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Abstract
DNA vaccines were introduced less than a decade ago but have already been applied to a wide range
of infectious and malignant diseases. Here we review the current understanding of the mechanisms
underlying the activities of these new vaccines. We focus on recent strategies designed to enhance
their function including the use of immunostimulatory (CpG) sequences, dendritic cells (DC), co-
stimulatory molecules and cytokine- and chemokine-adjuvants. Although genetic vaccines have been
significantly improved, they may not be sufficiently immunogenic for the therapeutic vaccination of
patients with infectious diseases or cancer in clinical trials. One promising approach aimed at
dramatically increasing the immunogenicity of genetic vaccines involves making them ‘self-
replicating’. This can be accomplished by using a gene encoding RNA replicase, a polyprotein
derived from alphaviruses, such as Sindbis virus. Replicase-containing RNA vectors are significantly
more immunogenic than conventional plasmids, immunizing mice at doses as low as 0.1 μg of nucleic
acid injected once intramuscularly. Cells transfected with ‘self-replicating’ vectors briefly produce
large amounts of antigen before undergoing apoptotic death. This death is a likely result of requisite
double-stranded (ds) RNA intermediates, which also have been shown to super-activate DC. Thus,
the enhanced immunogenicity of ‘self-replicating’ genetic vaccines may be a result of the production
of pro-inflammatory dsRNA, which mimics an RNA-virus infection of host cells.
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1. Why use genetic vaccines?
DNA vaccination has become the fastest growing field in vaccine technology following reports
at the beginning of the 90’s that plasmid DNA induces an immune response to the plasmid-
encoded antigen [1,2]. This unexpectedly successful new method is considered by some to be
one of the most important discoveries in the history of vaccinology [3,4]. However, DNA
vaccination in many cases is hampered by poor efficacy. Thus, as discussed later, various
strategies are being developed to improve immune responses induced by genetic vaccines.

In contrast to vaccines that employ recombinant bacteria or viruses, genetic vaccines consist
only of DNA (as plasmids) or RNA (as mRNA), which is taken up by cells and translated into
protein. In case of gene-gun delivery, plasmid DNA is precipitated on to an inert particle
(generally gold beads) and forced into the cells with a helium blast. Transfected cells then
express the antigen encoded on the plasmid resulting in an immune response. Like live or
attenuated viruses, DNA vaccines effectively engage both MHC-I and MHC-II pathways
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allowing for the induction of CD8+ and CD4+ T cells (reviewed in [5]) whereas antigen present
in soluble form, such as recombinant protein, generally induces only antibody responses.

Because genetic vaccines are relatively inexpensive and easy to manufacture and use, their
immunogenicity and efficacy have been analyzed in a large number of systems and results
from preclinical studies have supported human clinical trials [6,7]. Studies have rapidly moved
from small laboratory animals to primates and clinical trials are currently being conducted for
diseases such as cancer [8], HIV-infection [9], or malaria [10,11]. DNA vaccine studies for
disease-models have intensively been reviewed elsewhere [12-15]. The focus of this review
will be on experimental strategies aimed at improving genetic vaccines and in particular on
those capable of self-replication.

2. A variety of factors determine the success of genetic vaccination
The quick acceptance of genetic vaccines in experimental settings is due to the many
advantages this strategy has over traditional vaccines. However, the efficacy of genetic
vaccines in many systems has not proven to be satisfactory, leading some to conclude that
genetic vaccines are not a viable alternative to conventional vaccines and will never replace
them (reviewed in [16]). Some studies, however, purport that DNA vaccines are more
efficacious than some established vaccines based on recombinant proteins [17], recombinant
viruses [18], or both [19]. Indeed, DNA vaccines can circumvent many of the problems
associated with recombinant protein-based vaccines, such as high costs of production,
difficulties in purification, incorrect folding of antigen and poor induction of CD8+ T cells.
DNA also has clear advantages over recombinant viruses, which are plagued with the problems
of pre-existing immunity, risk of insertion-muta-genesis, loss of attenuation or spread of
inadvertent infection [8,20]. Perhaps, the primary goal of genetic vaccines should not be to
replace well established conventional vaccines with a good track record, instead the focus
should be on diseases for which conventional vaccine approaches are ineffective.

Genetic vaccines can be delivered into the host by several routes and methods. Needle-injection
into muscle tissue and into the skin is the most commonly used method [1,21,22]. Also the
spleen and a variety of mucosal surfaces [23-25] including those of the nose [26] and gut
[27] have been targeted. Scale-up from small rodents to larger animals and humans may not
be an obstacle: A given DNA-dose may effectively induce an immune response regardless of
body size [28,29]. Despite the large number of genetic vaccine-studies conducted so far, many
of the results are difficult to compare and inconsistent. A number of factors determine the
magnitude and type of immune response induced by plasmid DNA (summarized in Table 1).

Genetic vaccines may mimic some aspects of the natural infection of host-cells. However,
microorganisms contain surface-molecules such as LPS and a variety of soluble factors that
function as adjuvants, alerting the immune system to ‘danger’ by inducing inflammation. The
potency of genetic vaccines may be significantly enhanced by mimicking these signals with
synthetic adjuvants such as QS21 [26] or monophosphoryl lipid A (MPL) [30,31]. However,
DNA plasmids without adjuvant are able to induce remarkably strong immune responses to
the encoded antigen. In part, this may be due to immunostimulatory sequences within the DNA
itself [32,33].

3. Myocytes likely play a secondary role in successful vaccination
Because myocytes are able to take up some of the plasmid injected into the muscle the
mechanism of intramuscular immunization seemed very straightforward (Fig. 1). Some
reported that this uptake was enhanced when muscle fibrils were recovering from tissue damage
induced by the injection of bupivacaine [34] or cardiotoxin [35,36], although such pre-
treatment may not be beneficial for all systems [16]. However, muscle is not considered an
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immunologically relevant tissue as myocytes lack the characteristics of antigen-presenting
cells (APC) such as MHC-II expression, costimulatory molecules or marked cytokine-
secretion. Even the co-expression of costimulatory molecules or cytokines like GM-CSF or
IL-12 is insufficient to turn non-hematopoetic cells into efficient APC [37]. Successful antigen
presentation to naive T cells in vivo by ‘non-professional’ APC like fibroblasts may be
restricted to some viral antigens that are immunogenic enough to overcome costimulatory
requirements [38]. The insignificant role of muscle cells in intramuscular DNA-immunization
is further supported by a study, in which the surgical removal of the injected muscle within 10
min of injection of DNA-plasmid did not affect the magnitude or longevity of the antibody
response to the encoded antigen [39]. Thus, it seems unlikely that muscle tissue is the immune
activating component. Indeed, there is little or no local inflammatory infiltrate at the DNA
injection-site, especially after the acute effects of the vaccination have disappeared [40].

Two possible scenarios could explain the mechanism of immune-priming by intramuscularly
injected genetic vaccines (Fig. 1). First, myocytes are the antigen-factories that supply
professional APCs with antigen for the induction of an immune response in the form of full-
length protein or peptides [41,42]. Alternatively, resident APCs may be transfected directly
and the antigen that is expressed by transfected myocytes is an irrelevant side-product. In either
case, the antigen-expressing bone marrow-derived APCs then migrate to lymph nodes where
they activate the T and B lymphocytes. Transfected myocytes may also serve as plasmid-depots
for continued APC-transfection. Because myocytes expressing the antigen are subject to CTL-
lysis [43], plasmid released from these myocytes may be picked up by monocytes migrating
through the muscle.

4. Bone marrow derived APC are required for the induction of an immune
response after DNA-vaccination

The crucial role of bone marrow-derived APC (BM-APC) has been well established by using
BM-reconstituted chimeras [42,44-46]. The migration of plasmid-carrying macrophages from
the injected muscle to lymph nodes has been observed. Minute amounts of the immunizing
plasmid have been demonstrated in regional lymph nodes and the spleen [47]. In the case of
gene gun delivery, only a small number of transfected dendritic cells (DC) can be found in
local lymph nodes after the immunization leading some to question whether these few cells
are sufficient to induce an immune response [48]. Alternative explanations such as antigen-
transfer to DC or antigen-presentation by non-hematopoetic cells are not consistent with data
from experiments in which the transfected cells were selectively depleted in vitro, severely
impairing the ability of the remaining non-transfected APCs from immunized animals to induce
T cells [48]. The crucial role of DC is also supported by the observation that subcutaneous
DNA-injection is very inefficient since this tissue lacks Langerhans cells [49].

The role of DC is not unique to DNA-based vaccines. In case of recombinant vaccinia viruses,
the strongest immune response is not induced by the construct with a promoter that showed
the highest in vitro expression but the construct using a promoter that was active in DC [50].
Likewise, the function of DNA immunogens should be optimized in DC.

5. Intramuscular and intradermal genetic vaccination may employ different
mechanisms in inducing immune responses

In contrast to muscle, skin has important immunological functions as it represents the ‘first
line of defence’ of the immune system. Throughout the epidermis, specialized DC form a 3-
dimensional network to assure tight immune-surveillance of the skin. Infections agents
stimulate DC to pick up antigen and after migrating to the local lymph nodes initiate an immune
response [51,52]. The main methods of plasmid-DNA delivery to the skin, by needle injection
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or by gene-gun, differ in several respects. While needle injection requires relatively large
amounts of plasmid (similar to the 50–100 μg dose used in intramuscular immunization), the
amount of plasmid required for gene-gun immunization has been titrated down to a few
nanogram [53,54]. As in myocyte-transfection after intramuscular immunization, plasmid can
be actively taken up by skin cells [55] but only few cells are transfected after intradermal
injection [22].

When delivered by gene-gun, the plasmid solubilizes when the plasmid-coated gold bullet
penetrates the cells in the skin. Thus, plasmid is directly deposited into cells transfecting up to
20% of the cells in the target-area [56]. Tissue stress resulting from the blast may contribute
to the activation of DC. Indeed, the total number of DC in the skin-draining lymphoid tissue
increases enormously after gene-gun immunization, although the majority of these cells do not
carry the plasmid. Such massive DC-immigration into lymph nodes could be induced simply
with plasmidfree gold bullets demonstrating the ‘adjuvant effect’ of gene-gun immunization
[48]. In case of gene gun immunization, an antibody-response to the plasmidencoded antigen
has been reported not to occur if the target area is excised within 24 h. There is little or no
effect when the excision occurs later [39,57]. This time period may coincide with the time it
takes an activated DC to migrate from the skin to the lymph nodes. In contrast to these findings,
the removal of the gene-gun immunized mouse-ear immediately after immunization does not
abrogate the immune response (Johnston SA, personal communication) most likely because
some plasmid can rapidly leave the tissue after it is delivered directly into the bloodstream,
possibly transfecting cells in blood vessels close to the surface of the skin.

Larger amounts of plasmid delivered by needle-injection together with increased quantities of
immunostimulatory DNA sequences may steer the immune system towards a Th1-type
response [58-60]. Indeed, the intramuscular injection of relatively small amounts of plasmid
elicits Th2-type responses that are characterized by IgG1 [61]. The small amounts of
immunostimulatory DNA delivered with the gene gun may not be sufficient to mediate a Th1-
type response allowing Th2-type responses to emerge (reviewed in [61]). It is important to note
that needle immunization with large amounts of DNA does not always induce Th1-type
responses and gene gun immunization does not always yield a Th2-response [62,63]. By
modifying the immunization-regimen, we have shown that either IgG1 or mixed IgG1/IgG2-
responses can be induced by gene-gun immunization [63]. Furthermore, a gene gun-induced
Th2-type response can be switched to a Th1-type response by co-delivering the genes for IL-2,
-7 or -12 [64] (Fig. 2).

6. Enhancing the efficacy of genetic vaccines
A large number of approaches have been used in an attempt to improve the often poor efficacy
of DNA vaccines. Because the efficacy of DNA vaccines in many systems has not been
satisfactory, the most simple and unexpectedly effective strategy is increasing the intervals
between immunizations and, thereby, the ‘rest-period’ of the immune system [63,65]. In
addition, many elements of the plasmid can be optimized for use of the vector as a DNA vaccine
[66]. Based on the idea that more antigen is better, most DNA vaccines use strong viral
promoters and are geared towards maximum expression. Other sequences that can be optimized
in a plasmid include introns, enhancers and poly-adenylation signals [67-69].

6.1. Antigens can be modified to make them better immunogens
To improve the immunogenicity of an antigen encoded by a genetic vaccine, functional
sequences like the intracellular domain or the trans-membrane sequence can be eliminated
[70]. Antigens can be targeted to the Class-I or Class-II processing pathways with the addition
of sequences designed to direct intracellular trafficking. Finally, immunodominant epitopes
from antigens can be expressed as minigenes, or they can be buried within unrelated, but highly
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immunogenic core-sequences [71]. This may be especially useful in cases where ‘full-length’
proteins are not suitable as vaccine candidates, because they are toxic for the host [61] or
immunosuppressive [72]. Antigenic proteins can be maximally truncated, leaving only defined
epitopes for B or T cells. Antigens consisting of CD8+ T cell-epitopes alone are sufficient to
induce CTLs as shown with an ova-epitope in vaccinia [73] and this approach has also
successfully been used for CD4+-T cell epitopes [55]. To overcome MHC-restriction of
individual epitopes or to induce a broader range of effector-cells, it is possible to deliver
multiple contiguous minimal epitopes in form of a ‘polytope’. This approach has successfully
been used for vaccinia as a carrier [74] as well as for an analogue DNA-construct [75]. To
improve MHC-I-loading, endoplasmic reticulum (ER) insertion signal sequences can be
attached to minigenes. These sequences can facilitate the targeting of the antigen to the ER,
where MHC-I molecules are complexed with antigen. This approach was pioneered in the
vaccinia system [76] and also works for peptide-immunization [77]. An adenovirus leader-
sequences has successfully been used to target DNA vaccine encoded CD8+ T cell epitopes to
the ER [71].

Helper epitopes, such as the hepatitis B core-antigen, can activate B cells and elicit strong T
cells responses adding significantly to DNA-based vaccines against hepatitis [78,79]. In
another example, a short sequence of a malaria antigen encoding a known helper-epitope (P.
berghei CSP57-70) with a nested and previously unidentified H2-Kd CD8+ T cell epitope
(PbCSP58-67) was engineered into a DNA plasmid together with the hepatitis core antigen-
sequence. When this plasmid was delivered as a DNA vaccine by gene gun, we were able to
induce the highest level of protection seen with any PbCSP-DNA vaccine tested (Lyon JA,
Leitner WW, unpublished observation).

6.2. Exogenous cytokines can enhance or direct the immune response
Cytokines can significantly improve vaccine-induced immune responses, accelerating and
augmenting it as well as directing it, for example, towards a Th1- or Th2-type response [80,
81]. In the case of cancer, adjuvant cytokines are especially important, because tumor-
associated-antigens are generally of poor immunogenicity. Irvine et al. demonstrated that gene
gun delivery of a model antigen was protective by itself, but was only therapeutic when co-
delivered with IL-2, IL-6, IL-7 or especially IL-12 [82]. Other useful cytokine adjuvants
include GM-CSF, a cytokine thought to recruit and mature dendritic cells [83]. Besides using
exogenous factors, cytokines [84] as well as chemokines [85,86] encoded on plasmid DNA or
as cDNA have been used to study, modulate or enhance a DNA vaccine induced immune
response. One study shows the conversion of a non-immunogenic antigen into a DNA vaccine
by fusing it to the genes for chemokines [87].

6.3. DNA-encoded costimulatory molecules can enhance APC-functions
To develop a T cell response, APCs have to deliver two signals to the T cell: one signal is from
the MHC/peptide complex to the T cell receptor, the second is from a costimulatory molecule,
of which B7 is perhaps the most important and best characterized. In the absence of
costimulation, T cells may become anergic preventing self-reactive cells from producing auto-
reactivity. B7.1 and B7.2 are expressed on professional APC and on a variety of other tissues
after exposure to inflammatory cytokines [88]. Transfection of tumor cells with either isoform
has successfully been used to overcome the poor immunogenicity of tumor cells [89-91]. Both
molecules bind CD28, the constitutively expressed T cell ligand, as well as CTLA-4, an
inducible ligand expressed upon T cell activation. There is an ongoing controversy over how
these two B7-molecules differ functionally. Blockade of B7.1 has been shown to abrogate
primary and secondary antibody responses, while B7.2 blockade suppressed only primary
responses [92]. The differential expression of B7.1 and B7.2 on APC could result in differences
in the T helper cell phenotype [93]. Alternatively, some investigators challenge the role of B7
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as a costimulatory molecule altogether and describe B7.1 and B7.2 as ‘late’ triggers of IL-2
production and T cell survival that are not involved in the initial T cells stimulation [94,95].

The use of B7 for DNA-immunization has shed some light on the differential roles of the two
isoforms. Interestingly, co-immunization with the B7.2-gene yielded better results in some
studies while B7.1 codelivery had little beneficial effect [37,96]. We, however, observed that
co-delivery of B7.1 with a malaria antigen (Pb-CSP) by gene gun significantly increased the
protective effect of a low-expressing plasmid, but not of a high expresser plasmid (Lyon JA,
Leitner WW, unpublished observations). The enhanced efficacy was strongly dependent on
the immunization interval and, surprisingly, repeated B7.1 co-immunization was suppressive
when used with longer intervals. Importantly, enhanced immune responses are observed in
some studies only when the two genes are encoded on the same plasmid, suggesting that the
antigen-specific and costimulatory signals must emanate from the same cell [84].

6.4. Bacterial DNA-sequences called immunostimulatory sequences can be potent adjuvants
Non-methylated, palindromic DNA-sequences containing CpG-oligodinucleotides (CpG-
ODN) can activate an ‘innate’ immune response by activating monocytes, NK cells, dendritic
cells and B-cells in an antigen-independent manner (immunostimulatory DNA sequences,
ISS). Indeed, methylation of the CpG-ODN reportedly abrogates the immunogenicity of the
DNA vaccine [97]. Thus, the use of large amounts of plasmid for immunization may not only
overcome the low transfection eficiency in vivo, but may also serve as an adjuvant, driving a
Th1-type response (reviewed elsewhere [98]). Immunostimulatory DNA sequences may
activate skin-derived DC in vitro and in vivo [99]. Because resting DC are weak APCs, this
activation may be critical for successful plasmid-vaccination [100,101]. CpG-ODN have been
reported by one group to be as effective an adjuvant as Complete Freund’s Adjuvant and to be
without significant toxicity [33]. In the case of DNA vaccines they can either be co-
administered with plasmid-DNA in the form of oligonucleotides or the number of ISS on the
plasmid-backbone can be increased. Limited information is available so far about the species-
specificity and restrictions of the DNA-sequences outside the central CpG-ODN [97].
Nevertheless, the study of the immunostimulatory properties of DNA may be an important area
of research because of the limited number of adjuvants for use in humans (reviewed in [102]).

6.5. Heterologous prime-boost-regimens can enhance the efficacy of genetic vaccines
The delivery of the same antigen multiple times using carriers with little or no immunogenic
crossreactivity (heterologous prime-boost-regimen) provides several advantages over the
repeated delivery of an antigen with the same carrier (homologous boosting). The repeated use
of any given recombinant virus-based vaccine may be impaired by anamnestic responses to
the carrier itself [8]. Including DNA in these regimens may also shift the response towards
Th1, even when a Th2-type response was initiated with recombinant protein [103].
Heterologous boosting yielded full protection in the P.berghei malaria model when plasmid
immunization was followed by administration of recombinant vaccinia virus. Homologous
boosting was weak or ineffective in this model [104,105]. Similarly, Irvine et al, reported
greatly improved immune responses and tumor treatment when delivering a model tumor
antigen by gene gun, cowpox or fowlpox in a heterologous prime-boost-regimen [106].

The order of carriers used in a heterologous primeboost-regimen may be important. Going
from the antigenically simpler vector in the priming, to the antigenically more complex (and
potentially more powerful) vector in the boosting may help the immunotherapist to focus the
immune response. For example, priming with DNA-priming and boosting with recombinant
vaccinia virus was the only effective regimen in some studies [104,105]. This might be due to
viral products that are immunosuppressive such as soluble, secreted cytokine receptor
homologues, the expression of which could interfere with immune priming, especially to weak
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antigens [107-110]. Furthermore, epitopes derived from viral vectors can be immunodominant
over weak antigens. Such interference might have less impact on a secondary response that
had been primed with a DNA vaccine. Finally, in humans, pre-existing immunity to some viral
vectors might add another level of complexity to the outcome of heterologous prime-boost
strategies.

7. Self-replicating genetic vaccines have some clear advantages over
conventional vectors

‘Self-replicating’ genetic vaccines are designed to overcome the poor efficacy of some current
DNA-based and RNA-based genetic vaccines. The idea and the elements for this new
generation of vaccines come from members of the Alphavirus genus, which includes Sindbis
virus, Semliki Forest virus (SFV) and Venezuelan equine encephalitis (VEE) virus. These RNA
viruses contain a single copy of positive-stranded RNA encapsidated by a protein/lipid
envelope. The viral RNA encodes its own RNA replicase, an autoproteolytic polyprotein that
cleaves itself into four non-structural protein components (nsP1-4) [111,112]. Upon infecting
a cell, the viral RNA first translates the replicase complex, which in turn drives its own RNA
replication. The replicase complex then synthesizes a genomic negative-strand (anti-sense
RNA), which is used as a template for the synthesis of the genomic positive-stand RNA as
well as a subgenomic RNA encoding the structural viral proteins (Fig. 3). The genes for
structural proteins can be replaced with the gene for the antigen of interest to construct powerful
replicase-based vaccines [113].

Theoretically up to 200,000 copies of RNA can be produced in a single cell within 4 h and
expression of the encoded antigen can be as much as 25% of total cell protein [114]. The
alphavirus replicase functions in a broad range of host cells (mammalian, avian, reptilian,
amphibian and insect cells) [115]. Replication takes place in the cytoplasm of the host cell and,
therefore, is independent of the host’s replication system. All the above features, i.e. high level
expression, broad host range and cytoplasmic replication, are useful features in genetic vaccine
development.

To facilitate vaccine production, genomic alphavirus RNA alone can be used as a vaccine
vehicle. The in vitro transcribed self-replicating RNA contains sequences coding for the SFV
replicase and a model antigen. A single intramuscular injection of a self-replicating RNA
elicited antigen-specific antibody and CD8+ T cell responses and was shown to be significantly
more effective than non-replicating RNA [115,116]. DNA-based vaccines can also be
constructed by inserting a strong promoter like the human CMV immediate promoter/enhancer
element to initiate the transcription of the full length ‘genomic’ RNA in the nucleus [112,
117-119]. Replicase-based DNA vaccines may be significantly more immunogenic and
efficacious than conventional DNA-plasmid vaccines when low doses of the vaccine are given.
Indeed, nanogram amounts of replicase-based vaccine can induce antigen-specific antibody
and CD8+ T cell responses [118-120] (and Leitner WW et al., in preparation).

8. Mechanisms that could account for the high efficacy of self-replicating
genetic vaccines

A major rationale for putting antigen-coding genes under the control of the alphaviral RNA
replicase was to enhance antigen expression and presentation. Unexpectedly, the level of
antigen expression of replicase-based constructs in vitro was not necessarily higher than that
obtained with conventional DNA or RNA-vectors [118,120] (and Leitner WW et al.,
manuscript in preparation). The discordance between antigen expression level and the increase
in immunogenicity suggests that other mechanisms are involved such as those illustrated in
Fig. 4. A fundamental difference between replicase-based DNA vaccines and conventional
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DNA vaccines is the virus-like RNA-replication inside transfected host. Transfection of host
cells with replicase-based genetic vaccines could trigger a series of ‘danger signals’[121].

Replicase-based DNA or RNA induce apoptotic death of the host cell in vitro just as alphaviral
infection induces apoptosis in host cells [116,122]. These apoptotic cells may be picked up by
dendritic cells for presentation to the immune system [123]. Transfection with self-replicating
genetic vaccines may also cause the production of heat shock proteins in transfected or
bystander cells [124]. The activity of the viral replicase may provide a powerful adjuvant-effect
because of the requisite production of double stranded RNA (dsRNA) intermediates (Fig. 5).
dsRNA itself is a potent inducer of the interferons and virus-derived dsRNA can function as a
strong adjuvant for cellular and humoral immune responses [125]. Several molecules are
known to bind to and can be activated by dsRNA. The best characterized are 2′–5′ oligoadeny-
late (2-5A) synthetase and protein kinase-RNA activated (PKR). The 2-5A system contributes
to the antiviral effect of the interferons through the synthesis of 2-5A and its activation of
RNAse, which degrades both viral and cellular RNA. PKR-expression both induces and is
induced by the interferons. PKR is then activated by dsRNA to phosphorylate its substrates,
including eIF2. This results in the inhibition of translation, further diminishing viral replication.
The cellular death observed in response to dsRNA is likely to be mediated by both the 2-5A
system-induced RNAse as well as some substrates of PKR [126,127]. INF-γ potentiates the
apoptotic effects of dsRNA [128].

The mediators involved in the apoptosis of virally infected cells are subject to viral and cellular
inhibitors, like vaccinia E3L [127], HIV-1 Tat protein [129] or the cellular P85IPK [130].
Inhibitors encoded by viruses allow efficient viral replication despite the host cells defense
mechanisms. Although apoptosis of cells transfected with self-replicating genetic vaccines
might contribute to their enhanced immunogenicity, their efficacy might be limited by the rapid
death of host cells due to the absence of vaccine encoded apoptosis-inhibitors that delay the
apoptotic death. The manipulation of apoptosis is likely to be a rich area of exploration for
vaccinologists.

9. Conclusion
Ideally, a vaccine should be: safe, highly immunogenic, non-integrating, easy to manipulate,
genetically stable and inexpensive to produce. In addition to these features, a therapeutic
vaccine must not be compromised by pre-existing immunity of the patient against the vaccine
vehicle. While ‘conventional’ DNA vaccines are frequently hampered by low efficacy,
replicase-based vaccines may significantly improve efficacy. ‘self-replicating’ genetic
vaccines may be effective in the fight against diseases that have so far successfully resisted
conventional vaccination strategies using recombinant proteins, viruses or bacteria.
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Fig 1. Transfection of host cells with plasmid DNA
Plasmid ( ) is actively or passively taken up by host cells. Antigen (ν) produced by transfected
myocytes can be taken up by bone marrow (BM)-derived APCs. Alternatively, BM-APC can
be transfected directly. Antigen-bearing APC then can process and present peptides complexed
with MHC-molecules to the immune system after migrating to lymphoid tissue.
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Fig 2. ‘Super-activation’ of APC after vaccination with genetic vaccines
APC are initially stimulated in the injected tissue by either needle or gene-gun delivery of
plasmid. Immunostimulatory sequences (ISS) stimulate host APCs, T cells and NK cells. APC
interact with T cells through both TCR/MHC and CD40/CD40L, triggering the upregulation
of B7 expression on the APC. ISS also polyclonally stimulate B-cells and induce the release
of IL-6 and IL-12, further promoting a Th1 response.
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Fig 3. Self-replicating genetic vaccines
The first product of the self-replicating RNA is a four-subunit-replicase which uses the (+)
strand RNA as a template to make (−) strand RNA and more copies of full length (+) strand
‘genomic’ RNA and (+) strand ‘subgenomic’ mRNA for the encoded antigen. Due to the high
number of RNA-copies, the main product of the transfected cells becomes the encoded antigen.
The host cell eventually undergoes apoptosis.
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Fig 4. Potential factors contributing to the high immunogenicity of self-replicating genetic vaccines
(Starting in the upper centre and moving clockwise): Accumulation of antigen in the transfected
cell can result in highly efficient MHC-I-loading. A number of ‘danger signals’ may be
generated such as interferon production and interferon release from infected cells resulting
from the presence of dsRNA. Interferon may also be produced by bystander cells in response
to dsRNA released from dead and lysed transfected cells. Heat shock proteins (HSP) have also
been shown to be produced in response to the presence of dsRNA in the cells. Ingestion of
antigen-loaded apoptotic cells by APCs can also result in the elicitation of powerful immune
responses. Finally, the local release of large amounts of antigen at the site of injection by
transfected cells may be fed into resident APC.
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Fig 5. dsRNA might be a central element in the immunogenicity of replicase-based genetic vaccines
dsRNA is produced in cells infected with RNA-viruses, but is also expected to be an
intermediate in the replicase-mediated duplication of mRNA after delivery of ‘self-replicating’
genetic vaccines. dsRNA is a potent inducer of interferon, which in turn induces the expression
of PKR and 2-5A synthetase. These enzymes are activated by dsRNA and mediate at least
some of the cellular effects associated with viral infection, including apoptotic cell death, aimed
at preventing viral spread. The ‘danger signals’ resulting from the activation of these two
enzymes could account for the increased immunogenicity of replicase-based genetic vaccines,
providing an adjuvant-effect.
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Table 1
Factors determining the immunogenicity of genetic vaccines

Factors affecting the immunogenicity of
genetic vaccines

[[Comments and conclusions|]] [[References|]]

Structure of the plasmid backbone Presence of immunostimulatory sequences, introns, poly-A-
sequence

[60,67,69,98,99,131-133]

Amount of plasmid delivered [[More is better|]] [28,61,134-136]
Expression levels of the antigen More antigen correlates with stronger response, but not

necessarily linearly
[61,63]

[[Immunization schedule|]] Increasing interval between immunizations can strongly
enhance the response

[63,137,138]

[[Route of immunization|]] Intramuscular, intradermal (needle), epidermal (gene gun),
mucosal

[61,63,136,139,140]

[[Target-tissue|]] Including what muscle is injected or what section of the skin [39,136]
[[Number of immunizations|]] DNA-induced immune response can effectively be boosted

with DNA
[63,141,142]

Presence or absence of introns in front of the
gene

[[Introns increase efficacy|]] [61,103]

Strain of the particular species Different mouse strains show qualitative and quantitative
differences in DNA-induced immune responses

[61] (and Leitner WW, Lyon JA,
unpublished)

[[Age of animals|]] Stronger response the younger the mice [61,68]
Toxicity of the antigen for transfected host
cell

High expression undesirable for toxic antigens [61]
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