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Divergence of hypertrophic growth and fetal gene
profile: the influence of b-blockers
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While the expression patterns of cardiac hypertrophy-related genes have been well documented and widely used as markers
for hypertrophy, recent research has revealed uncoupling of hypertrophy-related gene profiles and hypertrophic growth. The
role of b-adrenergic signalling in the development of hypertrophy is incompletely understood. The finding of an upregulated
expression of hypertrophy-related genes but a suppressed hypertrophy following b-blockade reveals previously unrecognized
sympatho-adrenergic mechanisms of hypertrophic growth.
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Activation of the sympathetic nervous system and myocar-

dial hypertrophy occur in the setting of cardiovascular

disease and precipitate progression of cardiac remodelling,

dysfunction and heart failure. Although there has been no

convincing evidence for a direct antihypertrophic effect of

b-adrenoceptor antagonists (b-blockers), a prohypertrophic

action of b-adrenergic signalling has been shown by

experimental and clinical studies (Zahabi et al., 2003; Burns

et al., 2007).

Pathological hypertrophy is associated with a well-docu-

mented pattern of gene expression, including reactivation of

a set of fetal genes like atrial or B-type natriuretic peptides

(ANP, BNP), b-myosin heavy chain (b-MHC) and a-skeletal

actin (a-SKA), and downregulation of adult cardiac genes,

most notably sarcoendoplastic reticulum Ca2þ ATPase

(SERCA) and a-MHC. Such a transcriptional profile, particu-

larly ANP upregulation, has been used as measure of

hypertrophy in vivo and in vitro. Although poorly defined,

there also exist intrinsic signal networks that counter-

regulate hypertrophic growth.

In the current issue of the BJP, Patrizio et al. (2007) report

an interesting finding; treatment with b-blockers in models

of cardiac hypertrophy in vivo (transverse aortic constriction

(TAC)) and in vitro (cardiomyocytes treated with phenyl-

ephrine or noradrenaline) suppressed hypertrophic growth

even though expression of fetal genes was further upregu-

lated. In the TAC model, sympatho-adrenergic signalling

contributes to hypertrophic growth, as shown by a sup-

pressed left ventricle hypertrophy in dopamine-b-hydroxy-

lase-null mice, depleted of catecholamines (Esposito et al.,

2002). Patrizio et al. (2007) took a good approach by

investigating the effect of b-blockers both in vivo and

in vitro. They tested propranolol, metoprolol (b1-selective)

and ICI-118551 (b2-selective) with findings showing a class

effect mediated by b1-adrenoceptors.

This study (Patrizio et al., 2007) is the first to show such

paradoxical combinations using b-blockers commonly pre-

scribed to patients with heart disease. Actually, uncoupling

of hypertrophy-related gene profile and hypertrophic growth

has been noticed in recent years by studies using genetically

engineered models or gene targeting. For instance, lack of

fetal gene expression was reported in a1A- and a1B-adreno-

ceptor dual-knockout mice with severe pressure-overload

hypertrophy (O’Connell et al., 2006). Conversely, a1A-

adrenoceptor transgenic mice had increased expression of

ANP but did not develop hypertrophy nor exacerbated

pathological hypertrophy (Lin et al., 2001; Du et al.,

2006a). In cultured cardiomyocytes, inactivation of

activating protein 1 function reversed hypertrophy-related

gene profile evoked by phenylephrine, but hypertrophy

remained unaltered (Jeong et al., 2005). Uncoupling of

expression of individual fetal genes has also been reported.

Cardiac overexpression of glycogen synthase kinase-3b
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(GSK3b) inhibited hypertrophy due to either calcineurin

overexpression, isoproterenol administration or TAC, pheno-

types associated with further elevation of ANP expression

but downregulation of both BNP and b-MHC (Antos et al.,

2002). Similarly, concomitant expression of modulatory

calcineurin-interacting protein 1 markedly inhibited calci-

neurin-mediated hypertrophy, but expression of ANP was

further activated and that of a-SKA inhibited (Hill et al.,

2002). All these findings suggest that expression of indivi-

dual fetal and adult genes in the hypertrophic myocardium

is regulated by distinct signal mechanisms.

Signalling mechanisms responsible for the findings by

Patrizio et al. (2007) remain unexplored. Studies using

genetically engineered models targeting ANP or the na-

triuretic peptide receptor-A (NPR-A) have provided strong

evidence for an antihypertrophic property of the ANP/

NPR-A/PKG signalling pathway under basal or pathological

conditions, as summarized in Table 1. This signal pathway

counteracts multiple hypertrophic signal pathways includ-

ing those involving nuclear factor-kB (NF-kB), p-38-mitogen-

activated protein kinase (p38-MAPK), calcineurin/nuclear

factor of activated T cell (NFAT) and protein kinase

C (Figure 1). Inhibition of TAC-hypertrophy with a further

elevation of ANP expression was observed in mice

treated with 17b-estradiol (van Eickels et al., 2001), the

effect mediated through the NPR-A/cGMP-dependent

protein kinase (PKG) pathway (van Eickels et al., 2001;

Du et al., 2006b).

How does b-blockade upregulate ANP expression in hearts

of sham-operated and TAC animals? Recent studies have

shown that ANP expression is controlled by signal pathways

involving calcineurin, phosphoinositide 3-kinase (PI3Kg)
and protein kinase B (Akt)/GSK3b. Activation of nuclear

Akt by viral or transgenic means, selectively increased ANP

expression (Tsujita et al., 2006). Upon b-adrenoceptor

activation, ANP expression is promoted via Ca2þ /calcineurin

signalling but suppressed by inactivation of GSK3b following

its phosphorylation by Akt or cAMP-dependent protein

kinase (Figure 1) (Morisco et al., 2000). Thus, GSK3b
suppresses hypertrophy while it activates ANP expression

(Antos et al., 2002) (Figure 1). In addition, following

b-adrenoceptor activation, PI3Kg and b-adrenoceptor kinase-1

are recruited by b-arrestins to the ligand-activated

b-adrenoceptors, a process necessary to free Gbg and to induce

b-adrenoceptor desensitization (Esposito et al., 2002; Nienaber

et al., 2003). If this b-adrenoceptor/PI3Kg colocalization is

associated with a reduced nuclear PI3Kg/Akt activity, one

would expect a disinhibition of GSK3b by b-adrenoceptor

blockade, as tested by Patrizio et al. (2007), thereby promoting

ANP expression via calcineurin/NFAT signalling (Figure 1).

This and other possibilities remain to be tested.

The ‘contradictory’ findings by Patrizio et al. (2007) reveal

our incomplete understanding on the role of b-adrenoceptor

in hypertrophic development and hence the effect of

b-blockers. If b-blockade increases ANP expression, one would

expect a suppressed expression of at least some hypertrophy-

related genes by b-adrenoceptor activation. Clinical studies

on patients with dilated cardiomyopathy showed that

treatment with b-blockers inhibited the expression of ANP

and b-MHC and restored that of a-MHC and SERCA (Lowes

et al., 2002). Thus, caution is required when extrapolating

the findings from the mouse TAC model to clinical

situations.

The findings by Patrizio et al. (2007) would have been

strengthened by providing measures of cardiomyocyte

hypertrophy (such as cell size, protein synthesis), exploring

potential signalling mechanisms and validating the results

from pharmacological approaches by using genetically

engineered models, such as b-adrenoceptor knockout mice.

Actually, a recent paper from the same group found

no difference between the b1- and b2-adrenoceptor dual-

knockout and wild-type mice in the extent of TAC-

induced hypertrophy, fetal gene expression and fibrosis

(Palazzesi et al., 2006), findings contradictory to the current

report (Patrizio et al., 2007). Furthermore, although hyper-

trophy was inhibited, b-blockade had no effect on the

suppressed SERCA expression (Patrizio et al., 2007). It would

be interesting to know the chronic impact of this phenom-

enon. Thus, further research with extended study periods or

using different heart disease models would be worthwhile.

Table 1 Summary of findings from genetically engineered mice
indicating antihypertrophic action of natriuretic peptide/GC signal
pathway

Model Cardiac phenotypes

ANP KO (Wang et al., 2003) Hypertrophy at baseline and
exacerbated hypertrophy and
fibrosis under pressure-overload

Corin KO (Chan et al., 2005) Hypertension and cardiac
hypertrophy

NPR-A KO (Oliver et al., 1997;
Knowles et al., 2001; Franco et al.,
2004; Tokudome et al., 2005)

Cardiac hypertrophy and sudden
death at baseline; exacerbated
hypertrophy by calcineurin
activation or by pressure-overload

Cardiac NPR-A KO (Holtwick et al.,
2003)

Mild hypertrophy, hypotension at
baseline; exaggerated pressure-
overload hypertrophy

TG-DN-NPR-A (Patel et al., 2005) Increased severity of pressure-
overload hypertrophy and fibrosis

NPR-A TG (Kishimoto et al., 2001) Reduced heart size
TG-CA-GC (Zahabi et al., 2003) Inhibited hypertrophy by

isoproterenol or pressure-overload

Abbreviations: ANP, atrial natriuretic peptide; CA, constitutively active; DN,

dominant negative; KO, knockout; NPR-A, natriuretic peptide receptor-A; TG,

transgenic.
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Figure 1 Signal pathways that promote ANP expression while
inhibiting myocardial hypertrophy. ANP, atrial natriuretic peptide;
I-kB, NF-kB inhibitor; MKP-1, MAPK phosphatase-1; RGS2, regulator
of G-protein signalling 2.
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