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Chemogenomic approaches to rational drug design
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Paradigms in drug design and discovery are changing at a significant pace. Concomitant to the sequencing of over 180 several
genomes, the high-throughput miniaturization of chemical synthesis and biological evaluation of a multiple compounds on
gene/protein expression and function opens the way to global drug-discovery approaches, no more focused on a single target
but on an entire family of related proteins or on a full metabolic pathway. Chemogenomics is this emerging research field
aimed at systematically studying the biological effect of a wide array of small molecular-weight ligands on a wide array of
macromolecular targets. Since the quantity of existing data (compounds, targets and assays) and of produced information
(gene/protein expression levels and binding constants) are too large for manual manipulation, information technologies play a
crucial role in planning, analysing and predicting chemogenomic data. The present review will focus on predictive in silico
chemogenomic approaches to foster rational drug design and derive information from the simultaneous biological evaluation
of multiple compounds on multiple targets. State-of-the-art methods for navigating in either ligand or target space will be
presented and concrete drug design applications will be mentioned.
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Introduction

Until the recent sequencing of the human genome (Lander

et al., 2001; Venter et al., 2001), drug discovery has long been

a multidisciplinary effort to optimize ligands properties

(potency, selectivity, pharmacokinetics) towards a single

macromolecular target. It is estimated that, out of the 20–

25 000 human genes supposed to encode for ca. 3000

druggable targets (Russ and Lampel, 2005), only a subset of

that pharmacological space (ca. 800 proteins) has currently

been investigated by the pharmaceutical industry (Paolini

et al., 2006). Remarkably, medicinal chemistry followed a

parallel boost with the miniaturization and parallelization of

compound synthesis, such that over 10 million non-

redundant chemical structures covers the actual chemical

space, out of which ca. 1000 have been approved as drugs.

Therefore, only a small fraction of compounds describing the

current chemical space has been tested on a fraction of the

entire target space. Chemogenomics is the new interdisci-

plinary field, which attempts to fully match target and

ligand space, and ultimately identify all ligands of all targets

(Caron et al., 2001). Various definitions of overlapping fields

(chemical genetics, chemical genomics) have been proposed.

We will herein consider a broad definition of chemoge-

nomics encompassing chemoproteomics, namely the study

of small-molecular-weight drug candidates on gene/protein

function. From the definition of the field, one easily

understands that chemogenomics will be at the interface of

chemistry, biology and consequently informatics since data

mining is required to extract reliable information. Further-

more, methodologies at the border of chemistry and biology

(medicinal chemistry), chemistry and informatics (chemo-

informatics), biology and informatics (bioinformatics) will

also play a major role in bringing these major disciplines

together. Chemogenomic approaches to drug discovery rely

on at least three components, each necessitating hard

experimental work: (1) a compound library, (2) a representa-

tive biological system (target library, single cell and whole

organism), and (3) a reliable readout (for example, gene/

protein expression, high-throughput binding or functional

assay). By definition, analysing chemogenomic data is a

never-ending learning process aimed at completing a two-

dimensional (2-D) matrix, where targets/genes are usually

reported as columns and compounds as rows, and where

reported values are usually binding constants (Ki, IC50) or

functional effects (for example, EC50). This matrix is sparse as

far as all possible compounds have not been tested on all
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possible genes/proteins. Predictive chemogenomics will thus

attempt to fill existing holes by predicting compounds–

genes/proteins relationships. In silico approaches to predict

such data (target selectivity for various ligands and ligand

selectivity for various targets) will span pure ligand-based

approaches (comparison of known ligands to predict their

most probable targets), pure target-based approaches (com-

parison of targets or ligand-binding sites to predict their

most likely ligands) or ultimately target-ligand based

approaches (using experimental and predicted binding

affinity matrices).

Description of ligand and target spaces

Basic assumptions of any chemogenomic-based approach are

twofold: (i) compounds sharing some chemical similarity

should also share targets and (ii) targets sharing similar

ligands should share similar patterns (binding sites). Filling

the full theoretical chemogenomic matrix thus implies that

data on ‘unliganded’ targets should be gathered from the

closest ‘liganded’ neighbouring targets, and that data on

‘untargeted’ ligands should be gathered from the closest

‘targeted’ ligands. The true question is how to measure

distances between two ligands or two targets.

Ligand space

To efficiently navigate in ligand space, one first needs

to describe the compound using appropriate properties

(descriptors) and then to use a master equation to measure

a distance between two compounds (similarity metric).

Descriptors are usually classified according to their dimen-

sionality ranging from one dimensional (1-D) to three-

dimensional (3-D) properties (Bender and Glen, 2004)

(Figure 1 and Table 1) 1-D descriptors are easy and fast to

compute. They describe global properties (for example,

molecular weight, atom and bond counts), which can be

derived from the chemical formulae and which are used in

combination to predict absorption, distribution, metabolism,

excretion and toxicity properties such as aqueous solubility

(Votano et al., 2004), 1-octanol-water partition coefficient

(Clark, 2005), plasma protein binding or bioavailability (Wang

et al., 2006), but also to classify compounds (for example,

drugs vs nondrugs (Sadowski and Kubinyi, 1998)) or ligands

from various target families (Morphy, 2006) by linear or non-

linear quantitative structure–activity relationships/quantita-

tive structure–property relationships (QSAR/QSPR) methods.

To fasten comparisons, 1-D linear representations of com-

pounds are often used. The most popular of this kind of

simplified string is the ‘Simplified Molecular Input Line Entry

System’ or SMILES (Weininger, 1988).
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Figure 1 Examples of molecular descriptors for small-molecular-weight ligands
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Most ligand descriptors range in the family of 2-D

topological descriptors, where the connectivity table (list

of atoms and bonds) is parsed to encode both atomic and

bond properties. The most intuitive way to represent this

kind of information is the 2-D sketch of the structure

(Figure 1), which enables to browse a ligand library for

compounds sharing a particular 2-D motif (fragment,

substructure). Graph-based methods which transforms the

2-D structure into a molecular graph (atoms being the

nodes) are relatively popular for substructure search and

clustering chemical compounds into subfamilies (Raymond

et al., 2003), but present the noticeable disadvantage to

be computationally slow. Much faster are fingerprint-based

methods (Willett, 2006), where the occurrence of prede-

fined structural events (atoms, fragments, rings, substruc-

tures and 2-D pharmacophores) are encoded into bit strings

(sequence of ‘0’ and ‘1’ digits) called ‘fingerprints’ which ere

easy to derive, handle and compare. Although receptor-

ligand recognition is a 3-D event, 2-D fingerprints have

been found repeatedly more appropriate true 3-D finger-

prints for similarity searches (Sheridan and Kearsley, 2002).

Latter descriptors encode conformation-specific properties

(atomic coordinates, 3-D pharmacophores, shapes, poten-

tials, fields, spectra; Table 1), and therefore usually necessi-

tate a common alignment of molecules to be compared in

the same 3-D Cartesian space (especially if grid-based fields

or potentials have to be compared) and a relevant sampling

of conformational space accessible to each ligand. To avoid

the alignment step which may cause false positives in a

virtual screen, 3-D information can be translated into a bit

string, which stores the occurrence of all possible pharma-

cophore tuplets (doublets, triplets and quadruplets) with

their corresponding features (for example, H-bond acceptor,

positively ionisable atom, and so on) and interfeature

distances. Hence, comparing bit strings is much easier than

comparing structures. Most similarity searches prefer a

binary representation of 2- or 3-D properties to derive

simple similarity indices, the most popular being the

Tanimoto coefficient (Equation 1)

Tc ¼
c

a þ b � c
ð1Þ

a is the count of bits on in compound A, b is the count of

bits on in compound B and c is the count of the bits on in

both compound A and B.

The Tanimoto coefficient will thus range from 0 for two

completely dissimilar structures to 1 for two identical

compounds.

Target space

Proteins are commonly classified according to their sequence

and structure (Table 2). The full amino-acid sequence is the

very first interesting information (Figure 2), which already

enables a reliable clustering of targets by family (for example,

G protein-coupled receptors (GPCRs) and kinases). However,

sequence lengths may considerably vary within a protein

family (for example, sequence lengths of human GPCRs

range from 290 to 6200 residues), such that analysing

similarities and differences first requires an alignment of

amino-acid sequences which can be tricky in case of large

insertions/deletions. Therefore, one may focus on specific

motifs (Attwood et al., 2003), which are a collection of

continuous residues specific of a protein family (for example,

DRY motif in TM III of rhodopsin-like GPCRs). To take into

account the structural organization of the target, it can be of

interest to look at the 2-D structure (mapping of a-helices,

b-sheets, coils and random structures) and even better at the

3-D structure (atomic coordinates provided by X-ray diffrac-

tion, NMR or molecular modelling) and/or the correspond-

ing fold. In chemogenomics-related approaches, one usually

focuses on the ligand-binding site, where structural simila-

rities among related targets are usually much higher than

when considering the full 1-D sequence or 3-D structure.

Table 1 Ligand descriptors

Dimension Nature Examples

1-D Global Molecular weight, atom and bound counts (for example, number of H-bond donors, number of rings),
polar surface area, polarizability, log P)

2-D Topological Topological and connectivity indices, fragments, substructures (for example, maximum common substructures),
topological fingerprints (for example, structural keys)

3-D Conformational n-points pharmacophore, shape, field, spectra and fingerprints

Table 2 Structural classification of proteins

Dimension Classification scheme Databases

1-D Sequence UniProt (Wu et al., 2006) and Pfam (Finn et al., 2006)
Patterns PRINTS (Attwood et al., 2003) and PROSITE (Hulo et al., 2006)

2-D Secondary structure fold SCOP (Casbon and Saqi, 2005) and CATH (Reeves et al., 2006)

3-D Atomic coordinates PDB (Berman et al., 2000) and MODBASE (Pieper et al., 2006)
binding site Binding MOAD (Hu et al., 2005) and sc-PDB (Kellenberger et al., 2006)

Abbreviations: MOAD, Mother of All Databases; UniProt, The Universal Protein Resource.
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Targets may also be classified according to their pharma-

cological profile (binding affinity for a panel of ligands)

which means according to the nature of ligands they

recognize (Paolini et al., 2006). Of course, there is a

considerable overlap between sequence- and ligand-based

classifications, since ligands generally bind to a subset of the

protein universe. However, relationships across protein

subfamilies are particularly interesting in drug design for

predicting/modifying the pharmacological profile of a drug.

Target–ligand space

It is possible to directly navigate in the protein–ligand space

by browsing full matrices in which either affinity or

structural information is stored. Experimental evaluation of

x compounds on y targets (for example, in vitro binding

affinity assay) leads to a matrix of xy numbers (for example,

IC50 values), which can be used to predict the affinity of a

new compound to an existing target by multivariate linear

regression (Kauvar et al., 1995), measure a structure–activity

relationships distance between two targets (Vieth et al.,

2004) and predict a global pharmacological profile (Krejsa

et al., 2003). A clear advantage of this approach is that it

relies on true binding affinity values and that experimentally

derived descriptors will usually outperform computed de-

scriptors. A clear drawback is the enormous amount of data

required to derive true information such that similar

approaches are not realistic, for example, in an academic

environment. Therefore, one might substitute experimental

with predicted affinities derived from either docking or 3-D

QSAR approaches (Matter and Schwab, 1999; Fukunishi et al.,

2006), although extrapolation will be limited here in a tiny

protein space. Since binding free energy is extremely difficult

to predict, replacing affinity by molecular interaction

descriptors is possible. Of particular interest are structural

interaction fingerprints (IFPs) (Singh et al., 2006), which

converts atomic coordinates of a protein–ligand complex

into a bit string featuring for each residue of a binding site,

the type of molecular interactions (for example, H-bond,

aromatic interaction, hydrophobic contact) developed

by a co-crystallized or docked ligand. Comparing a series

of complexes between n ligands and a single protein or

between one ligand and n-related proteins is then performed

as for ligands by computing distances between 1-D IFPs

(Figure 3).

Ligand-based chemogenomic approaches

Annotating ligand libraries

The basic paradigm underlying ligand-based chemogenomic

approaches is that molecules sharing enough similarity to

existing biologically annotated ligands have enhanced

probability to share the same biological profile (Figure 4).

It is therefore very important to annotate chemical libraries

with biological information (targets, in vitro affinity data and

ADMET properties). Over recent years, there has been a huge

effort mainly from small biotech companies to compile such

data by an exhaustive survey of literature and patent

data (Table 3). Since chemogenomic approaches usually

focus on target families, most of these archives are related to

the most pharmaceutically important target families (GPCRs,

>P24941|CDK2_HUMAN Cell division protein kinase 2 - Homo sapiens 
(Human).
MENFQKVEKIGEGTYGVVYKARNKLTGEVVALKKIRLDTETEGVPSTAIREISLLKELNHPNIVKLLD
VIHTENKLYLVFEFLHQDLKKFMDASALTGIPLPLIKSYLFQLLQGLAFCHSHRVLHRDLKPQNLLIN
TEGAIKLADFGLARAFGVPVRTYTHEVVTLWYRAPEILLGCKYYSTAVDIWSLGCIFAEMVTRRALFP
GDSEIDQLFRIFRTLGTPDEVVWPGVTSMPDYKPSFPKWARQDFSKVVPPLDEDGRSLLSQMLHYDPN
KRISAKAALAHPFFQDVTKPVPHLRL

[LIVMFYC]-x-[HY]-x-D-[LIVMFY]-K-x(2)-N-[LIVMFYCT](3) 

2.7.11.22 E.C. number
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3-D structure Ligand binding site
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Figure 2 Various representations of a protein using 1-D to 3-D properties.
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kinases, nuclear hormone receptors (NHRs), proteases and

phosphodiesterases).

A good example has been provided by Novartis scientists

(Schuffenhauer et al., 2003) who linked chemical space to

target space by merging fields from separate chemical and

biological databases to provide a unified and searchable

chemogenomic database. On one hand, over 110 000

pharmaceutical ligands were gathered from the MDL Drug

Data Report (Table 3). On the other hand, annotation of

targets was based on existing classifications for enzymes and

receptors. Linking MDDR ‘activity keys’ to the target

classification scheme enabled the annotation of 53 000

compounds totalling 799 different activity keys and related

targets. Since the target’s sequence is linkable to the ligand,

sequence-based similarity searches of ligands for protein

homologues of liganded targets are therefore feasible.

Annotated reference ligands for a particular GPCR were used

as starting points to recover either new receptor ligands or

ligands of receptors close to the reference GPCR. Interest-

ingly, the efficiency of the virtual screening approach was

dependent on the phylogenetic distance between the

reference and the query targets. Another straightforward

application of biologically annotated compound libraries

is the design of target-directed combinatorial libraries

(Savchuk et al., 2004) focusing on chemotypes preferred by

a family of targets.

Natural products also cover a very interesting chemical

space of biological relevance because of the evolutionary

pressure put on these compounds to bind, usually through

highly specific mechanisms, to particular targets. The chemi-

cal space spanned by biologically annotated natural products

was described recently as a structural and hierarchical scaffold

tree (Koch et al., 2005), which can be browsed to design

natural product-oriented chemical libraries.

Biologically annotated compound libraries are a direct

source of potentially new biological mechanisms to correct a

phenotype. Root et al. (2003) designed a library of 2036

biologically active compounds covering 169 different bio-

chemical mechanisms, which was shown to be structurally

diverse and able to provide 85 hits in a cell viability and

proliferation assay. Among the 85 hits, 27 were supposed to

be active by new biochemical mechanisms.

Privileged structures

The term ‘privileged structure’ was first coined by Evans et al.

(1988), who noticed the promiscuity of the 1,4-benzodiaze-

pine scaffold for various targets (Figure 5). A privileged

structure is defined as ‘a substructure/scaffold exhibiting

strong preferences for a particular area of the target space (for

example, GPCRs) and suitable to orient the design of

targeted compound libraries’ (Klabunde and Hessler, 2002).

In fact, a recent and deeper analysis of drug-like ligands show

that privilege only appears upon a certain level of chemical

functionalization of the scaffold (Schnur et al., 2006). For

example, the biphenyl substructure is not a privileged

structure but a simple protein-binding motif, since it occurs

in a wide array of protein ligands with no particular

preference for a certain target family. However, extending

the biphenyl motif to a 2-tetrazolo-biphenyl dramatically

Figure 3 (a) Deriving and (b) comparing protein–ligand complexes by molecular interaction fingerprints. ‘0’ and ‘1’ digits are replaced by
colour-coded squares for the ease of comparison (blue, hydrophobic interactions; green, aromatic interactions; red, hydrogen bonds).
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enhance the specificity of the latter substructure for GPCRs

(Schnur et al., 2006). Remarkably, many substructures

apparently have corresponding binding sites in unrelated

target families (for example, GPCRs, kinases, ion channels,

proteases, nuclear hormone receptors). Only a few of them

(see an example in Figure 6) are really selective for a certain

target family (Schnur et al., 2006). A main reason for this

exquisite specificity is that specific binding sites for peculiar

substructure have been conserved along the evolution of

target subfamilies (Bondensgaard et al., 2004; Surgand et al.,

2006). Family-specific privileged structures are of prime

importance to design targeted libraries and enhance hit

rates when a protein from the targeted family is screened

experimentally. A nice application of designing targeted

libraries was presented by Amgen (Xia et al., 2004). After

training a machine-learning algorithm to distinguish true

kinase inhibitors from non-kinase inhibitors, multiple

chemotypes could be selected to design a kinase-targeted

library, which yielded high enrichment in true inhibitors in

subsequent kinase inhibition assays.

Ligand-based in silico screening

Main target families can be distinguished by a simple look at

physicochemical properties (molecular weight, log P, polar

surface area, H-bond donor and acceptor counts) of their

cognate ligands (Morphy, 2006). One can thus easily imagine

that more sophisticated descriptors can be used to predict a

global target profile for any given compound, provided that

targets to be predicted are sufficiently well described by

existing ligands. Ligand-based in silico approaches to target

fishing begin to appear in the literature (Cases et al., 2005;

Bender et al., 2006; Bhavani et al., 2006; Mestres et al., 2006;

Nettles et al., 2006; Nidhi et al., 2006; Steindl et al., 2006).

They all share three basic components: (i) a set of reference

compounds from which 2-D (scaffold, substructure, finger-

prints) or 3-D descriptors (pharmacophore) are stored in a

database, (ii) a screening procedure using either QSAR,

machine learning (Bayesian classification, support vector

machines) or pharmacophore searches and (iii) a screening

collection to identify using above-described descriptors new

molecules likely to share the same target or target profile

than reference compounds (Figure 7).

Mestres et al. (Cases et al., 2005; Mestres et al., 2006) have

annotated a library of molecules targeting NHRs. Using a

hierarchical classification for 2000 ligands and 25 receptors,

chemogenomic links bridging ligand to target space can be

easily recovered to distinguish selective from promiscuous

scaffolds. Using Shannon Entropy descriptors (SHED) based on

the distribution of atom-centred feature pairs, any compound

collection can be screened to identify hits presenting SHED

distances to a reference NHR ligand beyond a defined thresh-

old and therefore likely to share the same NHR profile.

Novartis successfully applied a machine-learning algo-

rithm using Bayesian statistics (Xia et al., 2004) to predict

target profiles from extended connectivity fingerprints of

compounds from the biologically annotated Wombat data-

base (Nidhi et al., 2006). For each activity class (target), a

separate Bayesian model is trained to distinguish known

actives from known inactives. Predicting the most likely

targets of compounds in the test set is then operated by

predicting the probability of each test compound to be a

ligand of each of the targets. On average, the correct target

was found 77% of the time when training with Wombat

compounds and testing molecules from another dataset

(MDDR) over 10 different activity classes (Nidhi et al., 2006).

A significant improvement in the predictions is observed

when considering, instead of a series of individual probabili-

ties, the global profile of all training compounds in which all

target-associated probabilities are concatenated into a ‘Bayes

affinity fingerprint’ (Bender et al., 2006). Other 2- and 3-D

descriptors have been assessed for the same application. 2-D

descriptors were found to be more predictive with regard to

correct target prediction than a pure 3-D pharmacophoric

Figure 4 Structure–activity relationship homology flowchart.
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Table 3 Biologically annotated compound libraries

Database Description Website

AurSCOPE Target family-oriented knowledge database containing pharmacological
and pharmacokinetical data for 160 000 GPCR ligands and 77 000 kinase
inhibitors

http://www.aureus-pharma.com

Bioprint Biological profile (in vitro and clinical data) of 2400 small-molecular-
weight drugs and drug-like compounds

http://www.cerep.fr/

ChemBank Storage of 50 000 compounds and related biological properties in
441 high-throughput screening and small molecule microarray assays

http://chembank.broad.harvard.edu/

ChemBioBase Target centric ligand databases (GPCRs, kinases, PDE) http://www.jubilantbiosys.com/

Kinase knowledge base kinase structure–activity and chemical synthesis data http://www.eidogen-sertanty.com/

MDL Drug Data Report 132 000 biologically relevant compounds and well-defined derivatives http://www.mdli.com/

MedChem database 650 000 compounds with biological and pharmacological information http://www.gvkbio.com

StARLITe Highly curated target-compound SAR relationships http://www.inpharmatica.co.uk/

Wombat 154 236 entries over 307 700 biological activities on 1320 unique targets http://sunsetmolecular.com/
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approach for test compounds structurally similar to those in

the training set. For singletons (compounds exhibiting no

strong similarity to molecules of the training set), the 3-D

descriptor is more predictive.

In all these approaches, one must first automatically

categorize compounds from the training set according to

their molecular target without checking whether each

compound really bind to its target, where (which binding

site) and how (agonist or antagonist for receptor ligands).

There is therefore a risk to train a machine-learning

algorithm with incorrect data and to generate false rules.

To overcome this drawback, more accurate but slower 3-D

strategies are possible. Among them, a promising approach is

to derive 3-D pharmacophores from protein–ligand com-

plexes for which experimentally determined atomic coordi-

nates and pharmacological activities exist (Steindl et al.,

2006). The target-annotated pharmacophore database can be

browsed to identify target(s) of new compounds by a classical

pharmacophore search. The advantage of the method relies

on the higher quality of the reference dataset, but is

nevertheless limited by the pharmacophore generation step

and the still limited chemical diversity observed among

protein data bank (PDB) ligands (Kellenberger et al., 2006).

For example, membrane receptors (for example, GPCRs, ion

channels) cannot be predicted by this approach, crystal-

lographic data being very sparse for these protein families,

although homology model-based pharmacophores may be

theoretically derived.

Target-based chemogenomic approaches

Controlling the selectivity of ligands towards related targets

from the same family is crucial information in early drug-

discovery stages. There is therefore a growing interest in

comparing all targets from the same family especially

those for which there is enough structural data (X-ray or

NMR structures) to enable a proteome-wide comparative

modelling of targets of still unknown structure (for example,

protein kinases). Target-based chemogenomic approaches

can be classified in two categories depending on whether

the amino-acid sequence or the 3-D structure of targets

is compared.

Sequence-based comparisons

Sequence-based approaches are intended to be used for any

kind of target family, provided that a multiple alignment of

all targets to compare is reachable. They are generally used

for target families where a lack of high-resolution structural

data hampers target comparison. GPCRs constitute an ideal

framework for sequence-based comparisons (Crossley, 2004;

Frimurer et al., 2005; Kratochwil et al., 2005; Surgand et al.,

2006), because it is a very important target family for drug

design and only one member of this family (bovine

rhodopsin) has been crystallized to date (Palczewski et al.,

2000). After aligning all sequences, key residues supposed to

map the binding site of most non-peptide ligands can be

extracted and concatenated into an ungapped sequence of a

few residues (Figure 8), which can be later used to derive

a distance matrix based on sequence identity (Surgand et al.,

2006), sequence similarity (Kratochwil et al., 2005) or

physicochemical properties (Frimurer et al., 2005). An

exhaustive cavity-based clustering of 372 human GPCRs

has recently been proposed using such a strategy (Surgand

et al., 2006). Interestingly, it reproduces perfectly the full

sequence-based tree suggesting that only a few residues are

really important when comparing targets across a family.

This simplification enables a much simpler analysis of

features (binding site regions), which are responsible for

selective or permissive ligand binding by simply looking at

residue conservation (Crossley, 2004; Surgand et al., 2006).

There are several potential applications of cavity-based trees

in drug discovery. A simple one consists in target hopping,

which means discovering receptor ligands for a particular

receptor by considering first the known ligands of closely

related receptors. For example, CRTH2 receptor antagonists

could have been identified from existing angiotensin II type

1 receptor antagonists (Frimurer et al., 2005), because both

receptors were found close in the GPCR cavity-biased tree. In

addition, the design of targeted libraries towards a particular

area of the tree is facilitated by addressing those residues

responsible for selectivity/promiscuity (Frimurer et al., 2005;

Kratochwil et al., 2005).

Structure-based comparisons

Structure-based comparisons are only possible for target

families where there are enough good structural templates

(X-ray structures) to afford the homology modelling of

other related targets. In general, only ligand-binding sites

(Hu et al., 2005; Kellenberger et al., 2006) are compared, since

the basic aim of such comparisons is to understand the

selectivity/permissivity features of related targets of known

ligands.

A first possible strategy is to compare computed molecular

interaction fields from the cavities to compare (Naumann

and Matter, 2002; Hoppe et al., 2006; Pirard and Matter,

2006). Starting from a structural alignment of all targets,

interaction energies generated by rolling several probe atoms

(for example, sp3 carbon atom) at each point of 3-D grid

encompassing the ligand-binding site are then concatenated

into a MIF vector, which can be placed in a global matrix

where rows describe targets and columns interaction en-

ergies at a given 3-D grid point (Figure 9) Comparing the

MIFs and clustering the cognate targets can be done either by

analysing the matrix by principal component analysis

(Naumann and Matter, 2002; Pirard and Matter, 2006) or

by calculating a MIF distance, which is later transformed in a

target tree (Hoppe et al., 2006). A clear issue with this

approach is that the comparison is highly dependent on the

structural alignment, the grid resolution and the choice of

the probe atoms. Moreover, it cannot be applied to targets of

different families. However, its has been successfully applied

to protein kinases (Naumann and Matter, 2002; Hoppe et al.,

2006), serine proteases (Hoppe et al., 2006), matrix metallo-

proteinases (Pirard and Matter, 2006) and nuclear hormone

receptors (Hoppe et al., 2006) to pinpoint cavity regions or

subpockets explaining either selective or promiscuous ligand

binding, and thus to guide the design of compound libraries

towards the desirable selectivity pattern.
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To avoid the previously reported structural alignment bias,

3-D atomic protein coordinates can be directly compared to

measure a distance between two targets. Global structural

alignment methods (Shindyalov and Bourne, 1998; Holm

and Park, 2000; Standley et al., 2005) usually count the

number of structurally equivalent residues by comparing

overlapping sequence fragments. Such methods, however,

do not work very well for discontinuous sequences (active

sites) and for proteins exhibiting different folds. A second

approach is to identify pre-defined structural motifs or

templates (for example, Ser–His–Asp catalytic triad in serine

proteases) and align a query to a reference protein by

matching templates (Artymiuk et al., 1994; Wallace et al.,

1997). However, numerous proteins (for example, kinases,

GPCRs, ion channels) may share a binding site for a unique

ligand (ATP) without sharing any structural template

similarity. Most recent approaches to generate structural

alignment describe proteins by physicochemical properties

at representative locations. Molecular surfaces can be easily

discretized in either chemically labelled sparse points

(Rosen et al., 1998) or graphs (Kinoshita and Nakamura,

2003) and therefore aligned to maximize surface overlap

Figure 8 Sequence-based comparison of targets exemplified by human adenosine receptors (Surgand et al., 2006). (a) Selection of key
cavity-lining residues and (b) Clustering according to residue conservation.
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with any reference. A database of protein surfaces (eF-site)

has successfully been browsed to predict the function of

a hypothetical archaeon protein (MJ0226) by detection of

a mononucleotide binding site (Kinoshita and Nakamura,

2003). Surface-based comparisons are, however, relatively

slow and thus incompatible with proteome-wide compa-

risons. Recent and faster methods (Schmitt et al., 2002;

Jambon et al., 2003; Shulman-Peleg et al., 2004; Powers et al.,

2006; Gold and Jackson, 2006) have been developed over the

last 5 years. They all have in common to represent an active

site of interest by pseudocenters (dummy atoms located

along or close to every side chain of interest) encoding

physicochemical properties (H-bonding capacity, aromaticity,

hydrophobicity, charge) of their cognate residues, pseudo-

centers being linked together by edges and thus defining a

molecular graph. Alignment is operated by detection of

maximal common subgraphs (clique detection) (Gardiner

et al., 1997) or geometric hashing (Nussinov and Wolfson,

1991) from defined pseudocenters. Local similarity at ligand

binding subpockets can thus be detected for proteins with

totally different folds and catalytic activities. Predicted

similar binding sites can even be linked together in a global

network to better position a protein in the target space

(Zhang and Grigorov, 2006).

A nice example of binding site similarities for distant

proteins has been exemplified by Weber et al. (2004), who

detected cross-reactivity of arylsulfonamide-based COX-2

inhibitors with human carbonic anhydrase (HCA) based on

the similarity of COX-2 and HCA binding pockets. A

problem with these matching techniques is that the

computed similarity score (usually dependent on the

number of atom/pseudocenter/triangle matches) is not

always easy to interpret, notably for active sites of different

dimensions, because large actives sites will have a tendency

to present more matches than small ones even if the latter

are more similar. Therefore, normalized distance metrics

similar to those used for comparing ligands are needed.

A promising approach is proposed by Surgand (2006), who

discretizes an active site by a dimensionless 80-triangle

sphere and projects, from cb atoms of cavity-lining residues

to the sphere centre, various topological and physicochemi-

cal descriptors. A distance between two active sites is thus

simply computed by summing up the normalized differences

in descriptor space between each triangle of the sphere. The

method was able to recognize remote binding site simila-

rities (Figure 10) between a GPCR (GPR30) and a NHR

(estrogen receptor a) sharing 4-hydroxytamoxifen as high-

affinity ligand (Revankar et al., 2005).

The current speed of such comparisons enables the

definition of all-against-all similarity matrices (Schmitt

et al., 2002; Shulman-Peleg et al., 2004; Gold and Jackson,

2006), and opens the door to various applications:

(i) functional analysis and classification of ligand binding

sites, (ii) predicting potential ligands, and (iii) anticipating

side effects caused by targeting a peculiar protein.

An alternative approach to compare ligand-binding sites is

to evaluate the similarity of potential ligand binding

envelopes for known X-ray structure of apo or holoproteins

(An et al., 2005). A first draft of the human pocketome, a

collection of all possible ligand binding envelopes for a set of

943 crystallized human proteins, has been proposed recently

(An et al., 2005) and clustered by envelope similarity.

Interestingly, the ligand envelope-based tree only partially

matches alternative trees based on the amino-acid sequence

of the target proteins or on bound-ligand similarities (An

et al., 2005).

Another recently proposed approach to compare proteins

of the same family is to look at packing defects (Fernandez

et al., 2004) localized at the so-called ‘dehydrons’ (backbone

heavy atoms with unsatisfied H-bonding partners), which

are good indicators of protein capacity to interact with

potential ligands and can be predicted form the amino-acid

sequence. Packing distances between 32 PDB-reported

kinases were shown to be almost identical to the pharma-

cological distance between these kinases estimated from an

experimental affinity matrix derived for 17 inhibitors

(Fernandez and Maddipati, 2006) and to efficiently guide

the structure-based design of selective inhibitors for various

enzymes specifically designed to target packing defects

(Fernandez, 2005).

Target–ligand based chemogenomic approaches

Chemical annotation of target binding sites

Numerous biologically annotated chemical libraries can be

browsed (Table 3) to link chemical to target spaces and focus

ligand-based design to target families (Bender et al., 2006;

Nettles et al., 2006; Nidhi et al., 2006). However, as far as

information about the binding site is missing, there is a

potential risk to compare compounds sharing the same

Figure 9 Molecular interaction field (MIF)-based clustering of
targets.
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target but not the same binding site (for example, orthosteric

and allosteric ligands). It is therefore important to rigorously

annotate protein sequences and/or binding site by the

chemotype of the ligands they can recognize. The SMID

(Small Molecule Interaction Database) archive is an interest-

ing initiative to annotate protein amino-acid sequences by

domain-specific ligands (Snyder et al., 2006). A total of 6300

ligands covering 230 000 experimentally observed domain/

small molecule interactions have been stored in a relational

database, which can be browsed to predict the most likely

ligand of proteins of unknown 3-D structures by comparison

of their domains to known protein structures using a reverse

position-specific basic local alignment search (BLAST) pro-

cedures (Feldman et al., 2006). Ligand-annotated binding

sites from the PDB are annotated in several databases

(Kellenberger et al., 2006), but only two of them (Binding-

MOAD, sc-PDB; Table 3) consider the ligand from a

pharmacological point of view and are therefore of interest

for chemogenomic approaches. Such databases can be used

to prioritize either ligands or molecular scaffolds for design-

ing targeted compound libraries covering a well-defined

target space (Figure 11).

2-D searches

To browse and predict protein–ligand complexes, one needs

to set up simple descriptors for both ligands and proteins

from knowledge databases (Table 3) and concatenate them

into a single protein–ligand description. The easiest way to

encode this information is to start form experimental

binding affinity matrices (Kauvar et al., 1995; Krejsa et al.,

2003; Vieth et al., 2004) and to define appropriate QSAR/

QSPR models to predict the affinity of new compounds for

registered targets or the full virtual profile by general

neighbourhood behaviour modelling (Krejsa et al., 2003).

Another approach has recently been proposed for deorpha-

nizing GPCRs in which a ligand fingerprint is merged to a

sequence-based target fingerprint if a high-affinity complex

(pKi47) has been reported in the PDSP database (http://

pdsp.med.unc.edu/). A machine-learning algorithm was

trained from 5319 non-redundant known complexes and

applied to a set of 1 911 415 virtual complexes (55 orphan

receptors and 34 753 drug-like compounds from the NCI

database) to predict the most likely associations (Bock and

Gough, 2005). Out-of-sample validations (finding the recep-

tors of a promiscuous ligand and the ligands of a single

target) were in general agreement with literature data and

some predictions still awaiting experimental validations

have been made.

3-D searches

A straightforward way to predict putative targets of ligands is

to dock each of the ligands of the compound library into

each of the active site of the target library. This strategy has

been validated by several groups and proved able to recover

the known ligands of known targets and predict their off-

targets and thus some potential side effects (Chen and Zhi,

2001; Paul et al., 2004). Up to now, there is a single successful

target fishing application described in the literature utilizing

a docking approach (Muller et al., 2006). Hence, inverse

docking requires first a high-quality 3-D dataset of binding

sites whose automated set-up is quite difficult, and second an

accurate scoring function to properly rank targets. A problem

is that energy-based scoring functions are not very good at

quantifying very heterogeneous protein–ligand complexes

by decreasing binding-free energies (Ferrara et al., 2004) and

that alternative ways of scoring are requested for efficient

target selection. Among the most promising methods is the

computation of IFPs between a protein and its ligand.

Practically, IFPs are simple bit strings that convert 3-D

information about protein–ligand interactions into simple

1-D bit vector representations (Figure 3) that can be quickly

compared by the use of traditional metrics (for example,

Tanimoto coefficient, Euclidian distance). Usage of IFPs have

shown several promising features: (i) enhancing the quality

of pose prediction in docking experiments (Deng et al., 2004;

Marcou and Rognan, 2006); (ii) clustering protein–ligand

interactions for a panel of related inhibitors according to

the diversity of their interaction with a target subfamily

Figure 10 Screening a non-redundant subset of 1060 binding sites form the sc-PDB target library (Kellenberger et al., 2006) for ligand
binding sites similar to that of GPR30 for 4-hydroxy-tamoxifen. (a) Ranking sc-PDB entries by decreasing similarity (ranging from 1 to 0) to the
GPR30 4-hydroxy-tamoxifen binding site (extrapolated from a consensus list of 30 residues delimiting a canonical non-peptide binding site for
most GPCR ligands as proposed by Surgand et al. (2006). The 3ert sc-PDB entry (4-hydroxy-tamoxifen binding site in the estrogen receptor a)
is ranked second among 1060 investigated binding site. (b) Predicted alignment of GPR30 (blue) to ER-a binding site (green) for 4-OH
tamoxifen (white ball and sticks). Both binding sites present a water-accessible negatively charged residue and a buried hydrophobic region
(similarity index of 0.79 according to the SiteAlign program (Surgand et al., 2006)).
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(Chuaqui et al., 2005; Marcou and Rognan, 2006);

(iii) assisting target-biased library design (Deng et al., 2006).

However, docking-independent 3-D methods may also

constitute an interesting approach to predict protein–

ligand complexes. A significant problem is to encode

protein and ligand properties with similar descriptors such

that one partner can be retrieved by using the second one

as a query. A promising solution is proposed with the

CoLiBRI (Complementary Ligands Based on Receptor

Information) method (Oloff et al., 2006) in which both

ligand and active site atoms are described by a same vector

of molecular descriptors derived from shape and electronic

properties of isolated atoms. Therefore, it is possible to

directly correlate chemical similarities between active

site and their ligands by mapping patterns of active sites

onto patterns of their complementary ligands. When

applied to a test data set of 800 high-resolution PDB

complexes, the complementary ligand was ranked among

the top 1% of a large library in 90% of tested active

sites. Accuracy dropped significantly for active sites very

different from those in the test set but still usable as a

prefiltering step for removing the most improbable ligands

(Oloff et al., 2006).

Concluding remarks

Chemogenomic approaches to rational drug discovery have

been exploding in the last years as high-throughput data

(structure, binding affinity and functional effects) become

available for both targets and ligands of pharmaceutical

interest. Numerous ways to link those data have been

proposed focusing on either ligand or target neighbourhood.

A clear data organization and storage is necessary to foster

such applications and begins to emerge for the most

interesting target families (kinases, GPCRs and NHRs). In a

near feature, an earlier and better control of ligand selectivity

can be anticipated by using chemogenomic data. This does

not mean that more selective ligands are going to be

designed, but simply that the observed selectivity profile of

the compound will be compatible with a therapeutical usage.

In addition, novel genomic targets could be better addressed

after locating them in the target space and exploiting the

associated chemical information.

Figure 11 Querying the sc-PDB chemogenomic database (http://bioinfo-pharma.u-strasbg.fr/scPDB) for rule-of-five compliant (Lipinski et al.,
2001) small molecular weight fragments (MW o300, clogP o3, H-bond donor count o3, H-bond acceptor count o6) co-crystallized with
protein kinases.
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l’Université Louis Pasteur – Strasbourg I: France.

Surgand JS, Rodrigo J, Kellenberger E, Rognan D (2006). A
chemogenomic analysis of the transmembrane binding cavity of
human G-protein-coupled receptors. Proteins 62: 509–538.

Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG
et al. (2001). The sequence of the human genome. Science 291:
1304–1351.

Vieth M, Higgs RE, Robertson DH, Shapiro M, Gragg EA, Hemmerle H
(2004). Kinomics-structural biology and chemogenomics of kinase
inhibitors and targets. Biochim Biophys Acta 1697: 243–257.

Votano JR, Parham M, Hall LH, Kier LB, Hall LM (2004). Prediction of
aqueous solubility based on large datasets using several QSPR
models utilizing topological structure representation. Chem
Biodivers 1: 1829–1841.

Wallace AC, Borkakoti N, Thornton JM (1997). TESS: a geometric
hashing algorithm for deriving 3D coordinate templates for
searching structural databases. Application to enzyme active sites.
Protein Sci 6: 2308–2323.

Wang J, Krudy G, Xie XQ, Wu C, Holland G (2006). Genetic
algorithm-optimized QSPR models for bioavailability, protein
binding, and urinary excretion. J Chem Inf Model 46: 2674–2683.

Weber A, Casini A, Heine A, Kuhn D, Supuran CT, Scozzafava A et al.
(2004). Unexpected nanomolar inhibition of carbonic anhydrase
by COX-2-selective celecoxib: new pharmacological opportuni-
ties due to related binding site recognition. J Med Chem 47:
550–557.

Weininger D (1988). SMILES 1. Introduction and encoding rules.
J Chem Inf Comput Sci 28: 31–36.

Willett P (2006). Similarity-based virtual screening using 2D
fingerprints. Drug Discov Today 11: 1046–1053.

Wu CH, Apweiler R, Bairoch A, Natale DA, Barker WC, Boeckmann B
et al. (2006). The Universal Protein Resource (UniProt): an
expanding universe of protein information. Nucleic Acids Res 34:
D187–D191.

Xia X, Maliski EG, Gallant P, Rogers D (2004). Classification of kinase
inhibitors using a Bayesian model. J Med Chem 47: 4463–4470.

Zhang Z, Grigorov MG (2006). Similarity networks of protein binding
sites. Proteins 62: 470–478.

Chemogenomics and drug design
D Rognan52

British Journal of Pharmacology (2007) 152 38–52


