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ABSTRACT In 1967, when Kadison and Ringrose began
the development of continuous cohomology theory for oper-
ator algebras, they conjectured that the cohomology groups
Hn(MM, MM), n > 1, for a von Neumann algebra MM, should all
be zero. This conjecture, which has important structural
implications for von Neumann algebras, has been solved
affirmatively in the type I, II`, and III cases, leaving open only
the type II1 case. In this paper, we describe a positive solution
when MM is type II1 and has a Cartan subalgebra and a
separable predual.

1. Introduction

The study of the continuous Hochschild cohomology groups
Hn(M, M), n $ 1, of a von Neumann algebra M with
coefficients in itself was begun in a series of papers (1–4) by
Johnson, Kadison, and Ringrose. Their work was an outgrowth
of the Kadison–Sakai Theorem on derivations (5, 6), which
proved, in an equivalent formulation, that H1(M, M) 5 0 for
all von Neumann algebras. It was natural to conjecture that the
higher cohomology groups Hn(M, M) also vanish, and this was
settled affirmatively for hyperfinite von Neumann algebras in
ref. 4. These authors established many general results on
cohomology, some of which are reviewed below. One partic-
ular consequence is that it suffices to consider separately the
cases when M is type I, II1, II`, or III in the Murray–von
Neumann classification scheme; the general von Neumann
algebra is a sum of these four types. Because type I von
Neumann algebras are hyperfinite (but by no means exhaust
this class), attention has been focused on the remaining three
types. Considerable progress on the problem has been made
recently by the introduction of the completely bounded co-
homology groups Hcb

n (M, M). Christensen and Sinclair (7)
used the structure theory of completely bounded multilinear
maps to show that Hcb

n (M, M) 5 0 for all von Neumann
algebras (see chapter 4 of ref. 8). These authors and Effros (9)
also proved that the continuous and completely bounded
cohomology groups coincide when M is type II`, III, or II1 and
stable under tensoring with the hyperfinite type II1 factor,
showing that Hn(M, M) 5 0 in these cases. Thus the conjecture
remains open only for type II1 von Neumann algebras.

There have been some partial results in this direction, mainly
concerned with the lower order groups. The vanishing of
H2(M, M) was proved by Christensen and Sinclair for the type
II1 factors with property G (see chapter 6 of ref. 8), while the
same conclusion was reached for a type II1 von Neumann
algebra with a Cartan subalgebra in ref. 10 (for n 5 2) and ref.
11 (for n 5 3 and a separable predual). The von Neumann
algebras having Cartan subalgebras form a rich class (12), but
this class does not contain the von Neumann algebra arising
from the free group on two generators (13). The main result

of this paper is that Hn(M, M) 5 0, n $ 1, for type II1 von
Neumann algebras with a Cartan subalgebra and separable
predual, generalizing the results of refs. 10 and 11. Recent
approaches to cohomology (8) have focused on proving that
the relevant cocycles are completely bounded as multilinear
maps, and this was successful in refs. 10 and 11 for the lower
order groups. The principal idea of the present paper is to
recognize that we need only establish complete boundedness
in the last variable, a much weaker requirement.

In the second section of the paper, we review the basic
definitions of cohomology theory, and we include a brief
discussion of completely bounded maps. Various forms of
averaging over amenable groups play a fundamental and
continuing role in the theory, so we have taken the opportunity
to recall the most important aspects in the third section.
Theorem 3.1 shows the equivalence of several cohomology
groups, Theorems 3.2 and 3.3 present useful inequalities based
on the Pisier–Haagerup–Grothendieck inequality, and Theo-
rem 3.4 concerns the existence of a projection of completely
bounded maps onto the subspace of right module maps which
subsequently produces cobounding maps. The last section
gives a sketch of our main result, and we indicate how the
previously quoted theorems can be combined with some
important work of Popa (14, 15) to establish that Hn(M, M) 5
0 when M has a Cartan subalgebra and a separable predual.
Complete details will appear elsewhere.

We refer the reader to ref. 16 for an early survey of
cohomology theory, and to a later account in ref. 8 that
contains all the necessary background material for this paper,
as well as a discussion of applications.

2. Preliminaries

The matrix algebras Mk(A), k $ 1, over a C*-algebra A #
B(H) carry natural norms, defined by viewing Mk(A) as a
subalgebra of Mk(B(H)) and identifying the latter algebra with
B(H Q z z z Q H) (k-fold direct sum). Thus a bounded linear
map f: A3 B(H) induces a family fk: Mk(A) 3 Mk(B(H)),
k $ 1, of bounded maps on the matrix algebras by applying f
in each entry, and f is said to be completely bounded if

sup$ifki: k $ 1% , `. [2.1]

This supremum then defines the completely bounded norm
ificb. The spaces Rowk(A) and Colk(A) are, respectively, rows
and columns of length k with entries from A, and are obviously
identified with subspaces of Mk(A). Then f: A3 B(H) is said
to be row bounded if the following quantity (which then defines
the row bounded norm) is finite:

ifir 5 sup$ifk~E!i: E [ Rowk~A!, iEi # 1, k $ 1%. [2.2]

There is a substantial literature on completely bounded maps
(see ref. 8 and the references therein), but row bounded maps
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are much less studied. Nevertheless, they will play a crucial role
subsequently. We note that the inequalities

ifi # ifir # ificb [2.3]

are immediate from the definitions.
Now let An denote the n-fold Cartesian product of copies of

A. An n-linear map f: An3 B(H) may be lifted to an n-linear
map fk: Mk(A)n3 Mk(B(H)), k $ 1. For clarity we take n 5
2 because this case contains the essential ideas. For matrices
X 5 (xij), Y 5 (yij) [ Mk(A), the (i, j)-entry of fk(X, Y) [
Mk(B(H)) is defined to be ¥r51

k f(xir, yrj). Following the linear
case, the completely bounded norm is also defined by Eq. 2.1.
Such maps have important applications in cohomology theory
(8, 11).

We will also require the notion of multimodular maps below.
If R # M # B(H) is an inclusion of algebras, then R-
multimodularity of f: Mn3 B(H) is defined by the equations

rf~x1, . . . , xn! 5 f~rx1, x2, . . . , xn!, [2.4]

f~x1, . . . , xn!r 5 f~x1, . . . , xnr!, [2.5]

f~x1, . . . , xir, xi11, . . . , xn! 5 f~x1, . . . , xi, rxi11, . . . , xn!,
[2.6]

where r [ R and xi [ M for 1 # i # n. A simple, but important,
consequence of the definitions is that fk is Mk(R)-
multimodular, for all k $ 1, when f is R-multimodular.

We recall from refs. 1 and 8 the basic definitions of
Hochschild cohomology theory. Let M be a von Neumann
algebra (or C*-algebra) and denote by Ln(M, X) the space of
n-linear bounded maps f: Mn3 X into a Banach M-bimodule
X. The coboundary operator ­: Ln(M, X) 3 Ln11 (M, X) is
defined by

­f~x1, . . . , xn11! 5 x1f~x2, . . . , xn11!

1 O
i51

n

~21!if~x1, . . . , xi21, xi xi11,

3 xi12, . . . , xn!

1 ~21!n11f~x1, . . . , xn!xn11 [2.7]

for x1, . . . , xn11 [ M. Then f is an n-cocycle if ­f 5 0, while
f is an n-coboundary if f 5 ­c for some c [ Ln21(M, X). A
short algebraic calculation shows that ­­ 5 0, and thus
coboundaries are cocycles. The cohomology group Hn(M, X)
is then defined to be the space of n-cocycles modulo the space
of n-coboundaries (for n $ 2). For n 5 1, H1(M, X) is defined
to be the space of bounded derivations modulo the space of
inner derivations. The definition gives rise to a related family
of cohomology groups by imposing further restrictions on the
bounded maps. We might require ultraweak continuity
(Hw

n (M, X)), R-multimodularity (Hn(M, X, :yR)), complete
boundedness (Hcb

n (M, X)), or any combination of these. The
interplay between these various cohomology theories gives an
important tool for the determination of Hn(M, X) (see The-
orem 3.1).

3. Averaging of Maps

One of the earliest and most fruitful techniques in cohomology
theory is to replace a given cocycle with an equivalent one that
has several desirable properties. This is often achieved by
averaging over a suitable amenable group G of unitary oper-
ators in the von Neumann algebra M, using an invariant mean

b. If f is a bounded n-cocycle, we may define a bounded (n 2
1)-linear map a by

a~x1, . . . , xn21! 5 E
G

u*f~u, x1, . . . , xn21!db~u!, [3.1]

where the action of b is denoted by integration. The invariance
of b yields

~f 2 ­a!~x1, . . . , xn! 5 0 [3.2]

whenever x1 [ G, and thus whenever x1 [ B, the C*-algebra
generated by G. Further applications of unitary averaging lead
to the conclusion that f is equivalent to an n-cocycle c with the
property that

c~x1, . . . , xn! 5 0 [3.3]

when at least one of the variables is in B. As a consequence,
such a c is B-multimodular. We use n 5 2 to illustrate this
point: the cocycle equation

bc~x, y! 2 c~bx, y! 1 c~b, xy! 2 c~b, x!y 5 0, [3.4]

b [ B, x, y [ M, reduces to

bc~x, y! 5 c~bx, y! [3.5]

because the last two terms in 3.4 are 0.
Now let A be a C*-algebra acting on a Hilbert space H, and

let M be its ultraweak closure. There is a central projection
z [ A** such that A**z and M are isomorphic and, employ-
ing this isomorphism, M becomes a dual normal A**-
bimodule. By using second dual techniques, it is then pos-
sible to replace a cocycle f: An3M by an equivalent cocycle
c: An 3 M that is separately ultraweakly-weak* continuous
in each variable. Moreover, such a cocycle extends to a
cocycle c# : Mn3M that is separately normal in each variable.
In the particular case when A 5 M, we conclude that each
cocycle is equivalent to one that is separately normal in each
variable.

Now consider a hyperfinite subalgebra R of a von Neumann
algebra M. Because R is the ultraweak closure of an increasing
family of finite dimensional subalgebras, it is possible to find
an amenable group G of unitary operators in R that generates
a C*-algebra B whose ultraweak closure is R. The averaging
and second dual techniques can be applied in tandem to
replace a cocycle f: Mn 3 M by an equivalent cocycle c that
is both B-multimodular and separately normal in each vari-
able. Of course, c is then R-multimodular by ultraweak
continuity.

All the results discussed above are due to refs. 2–4 and may
also be found in chapter 3 of ref. 8. They are summarized by
the following theorem, which is undoubtedly the most impor-
tant for cohomological calculations.

THEOREM 3.1. (See ref. 8.) Let M # B(H) be a von
Neumann algebra with a hyperfinite von Neumann subalgebra R
and an ultraweakly dense C*-subalgebra A. Then the cohomology
groups

Hn~A, M!, Hw
n ~A, M!, Hn~M, M!, Hw

n ~M, M!,

and Hw
n ~M, M :yR!

are pairwise isomorphic, for each n $ 1.
As will be seen subsequently, this theorem gives several

options for the determination of Hn(M, M).
A second application of averaging over an amenable unitary

group leads to a very useful inequality for bilinear maps.
Grothendieck’s inequality for abelian C*-algebras was ex-
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tended to C*-algebras with the approximation property by
Pisier (17), and then to all C*-algebras by Haagerup (18). The
latter formulation, appropriate for von Neumann algebras, is
as follows. Given a bounded bilinear form u: M 3 M 3 C,
separately normal in each variable, there exist four states f1, f2,
g1, g2 [ Mp, the predual of M, such that, for x, y [ M,

uu~x, y!u #
1
2

iui~ f1~x*x! 1 f2~xx*! 1 g1~ y*y! 1 g2~ yy*!!. [3.6]

If u has the additional property of being inner R-modular, in
the sense that

u~xr, y! 5 u~x, ry! [3.7]

for x, y [ M, r [ R , where R is a hyperfinite von Neumann
subalgebra whose relative commutant R9 ù M is the center Z
of M, then we may fix an amenable group G of unitary
operators in R and average in 3.6. The resulting inequality,
when M is type II1, is

uu~x, y!u 5 E
G

uu~xu*, uy!udb~u!

#
1
2

iuiS f1SE
G

ux*xu*db~u!D 1 f2~xx*! 1 g1~y*y!

1 g2SE
G

uyy*u*db~u!DD , [3.8]

leading to the existence of two states F, G [ Mp such that

uu~x, y!u # iui~F~xx*! 1 G~y*y!!. [3.9]

The x*x and yy* terms have disappeared from 3.6 because, for
m [ M,

E
G

um*mu*db~u! 5 E~m*m! 5 E~mm*!, [3.10]

where E is the tracial conditional expectation of M onto Z. The
following result from ref. 11, to which we refer for details, is
a straightforward deduction from 3.9.

THEOREM 3.2. Let M be a type II1 von Neumann algebra
with a hyperfinite subalgebra R satisfying R9 ù M 5 Z. If c: M
3 M 3 M is inner R-modular and separately normal in each
variable, then

I O
i51

n

c~xi, yi!I # 2ici I O
i51

n

xix*iI 1y2I O
i51

n

y*i yiI 1y2

. [3.11]

for xi, yi [ M.
This theorem applies to a normal right R-module map f: M

3 M by considering the inner R-modular bilinear map

c~x, y! 5 f~x!f~y*!*, x, y [ M. [3.12]

The next result follows from 3.11 by taking yi to be x*i. The
crucial point is the equivalence of the operator norm and the
row bounded norm, which is immediate from 3.13.

THEOREM 3.3. Let R # M satisfy the hypotheses of Theo-

rem 3.2, and let f: M3M be a bounded normal right R-module
map. Then

(i) for xi [ M, 1 # i # n,

I O
i51

n

f~xi!f~xi!*I # 2ifi2 I O
i51

n

xi x*iI , [3.13]

(ii) f is row bounded, and

ifi # ifir # Î2 ifi. [3.14]

A nonhyperfinite type II1 von Neumann algebra will not be
generated by an amenable group of unitaries, but nevertheless
there is a notion of averaging that works in this situation, but
only on completely bounded maps. The idea is to replace an
average *Gf(xu)u*db(u) by an ultraweak limit of maps of the
form

x ° O
i51

`

f~xmi!m*i [3.15]

where mi [ M and ¥i51
` mim*i 5 1, to obtain right M-module

maps from bounded maps. The next result, taken from ref. 19
but tailored to our needs, relies on the minimal invariant set
technique pioneered by Kadison (5) and Sakai (6).

THEOREM 3.4. There exists a contractive projection r from
Lcb(M, M) onto the subspace Lcb(M, M)M of right M-module
maps with the following properties:

(i) There exists a net of maps ra: Lcb(M, M)3 Lcb(M, M), each
of the form 3.15, such that

~rf!~x! 5 lim
a

~raf!~x! [3.16]

ultraweakly for f [ Lcb(M, M) and x [ M.
(ii) For all f [ Lcb(M, M),

irfi # ifir # ificb. [3.17]

(iii) If a [ M is fixed and fa [ Lcb(M, M) is defined, for each
f [ Lcb(M, M), by

fa~x! 5 f~ax!, x [ M, [3.18]

then

~rfa!~x! 5 ~rf!~ax!, x [ M. [3.19]

4. The Main Result

Throughout this section, M is a type II1 von Neumann algebra
with a separable predual, center Z, and a faithful trace tr. We
assume that M is represented on L2(M, tr), in which case there
is a conjugate linear isometry J: [x] ° [x*] so that JMJ 5 M9,
the commutant of M. We also assume that M has a Cartan
subalgebra A. This is a maximal abelian self-adjoint subalgebra
of M whose unitary normalizer

U ; $u [ M: uAu* 5 A, u unitary% [4.1]

generates M as a von Neumann algebra (12).

THEOREM 4.1. With the above assumptions on M,

Hn~M, M! 5 0, n $ 1. [4.2]

Sketch of Proof: From Theorem 3.1, it suffices to show that
Hw

n(C*(U), M) 5 0, n $ 1. Because the case n 5 1 is a special
case of the Kadison–Sakai derivation theorem (5, 6), we
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make the further restriction of n $ 2. By refs. 14 and 20 there
is a hyperfinite subalgebra R such that A # R # M and R9
ù M 5 Z. The averaging techniques of the previous section
allow us to consider a cocycle f: Mn 3 M which is
R-multimodular and separately normal in each variable, and
it is required to show that the restriction of f to C*(U)n is
a coboundary.

The first step is to prove that, for fixed u1, . . . , un21 [ U,
the map

m~x! 5 f~u1, . . . , un21, x!, x [ M, [4.3]

is completely bounded in the x-variable. The Cartan subalge-
bra and R-multimodularity hypotheses are used to establish
this. Given X [ Mk(M), R0 [ Rowk(A), C [ Colk(A), all of
norm 1, we may find rows R1, . . . , Rn21 [ Rowk(A), again of
norm 1, so that

Rj~uj11 ^ Ik! 5 uj11Rj11, 0 # j # n 2 2, [4.4]

because u1, . . . , un21 [ U. Then elements of A can be passed
through the variables of f, as discovered by Rădulescu (21),
giving

R0mk~X!C 5 f~u1, . . . , un21, Rn21XC!. [4.5]

Thus

sup$iR0mk~X!Ci: iR0i 5 iCi 5 1% # ifi. [4.6]

By ref. 15, A and JAJ generate a maximal abelian subalgebra
of B(L2(M, tr)), and this is sufficient to conclude that the
supremum in 4.6 is imk(X)i (see theorem 2.1 of ref. 22). Thus
imicb # ifi. It is then clear that, for any fixed y1, . . . , yn21 [
Alg(U),

x ° f~y1, . . . , yn21, x!, x [ M, [4.7]

is completely bounded in the x-variable, and is a normal right
R-module map. For y1, . . . , yn [ Alg U, x [ M, each term in
the cocycle equation

y1f~y2, . . . , yn, x! 1 O
i51

n21

~21!if

3 ~y1, . . . , yi21, yiyi11, yi12, . . . , yn, x!

1 ~21!nf~y1, . . . , yn21, ynx!

1 ~21!n11f~y1, . . . , yn!x 5 0 [4.8]

is a completely bounded map in x, so the projection r of
Theorem 3.4 may be applied. Because Lcb(M, M)M consists of

maps of the form x ° m0x for a fixed m0 [ M, we obtain a:
Alg(U)n21 3 M so that 4.8 becomes

y1a~y2, . . . , yn!x 1 O
i51

n21

~21!ia

3 ~y1, . . . , yi21, yiyi11, yi12, . . . , yn!x

1 ~21!na~y1, . . . , yn21!ynx

1 ~21!n11f~y1, . . . , yn!x 5 0, [4.9]

and the estimate iai # =2ifi follows from Theorem 3.3 (ii)
and Theorem 3.4 (ii). Eq. 4.9, with x 5 1, gives f 5 ­((21)na)
on Alg(U)n, and the same conclusion holds on C*(U)n by
continuity. This establishes that the restriction of f to C*(U)
is a coboundary, as required.

Some of the ideas above were formulated at the Workshop on
Complete Boundedness and Cohomology of Operator Algebras, held
in July 1995 at the University of Newcastle. We wish to thank Professor
B. E. Johnson for the invitation to attend and the Engineering and
Physical Sciences Research Council (U.K.) for financial support during
the workshop. We also gratefully acknowledge support from a NATO
collaborative research grant for part of the period during which this
work was in progress. R.R.S. was partially supported by a National
Science Foundation research grant.
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