the best per-

former among the suite of models examined. Of greater
importance, this piecewise model removes awkward structure
in the residuals, which is present in all the other models
considered. This indicates that a simple linear model with a
single breakpoint is a more satisfactory description of the
various scaling relationships examined here. The link density
property is one possible exception for which a polynomial
model appears to perform slightly better. However, the resid-
uals for this property exhibit heteroscedasticity (Fig. 2A) and,
moreover, these polynomial models lack motivation. With the
discontinuous piecewise model, while smaller webs show the
same heteroscedasticity, the larger webs, having .12 species,
are homoscedastic (Fig. 2B and Table 1). The heteroscedas-
ticity of small webs is an artifact that will be discussed below.
The piecewise model shows clearly that all of the properties

behave differently on either side of the boundary (second plots
of Fig. 3). While small webs containing 12 or fewer species
exhibit strong scale dependence, larger webs are statistically
scale-invariant (see the legend of Fig. 3 for the values of t tests
performed on the slopes). The changes in slope between small
and large webs are highly significant for all properties (F test
for difference between regression coefficients; the smallest
difference is for the fraction of links between intermediate and
intermediate species: F[1,31] 5 28.04, P ,.00001).

The models investigated are: (i) a linear regression, (ii) a power function, (iii) an exponential asymptotic model, (iv) a second-order polynomial
regression, (v) a continuous piecewise linear regression with a breakpoint at c5 12, (vi) a 4th-order polynomial regression, and (vii) a discontinuous
piecewise linear regression with a breakpoint at c5 12. The performance of a model is expressed by the adjusted coefficient of determination (Radj2 ;
here, we prefer Radj2 over its unadjusted form, which does not take into account the number of parameters in the model). To determine which model
is the most appropriate, given its number of parameters, we computed the Akaike Information Criterion (ref. 27; AIC). The model that minimizes
the AIC is considered to be the best one (indicated by boldface type and frame). A systematic error is evaluated in two ways, first by fitting polynomial
regressions to the residuals to determine if higher order structure (struct.) is present (see Fig. 1). The P values associated with the F test for the
polynomial regressions are given here, together with the order of the polynomial regression applied to the residuals (we tried up to seventh order
polynomials; the one giving the lowest P value is shown here). Significant P values (shaded) indicate the presence of systematic pattern in the
residuals. Second, we evaluated the presence of heteroscedasticity (heter.; see Fig. 3) by fitting a linear regression to the absolute values of the
residuals (28). The P values associated with the F test are given here. A poor fit to the linear regression indicates the absence of heteroscedasticity.
For the piecewise model, the first P value is for webs with 12 species or less, and the second is for larger webs. As an example, the discontinuous
piecewise linear model explains 40.1% of the variance in the link density property L/S, and gives an AIC of 197.5; a cubic regression of the residuals
on S gives a P value for the F test of 0.136; a regression of the absolute values of the residuals on S gives a P value of 0.016 for the webs with 12
species or less and a P value of 0.324 for the webs with .12 species.

Table 1. Performance and systematic fit of seven models for the eight food web properties
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The scale-dependent behavior of small webs follows from a
simple feature of such small systems: the rarity of cannibalistic
loops and of loops of the kind where species A eats species B
and species B eats species A. For example, a web with two
species will have a link density, a fraction of top species and a
fraction of basal species of 0.5. There are no degrees of
freedom for any of these properties in such a small web.
Indeed, for small webs in general, some of the properties are
constrained to narrow upper and lower limits. As shown by the
shaded regions in the plots of Fig. 3, these limits canalize
strongly the LyS and %B properties (Fig. 3 A and D), forcing
them to behave in a scale-dependent way. For the link density
property, this is clearly the mechanism behind the heterosce-
dasticity seen in small webs. These limits also impose con-
straints on the %I, %TI, and %II properties (Fig. 3 C, E, and
G), but to a lesser extent. For the other properties, the scale
dependence of small webs may still reflect these boundary
constraints, since%T1%I1%B5 1 and%TI1%TB1%II
1%IB5 1. A property forced to exhibit scale dependence will
in turn affect the behavior of its sister properties. These
findings are in accord with earlier results (5) that warned
against the trivial biases of small webs. This is not to say that
the study of small webs is of no interest. They are certainly
worth being studied for their own merit, but not with regard to
scale invariance.
In the present analysis, we used biological species and not

trophic species. The use of trophic species is aimed at allevi-

ating the problem of variable taxonomic resolution among
webs, thus rendering their comparison less dependent of this
bias. We performed the analysis of the discontinuous piece-
wise model with the trophic versions of the webs to see if this
lumping procedure could alter our conclusions. The first effect
of this lumping process is to shrink the range of species
numbers in the data set, from 2–83 to 2–54. It also displaces
the position of the breakpoint (c in Eq. 1) from 12 to 7.
Qualitatively, the results with trophic species are similar to
those with biological species, that is, small webs are statistically
scale-dependent (except for %T and %II), while webs with
more than seven species are statistically scale-invariant. There
is one notable exception: the link density property shows scale
dependence for large webs. The generality and biological
significance of this contrasting result needs further investiga-
tion.
The scale invariance revealed here for large webs gives

support to earlier claims for the existence of scaling laws (1–5)
and to the models predicting these patterns (6–14). The least
robust property appears to be the link density (29). First, for

FIG. 1. Examples of model fit and systematic error. Residuals for
the fraction of basal species using (A) a linear regression and (B) a
second-order polynomial regression. The residuals exhibit patterns
that are captured by fitting higher-order polynomial to them (see Table
1).

FIG. 2. Residuals for the link density property for the fourth-order
polynomial regression (A) and for the discontinuous piecewise linear
regression (B). Heteroscedasticity can be demonstrated by fitting a
linear regression to the absolute values of the residuals (see Table 1).
The residuals display heteroscedasticity for all webs in A and for the
small webs in B. A line separates the large webs (n5 36) from the small
webs (n5 24) in B. Only the residuals of large webs with the piecewise
model exhibit homogeneous variances.
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FIG. 3. Data and discontinuous linear piecewise regression models of the food web properties for the 60 original food webs of Sugihara et al.
(5). For each property, the first plot gives the value of the coefficient of determination, R2, for different positions of the breakpoints (the constant
c in Eq. 1). The second plot presents the data and the regression lines for a breakpoint at S 5 12 (S is the number of species). The upper and lower
limits of the properties, given that there are no loops of the kind where species A eats species A or species A eats species B and species B eats
species A are indicated by the shaded region. The properties, the coefficients of the piecewise linear regressions (from Eq. 1), and the results of
t tests for the slopes b0 and b1 are as follows. (A) link density, LyS: a0 5 0.211, b0 5 0.140 (t 5 6.49, P , 0.0001), a1 5 2.216, b1 5 0.0015 (t 5
0.180, P 5 0.858); (B) fraction of top species, %T: a0 5 0.785, b0 5 20.048 (t 5 24.75, P 5 0.0001), a1 5 0.496, b1 5 0 (t 5 20.004, P 5 0.996);
(C) fraction of intermediate species, %I: a0 5 20.216, b0 5 0.067 (t5 5.35, P, 0.0001), a1 5 0.408, b1 5 0.0005 (t5 0.267, P5 0.791); (D) fraction
of basal species, %B: a0 5 0.430, b0 5 20.019 (t 5 22.69, P 5 0.0134), a1 5 0.096, b1 5 20.0005 (t 5 20.865, P 5 0.393); (E) fraction of links
between top and intermediate species, %TI: a0 5 20.064, b0 5 0.038 (t 5 2.92, P 5 0.0080), a1 5 0.474, b1 5 20.0013 (t 5 20.635, P 5 0.530);
(F) fraction of links between top and basal species, %TB: a0 5 1.285, b0 5 20.107 (t 5 24.79, P , 0.0001), a1 5 0.218, b1 5 20.0002 (t 5 20.088,
P 5 0.931); (G) fraction of links between intermediate and intermediate species, %II: a0 5 20.167, b0 5 0.037 (t 5 3.73, P 5 0.0012), a1 5 0.121,
b1 5 0.0019 (t5 0.956, P5 0.346); (H) fraction of links between intermediate and basal species, %IB: a0 5 0.055, b0 5 0.032 (t5 2.76, P5 0.0115),
a1 5 0.186, b1 5 20.0004 (t 5 20.351, P 5 0.728).
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this data set, scale invariance is revealed only with biological
species. Second, the pattern found here for the link density
property (scale dependence for small webs and scale invari-
ance for large webs) is predicted by the random webylink
sample bias model of Kenny and Loehle (30), which generates
random webs with sampling error on the trophic links. Third,
the scale invariance of the link density is likely not to be upheld
in some circumstances (13, 29), such as in webs that are
dominated by nonselective generalists. For example, Havens
(21) studied 50 webs representing pelagic communities of small
lakes and ponds and found that link density increases 4-fold
over a range of 10–74 species. Havens proposed that such a
scale-dependent relationship is likely to appear in webs such as
his, which have a predominance of indiscriminate herbivores.
This characteristic is most likely to exist in aquatic communi-
ties, where filter feeders are common (20, 21, 31, 32) and where
predation by fishes is often size-dependent rather than species-
dependent (33, 34). Thus, the behavior of the link density
property as a function of species richness may well depend
upon the dominant feeding mode in the system investigated; it
is not likely to be universally constant or dependent on food
web size. Finally, it is worth noting that, for the link density as
well as for the other properties, the proportion of the variance
explained by the piecewise model remains low (Table 1). Noise
may account for a portion of this unexplained variance, but
other factors may also be important for our understanding of
the variability of these properties in different webs. Much work
is needed here.
Insofar as we have shown that small webs exhibit different

scaling properties than large webs and that this distinction can
be objectively quantified, it is incorrect to lump them to
support or criticize the generality of food web properties. This
problem is less acute in recently compiled food webs (16, 17,
19, 20, 35–37), which are larger andmore finely resolved. These
are thoroughly and specifically compiled for the study of
trophic interactions. With more such studies, it should be
possible to provide greater resolution to the phenomenon of
scale invariance and its exceptions.
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