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Summary The DNA repair enzyme, OS-alkylguanine-DNA-alkyltransferase (ATase), is thought to be the
principal mechanism controlling resistance to nitrosoureas and related alkylating agents. We compared the
sensitivities of five human testis and five bladder tumour cell lines to two nitrosoureas (N-nitroso-N-
methylurea (MNU) and mitozolomide) with cellular levels of ATase. Enzyme levels ranged from 3 to
206 fmol mg=" protein (0.1 X 10* to 5.1 X 10* molecules/cell) in the testis lines and from 11 to 603 fmol mg~'
(0.4 x 10* to 9.1 x 10* molecules/cell) in the bladder lines. Based on IC50s in an MTT assay, the testis tumour
cell lines were, on average, four times more sensitive to MNU and six times more sensitive to mitozolomide
than the bladder cell lines. The cytotoxicities of MNU and mitozolomide were closely related (R = 0.9). In the
testis cell lines ATase activity (molecules/cell) was related to IC50s for mitozolomide (R = 0.97) but not MNU
(R =0.78). In the bladder cell lines and overall, ATase activity correlated with cellular sensitivity to neither
agent. Relatively high levels of resistance occurred in cells expressing low levels of ATase, and amongst cell
lines expressing high levels of ATase, large differences in IC50s were observed. These results support the
suggestion that resistance to nitrosoureas can be mediated by mechanisms other than ATase and that at

relatively high levels of expression, ATase does not confer resistance in proportion to its activity.

Cells expressing ATase are commonly resistant to the
cytotoxic effects of mono- and bifunctional methylating and
chloroethylating agents (Pegg, 1990), including the chloro-
ethylnitrosoureas (CNUs) used as chemotherapeutic drugs.
ATase is thought to reduce the cytotoxicity of these agents
by transferring the chloroethyl group from the O° position of
guanine to a cysteine residue in the active site of the enzyme
before interstrand crosslinks can be formed (Kohn, 1977;
Erickson et al., 1980a; 1980b). Each enzyme molecule can
remove only one alkyl group, as the reaction is auto-
inactivating (Pegg, 1990). This may be of clinical relevance as
it has been suggested that tumours with low levels of this
enzyme are more likely to respond to chemotherapy using
nitrosoureas.

There are three main lines of evidence indicating that
ATase influences sensitivity to nitrosoureas. Firstly, cultured
cells expressing low levels of the enzyme can be hypersen-
sitive to nitrosoureas (Day et al., 1980; Bodell et al., 1986;
Jelinek et al., 1988; Smith & Brent, 1989), though this is not
always the case (Samson & Linn, 1987, Maynard et al.,
1989). Secondly, pretreatment of cells with agents which
deplete endogenous ATase, such as alkylating agents or O°-
methylguanine as free base, increases sensitivity to subse-
quent exposure to alkylating agents (Gibson er al., 1986;
Gerson et al., 1988). Thirdly, transfection of the E. coli ada
gene, encoding ATase, into mammalian cells deficient in
ATase, can increase their resistance to alkylating agents
(Margison & O’Connor, 1989).

Some types of cancer are relatively sensitive to nitro-
soureas and other chemotherapeutic drugs. For example,
metastatic testis tumours are cured in over 80% of patients
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using combination chemotherapy (Peckham, 1988). We have
shown that testis tumour cell lines retain sensitivity to
anticancer agents in vitro (Walker et al., 1987; Masters et al.,
1990), reflecting the clinical response of these tumours. To
determine whether the sensitivity of testis tumour cells to
nitrosoureas might be related to ATase, we compared ATase
levels and cellular sensitivities to two nitrosoureas, MNU and
mitozolomide, in five human testis and five bladder cancer
cell lines, and two cisplatin-resistant sublines (Walker et al.,
1990).

These two compounds were chosen as models for all
mono- and bifunctional nitrosoureas. They were selected
specifically because their mechanisms of action are well-
characterised and their toxicity would be expected to be
associated with ATase levels, if this enzyme controls sen-
sitivity in these cells (Gibson ez al., 1984; Stevens et al., 1984;
Pegg, 1990).

Materials and methods

Measurement of cytotoxicity of methylating and
chloroethylating agents

The cytotoxicities of MNU (Sigma Chemical Co. Ltd., Poole,
UK) and mitozolomide (May & Baker, Dagenham, UK)
against the bladder cell lines RT112, RT112-CP, RT4,
HT1376, HT1197 and MGH-U1 and the testis cell lines
SuSa, SuSa-CP, 1618K, Tera II, GH and GCT27, were
compared using the MTT assay, as described (Walker ez al.,
1990), except that the concentration of MTT (Sigma) used
was 4mgml~'. Both drugs were dissolved in DMSO and
stored at — 20°C. For each experiment, an aliquot was
thawed and rapidly diluted to the appropriate concentration
in complete medium and immediately added to the cells.
Toxicity of MNU was measured over the range 0.25-
200pugml~' and toxicity of mitozolomide over the range
0.1-50 pg ml~'. Drug was added 24 h after the cells were
plated, and left for a further 6 days. A minimum of three
separate experiments were performed for each cell line and
each drug. Dose responses were plotted and IC50 values (i.e.
concentration of drug which reduces the absorbance to 50%
of the control) were calculated by linear regression analysis
of the linear part of the graph.
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Measurement of ATase levels in testis and bladder cell lines

Exponentially-growing cells were harvested by incubation in
a 0.05% trypsin (Difco, London, UK), 0.016% EDTA
(BDH, Poole, UK) solution for 5min at 37°C. Cells were
resuspended in medium containing 5% serum and then
washed twice in PBSA. Cells were counted using a
haemocytometer, and pellets containing 2 X 107 cells stored
in liquid nitrogen. The frozen cell pellets were thawed into
1 ml Buffer I (50 mM Tris, 1 mM EDTA, 3 mM dithiothreitol
at pH 8.3) and stored on ice. Cells were sonicated twice for
10 s each, firstly with 12 pm and secondly with 18 um peak-
to-peak distance. The protease inhibitor phenyliethylsul-
fonyl fluoride (PMSF) (0.01 volume of 8.7 mg ml~! PMSF in
ethanol) was added immediately after the second sonication.
Sonicates were then centrifuged at 16,000 r.p.m. at 4°C for
10 min, and the supernatants kept at 0°C.

ATase assays were carried out essentially as described
(Morten & Margison, 1988), except that the total incubation
volume was 400 ul. Positive and negative controls were
included: the positive control was a range of six volumes of a
semi-purified extract of E. coli containing the plasmid p061
which carries the E. coli ogt ATase gene (Margison et al.,
1985) and incubation was at 37°C for 2 h. BSA solution (final
concentration 2 mgml~!) and perchloric acid (PCA) (final
concentration 1 M) were added simultaneously to every tube
to precipitate protein and DNA. The mixture was hydrolysed
at 75°C for 45min. Samples were centrifuged and the
precipitate washed once with 1M PCA. Pellets were
resuspended in 300 ul of 0.01 M sodium hydroxide. Ecoscint
A scintillation fluid (3 ml) (Mensura Technology Ltd.,
Wigan, UK) was added and the amount of radioactivity in
the protein measured. Protein content of the cell extracts was
estimated using the Bradford assay (Bradford, 1976). The
volumes of extracts used were protein limiting in the ATase
assay. Estimations were performed on a range of 3 volumes
of each extract. The assay was repeated two or three times,
using different batches of cells.

ATase levels were expressed as the number of molecules/
cell using the formula:

fmol ATase ml/extract
number of cells/ml

X Avogadro’s number

and as fmol mg~! protein. Correlation coefficients were cal-
culated using the Oxstat program. ATase levels in molecules/
cell were used for these calculations. Mean IC50s for testis
and bladder cell lines were compared using the Mann-
Whitney U test on the Oxstat program. ATase levels in the
parent and resistant cell lines (SuSa, SuSa-CP, RTI112,
RT112-CP) were compared using the Student’s unpaired ¢-
test, also using the Oxstat program.
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Results

Sensitivities of the testis and bladder cell lines to MNU and
mitozolomide (expressed as IC50s), and ATase levels (ex-
pressed as fmol ATase mg protein and molecules x 10*/cell)
are shown in Table I. The testis cell lines were always more
sensitive to MNU and mitozolomide than the bladder cell
lines. Comparing the mean IC50s, the testis cell lines were
4.1-fold more sensitive to MNU and 6.2-fold more sensitive
to mitozolomide than the bladder cell lines. The means were
significantly different (P<<0.01) for both MNU and
mitozolomide, using the Mann-Whitney U test, and there
was no overlap in IC50s between the testis and bladder cell
lines.

ATase activity in four out of five bladder cancer cell lines
was higher than in any testis cell line, ranging from 279 to
603 fmol mg~! protein. In contrast, one bladder cell line,
HT1197, had an ATase level of 11fmol mg~!, which was
lower than all the testis cell lines except GCT27 (3.3 fmol
mg™'). When ATase activities were calculated as molecules/
cell, the same pattern was observed (see Table I).

The relationships between IC50s and ATase levels
(molecules/cell) in the testis and bladder tumour cell lines are
shown in Figure 1. 1618K has the highest ATase level of all
the testis cell lines, and is the most resistant to MNU and
mitozolomide. GCT27 has the lowest ATase level, and is the
most sensitive to both agents. However, 1618K and Tera II
have similar IC50s to MNU and mitozolomide, but 1618K
has an ATase level of 206 fmolmg~' protein (5.1 x 10*
molecules/cell), compared with 39 fmol mg=' (2.0 x 10* mole-
cules/cell) in Tera II. 1618K and SuSa have the same ATase
levels based on protein measurements, but a 1.8-fold
difference based on content/cell (5.1 and 2.8 x 10%), which
correlates more closely with the difference in sensitivity to
MNU (2.3-fold).

Comparing sensitivity and ATase levels between cell types,
GCT27 (testis) and HT1197 (bladder) have similar ATase
levels (3.3 and 11 fmolmg~! protein or 0.1 and 0.4 x 10*
molecules/cell), but GCT27 is 50-fold more sensitive to
MNU, and 14-fold more sensitive to mitozolomide, than
HT1197. RT4 (bladder) cells have only a 26% (based on
protein) or 16% (based on content/cell) higher ATase level
than SuSa and 1618K (testis) cells, but are five times more
resistant to mitozolomide. Four of the testis cell lines have
higher ATase levels than HT1197, but they are 2—6 times
more sensitive to MNU and mitozolomide.

Comparing cisplatin-resistant SuSa-CP with its sensitive
parental line, SuSa-CP has a significantly higher level of
ATase than SuSa (470 versus 206 fmol mg~! protein; 7.4 x 10*
versus 2.8 x 10* molecules/cell) (P<0.01 in a Student’s
unpaired t-test). There is also a difference in sensitivity:

Table I ATase activity and sensitivity to MNU and mitozolomide

ATase level

MNU mitozolomide

Cell line Sfmol mg=! protein  Mean  molecules X 10/cell Mean IC50ts.e. (ugml-') IC50 % s.e. (ugml~?)

Testis:
SuSa 259 174 186 206 256 373 199 2.76 122134 1.34 £ 0.18
Tera 11 62 16 39 1.69 2.29 1.99 26.1 £8.1 1.15+0.22
GH 121 91 106 1.54 1.51 1.52 13113 0.68 +0.16
1618K 230 183 206 5.35 494 5.14 28.1+28 1.82+0.31
GCT27 4.0 2.7 33 0.11 0.09 0.10 1.18 £ 0.2 0.33+0.06
SuSa-CP 450 490 470 6.38 8.43 7.40 290+ 1.8 4.1910.50

Bladder:
RTI112 396 378 387 6.32 6.62 6.47 569+ 4.1 4.46 £ 0.35
RT4 278 280 279 6.26 5.60 593 66.71 2.0 8.84+0.44
HT1376 520 378 619 506 9.09 572 10.23 8.35 65.6+ 3.1 9.94 + 1.88
HT1197 20 1.5 10.7 0.74 0.096 0.42 59.6 £ 4.0 4491 0.49
MGH-U1 718 534 558 603 843 879 10.24 9.15 53.9+49 5.271£0.50
RT112-CP 450 215 237 301 542 506 422 4.90 67.3+49 10.49 + 0.64

*Results from individual experiments are shown.
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Figure 1 Diagrams to show the relationship between (a) MNU
and (b) mitozolomide sensitivity (IC50 values in pgml-!') and
ATase activity (molecules X 10*/cell) in the testis and bladder cell
lines. Testis cell lines are represented by open circles and bladder
cell lines by closed circles. Resistant sublines are represented by
squares.

comparing IC50s, SuSa-CP is 2.4-fold more resistant to
MNU, and 3.1-fold more resistant to mitozolomide. RT112
and RT112-CP have similar ATase levels, and similar sen-
sitivity to MNU. However, RT112-CP is 2.3-fold more resis-
tant to mitozolomide than the parental line.

The rankings of the individual cell lines in their sensitivities
to MNU and mitozolomide were similar. The only correla-
tion between ATase levels (expressed as molecules X 10*/cell)
and mitozolomide IC50s was within the testis cell line group,
when considered alone. However, overall there was no cor-
relation between MNU or mitozolomide sensitivity and
ATase activity.

Discussion

We have shown that levels of ATase activity are not
associated with either sensitivity or resistance to nitrosoureas
in a group of 10 testis and bladder cancer cell lines. The testis
cell lines were uniformly more sensitive to MNU and
mitozolomide than the bladder lines, but this was not
associated with major differences in ATase levels between the
two groups. If the testis cells are considered in isolation,
ATase levels correlated with sensitivity to mitozolomide but
not MNU.

Low ATase activity is associated with sensitivity to CNUs
in human and murine cell lines in some studies (Day e al.,
1980; Bodell er al., 1986; Jelinek et al., 1988; Smith & Brent,
1989) but not others (Samson & Linn, 1987; Maynard et al.,
1989). It is difficult to relate actual ATase levels to sensitivity
or resistance, because the ATase levels associated with resis-
tance to CNUs differ widely between studies. An ATase level
as low as 33 fmol mg~! protein correlated with resistance to
the cytotoxic effects of MTIC in human melanoma cell lines
(Maynard et al., 1989). Five melanoma cell lines with ATase
levels of 13 fmol mg~! or lower were 4 to 17-fold more
sensitive to MTIC than four melanoma cell lines with ATase
activity of at least 33 fmol mg~! protein. A small difference
in ATase activity was associated with a relatively large
difference in sensitivity. In contrast, a human rhabdomyosar-
coma cell line containing 3800 fmol ATase mg~' protein was
only 5-6 times more resistant to CNUs than a rhab-
domyosarcoma cell line which lacked measureable ATase
(Smith & Brent, 1989). In this case, a very large difference in
ATase activity was associated with a relatively modest
difference in CNU sensitivity. Thus it seems unlikely that the
very small difference in ATase activity between RT4 (blad-
der) and SuSa or 1618K (testis) cell lines would alone
account for the 5-6-fold difference in mitozolomide sen-
sitivity in this study.

Whilst in the testis cell lines there appears to be a
reasonable correlation between ATase levels (expressed/cell)
and the IC50s for mitozolomide, there are several possible

mechanisms besides ATase level which could explain
differential sensitivity to CNUs between bladder and testis
lines and within the bladder lines. These include differences in
uptake of drug and binding to intracellular molecules other
than DNA, such as glutathione. Resistant cells may be better
able to tolerate or*bypass the O%-alkylguanine lesions (Fox &
Roberts, 1987). Repair mechanisms other than ATase
capable of removing OS-lesions exist. For example, V79 and
V79/79 Chinese hamster cell lines, which lack ATase activity,
can remove O°n-butylguanine from DNA (Boyle et al., 1987).
This is probably by nucleotide excision repair, the process
which recognises bulky adducts including uv-induced pyrimi-
dine dimers. In the case of V79/79 cells it has been shown
that OS-methylguanine can also be removed from DNA,
presumably by an excision repair process (Boyle et al., 1987).
The close correlation between MNU and mitozolomide
sensitivity in individual cell lines does suggest that the non-
ATase resistance mechanism may be acting on damage pro-
duced by both agents and might thus be an analogous
excision repair system.

Another factor that might contribute to differential sen-
sitivity is the existence of mechanisms of cell killing by CNUs
besides production of Of-lesions. Alkylating agents produce
twelve different lesions in DNA, in varying proportions, most
nitrogen and oxygen atoms being possible sites of attack
(Margison & O’Connor, 1989). Besides OS-alkylguanine,
other lesions produced in DNA include N7-alkylguanine and
N3-alkyladenine. For methylating agents, N3-methyladenine,
but not O°-methylguanine or N7-methylguanine (the major
product), blocks DNA synthesis (Margison & O’Connor,
1989).

ATase levels and MNU and mitozolomide sensitivities
were measured in cisplatin-resistant sublines of SuSa and
RT112. Cisplatin is believed to bind predominantly to the N7
position of guanine, and to form DNA inter- and intrastrand
crosslinks and DNA-protein crosslinks. No correlation has
been found between ATase levels and the extent of cisplatin-
induced DNA interstrand crosslinking in human tumour cell
lines, suggesting that ATase is not involved in repair of
cisplatin-induced lesions (Laurent et al., 1981; Gibson et al.,
1985). However, there is evidence for ATase activity being
increased following exposure of cells to cisplatin in vitro. For
example, in the H4 rat hepatoma cell line ATase levels
increased approximately 4-fold 48 h after a 1 h exposure to
cisplatin (Lefebvre & Laval, 1986). In the present study, there
was no evidence for increased ATase level in the cisplatin-
resistant subline of RT112. MNU sensitivity was unchanged,
but RT112-CP was 2.3-fold more resistant than RT112 to
mitozolomide. This suggests that RT112-CP has acquired
resistance to crosslinking alkylating agents, but not mono-
functional alkylating agents. This result implies that the in-
creased mitozolomide resistance of RT112-CP is mediated by
a factor other than ATase level. On the other hand, the
cisplatin-resistant testicular cell line, SuSa-CP, had a higher
ATase level than the parental line, and was cross-resistant to
both MNU and mitozolomide. In this case, the increased
ATase which may be a consequence of exposure to cisplatin,
may be contributing to MNU and mitozolomide resistance in
SuSa-CP.

More effective therapy for incurable cancers may result
from understanding why testis tumours are sensitive to
anticancer agents. We have explored some of the possible
mechanisms using the model system described in this study.
For example, sensitivity of testis cancers cannot be explained
by cell kinetics (Walker er al., 1987; Walker, 1990), spon-
taneous or induced mutation frequency (Parris et al., 1990),
failure to inhibit DNA synthesis (Parris et al., 1988),
glutathione-S-transferase or topoisomerase II levels (Fry et
al., 1991), level of drug binding to DNA (Walker, 1990) or
levels of DNA inter- or intrastrand crosslink repair (Bedford
et al., 1988). The data presented here indicate that ATase
levels are not an exclusive factor in resistance or sensitivity to
nitrosoureas in these cell lines.

Future studies will focus on fundamental aspects of DNA
repair and the signalling pathways that determine whether a
cell survives or dies following drug-induced damage.
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