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Adjustment of physiology in response to changes in oxygen availability is critical for the survival of all organisms.
However, the chronology of events and the regulatory processes that determine how and when changes in
environmental oxygen tension result in an appropriate cellular response is not well understood at a systems level.
Therefore, transcriptome, proteome, ATP, and growth changes were analyzed in a halophilic archaeon to generate a
temporal model that describes the cellular events that drive the transition between the organism’s two opposing cell
states of anoxic quiescence and aerobic growth. According to this model, upon oxygen influx, an initial burst of
protein synthesis precedes ATP and transcription induction, rapidly driving the cell out of anoxic quiescence,
culminating in the resumption of growth. This model also suggests that quiescent cells appear to remain actively
poised for energy production from a variety of different sources. Dynamic temporal analysis of relationships
between transcription and translation of key genes suggests several important mechanisms for cellular sustenance
under anoxia as well as specific instances of post-transcriptional regulation.

[Supplemental material is available online at www.genome.org. The microarray data from this study have been
submitted to GEO under accession nos. GSE7559 and GSE5929.]

Adaptation to varying levels of oxygen is critical for the survival
of all organisms since this element is required for energy produc-
tion in aerobic organisms, but is a dangerous poison for obligate
anaerobes. Thus, diverse strategies have evolved for optimizing
fitness under conditions of fluctuating oxygen availability. For
example, anaerobic microbes have evolved specialized anoxic
physiologies, including mechanisms to exclude and scavenge
traces of oxygen (Imlay 2002). In contrast, facultative anaerobes
such as Escherichia coli flexibly transition between oxidative me-
tabolism and anaerobic growth, using alternate respiratory en-
zymes when oxygen becomes limiting (Nakano and Zuber 1998).
Anoxia-tolerant eukaryotes such as Caenorhabditis elegans enter a
state of suspended animation in which energy supply and de-
mand are drastically reduced in a regulated manner during oxy-
gen starvation (Hochachka et al. 1996).

Understanding cellular responses to oxygen at the molecu-
lar systems level requires comprehensive and quantitative mea-
surements of changes in parameters such as transcription, trans-
lation, and metabolism. Transcriptome measurements are quite
comprehensive (Lander 1999), whereas current technology limits
the detection of the complete microbial proteome and metabo-
lome; e.g., the highest reported coverage for microbial shotgun
proteomics is 60% (Lipton et al. 2002; Brauer et al. 2006). Fur-
thermore, in addition to this disparity in technical tractability,
the dynamic nature of information processing at all of these lev-
els further complicates the collective comparative analysis of glo-
bal changes in transcriptome, proteome, and metabolome (Gygi
et al. 1999; Ideker et al. 2001; Beyer et al. 2004). Consequently,
the global dynamic relationships across these distinct but inter-

connected processes remain to be characterized to build a physi-
ological model of systems behavior.

We chose the haloarchaeon Halobacterium salinarum NRC-1
as a model organism to investigate the systems-level oxygen re-
sponse. This organism, found in the Great Salt Lake, the Dead
Sea, and other waters with high salt concentration, requires an
environment with a high concentration of salt for survival (∼4.0
M) (Robb et al. 1995). Our choice of this organism was guided by
(1) the relative simplicity afforded by the small genome size (2.6
Mb) and lack of compartmentalization of prokaryotes, and (2) H.
salinarum’s capability to effect metabolic changes within a re-
markably narrow range of oxygen availability. Rapid shifts to low
environmental oxygen tension is a frequent challenge to H. sa-
linarum, existing in an environment nearly saturated with salt,
where consumption resulting from high cell density and evapo-
ration can rapidly lower oxygen tension below 5 µM (Robb et al.
1995) (Supplemental Methods). By comparison, most microbes
(e.g., E. coli) exist in environments with oxygen saturation of
∼250 µM, thus the niche of the halophile would lead to rapid and
severe cellular hypoxia for these organisms (Supplemental Meth-
ods). H. salinarum NRC-1 utilizes metabolic strategies similar to
other facultative anaerobic microbes such as E. coli to alternate
between four modes within a narrow range (0–5 µM) of oxygen
concentration: (1) aerobic respiration via the tricarboxylic acid
(TCA) cycle (Ng et al. 2000); (2) anaerobic fermentation via the
arginine deiminase (ADI) pathway (Hartmann et al. 1980; Ruepp
and Soppa 1996; Baliga et al. 2002); (3) anaerobic dimethyl sulf-
oxide (DMSO) and trimethylamine N-oxide (TMAO) reduction
(Muller and DasSarma 2005); and (4) anaerobic energy produc-
tion via bacteriorhodopsin-mediated phototrophy (Oesterhelt
and Krippahl 1983; Gropp and Betlach 1994; Baliga et al. 2002).
Despite good descriptive knowledge of these four modes, the re-
sponse and regulation of other aspects of halobacterial physiol-
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ogy during fluctuations in oxygen tension remains largely un-
characterized.

Here we report a temporal model of key cellular events from
environmental perturbation (input) to cellular phenotype (out-
put) by simultaneously measuring changes in the transcriptome
(61 time points), proteome (28 time points), physiological
growth (61 time points), and metabolic outputs (18 time points)
during controlled cellular transitions between oxic and anoxic
environments. Our findings suggest that H. salinarum NRC-1
shifts from a state of anoxic quiescence to active growth when
the oxygen supply is replenished. During quiescence, the or-
ganism appears to remain poised for a rapid transition to alter-
native metabolic states. We were able to significantly improve
the concordance between changes in transcription and transla-
tion when a time lag was considered during data analysis. In
addition, this analysis suggested several possible post-tran-
scriptional strategies enabling adaptation to changes in oxygen.
From this standpoint, the dynamic temporal model of H. salina-
rum NRC-1 has shed new insights into general principles of the
oxygen response.

Results and Discussion

Experimental design and rationale

Cellular responses to changes in the environment require coor-
dinated signal processing and other physiological adjustments at
the transcriptional, translational, and metabolic levels. There-
fore, to capture a systems perspective of cellular responses to
oxygen, global changes in relative abundance of transcripts, pro-
teins, ATP, and growth were measured in continuous chemostat
cultures. In the chemostat, pH, cell density, light, and tempera-
ture were kept constant, whereas oxygen was perturbed in a con-
trolled manner (Fig. 1; Table 1; Methods). Sampling was tempo-
rally more frequent close to perturbations to ensure that all rapid
responses were measured, and less frequent farther from pertur-
bations as cultures equilibrated to the new condition (Table 1).
This experiment was conducted in triplicate, varying oxygen ap-
propriately to assess the reproducibility of growth and molecular
response characteristics (Fig. 1; Table 1; Methods). The results
and conclusions from these oxygen response experiments are
discussed below, first describing the physiological characteristics
of the aerobic and anaerobic cellular states and subsequently pro-
viding a temporal synthesis of the dynamic events underlying
transitions between these states.

Physiological characterization of the oxygen response

Characterization of transitions in cell states: Anoxic quiescence to aerobic
growth

Previous studies have shown that ATP production and growth of
H. salinarum NRC-1 under anoxic conditions requires the addi-
tion of an anaerobic growth substrate; e.g., orange light at 459
µmol/m2sec, 1% arginine, or DMSO (Hartmann et al. 1980; Oes-
terhelt and Krippahl 1983; Muller and DasSarma 2005). However,
in the natural environment, the organism will likely also encoun-
ter conditions with such defined substrates absent during fre-
quent fluctuations in oxygen tension. We therefore sought to
characterize cell physiology under these conditions. During a
rapid transition from an oxic to anoxic environment (5–20 min),
intracellular ATP levels dropped 1.8-fold in 6 h and fivefold

within 24 h to plateau at a minimum of ∼0.6 � 0.1 µM (Table 1,
third experiment), approximately half that observed for flask-
grown stationary phase H. salinarum NRC-1 cells (0.96 � 0.08
µM) (Hartmann et al. 1980). Growth ceased 30–40 min after an-
oxia was induced, as evidenced by the fact that flow rate was no
longer required to maintain a constant cell density in the che-
mostat (Table 1). Also, once the anoxic ATP concentration
dropped to ∼0.6 µM, it remained relatively constant for as long as
6 d (Table 1, bottom). Despite the lack of proliferation, cells with-
drawn for plating during the 24 h anoxic incubation showed
normal viability (data not shown). Together, these latter two
pieces of evidence suggest under anoxic conditions in the ab-
sence of secondary growth substrate, H. salinarum NRC-1 cells
enter a state of quiescence.

In contrast to the oxic to anoxic shift, during the transition
from anoxic to oxic conditions, ATP concentrations increased
within 5 min, reaching a plateau at 90 min (Fig. 2; Table 1), after
which growth resumed within 3 h. In summary, H. salinarum
NRC-1 appears to reside in two alternate cell states: anoxic qui-
escence when oxygen and anaerobic growth substrates are absent
and oxic growth when oxygen is plentiful.

The transcriptional response of H. salinarum NRC-1 to changes
in oxygen tension

To characterize the transcriptional response to transitions be-
tween the oxic and anoxic cell states of H. salinarum NRC-1, we
analyzed global changes in mRNA levels (Baliga et al. 2002). K-
means clustering followed by principal component analysis
(PCA) were used to group genes and assign an “oxic score” to
each cluster (Fig. 3A; see Methods for details). This score is de-
rived from the observation that the projected position of each

Figure 1. Experimental design. Three separate chemostat experiments
were conducted in which H. salinarum NRC-1 cultures were grown in
batch mode to mid-logarithmic phase (OD600 ∼ 0.5–0.7), followed by
anoxic incubation for 24 h (experiments 1 and 3) or oxic incubation for
12 h (experiment 2). Oxygen tension was then perturbed (blue line) at
concentrations shown on the right Y-axis and at time points shown on the
X-axis. OD600 measurements (left Y-axis) were taken throughout the ex-
periment (orange line), and culture aliquots were removed for microarray
(all three experiments), proteomics (experiment 1), and ATP (experiment
3) analysis at the time points indicated in the graph (blue circles and
orange triangles) and as listed in Table 1.
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cluster’s mean profile along the first principal component (PC1)
(Fig. 3A) correlated most strongly with the ability to predict its
dynamics based upon the changes in the measured oxygen ten-
sion levels via a linear model (Supplemental Fig. 2) (Bonneau et
al. 2006). We therefore used the values along the PC1 axis to
assign the “oxic score” to each cluster, which varied from �5
(strongly repressed by oxygen; “oxygen-anticorrelated”) to +10
(strongly activated by oxygen; “oxygen-correlated”) (Fig. 3A).
This analysis yielded a total of 215 genes whose transcription was
strongly affected by changes in oxygen. The gene set partitioned
into two distinct groups: 106 genes whose transcription was in-
duced with increases in oxygen levels and repressed with decreas-
ing oxygen (hereafter referred to as “oxygen-correlated” genes;
Supplemental Table 1); and 109 genes with transcriptional
changes that were repressed with increasing oxygen and induced
with decreasing oxygen (hereafter referred to as “oxygen-
anticorrelated;” Supplemental Table 2). The transcriptional re-
sponse to oxygen for each gene in these groups was reproducible
in all three time-course experiments (Fig. 3B,C). All differentially
expressed genes were distributed among 16 functional categories
according to GO (GO, http://www.geneontology.org) (Ashburner
et al. 2000), KEGG (Kyoto Encyclopedia of Genes and Genomes,
http://www.genome.jp), PFAM (http://www.sanger.ac.uk/
Software/Pfam/), and COG (clusters of orthologous groups,
http://www.ncbi.nih.gov/COG; Kanehisa 1997; Tatusov et al.
1997, 2003; Kanehisa and Goto 2000; Finn et al. 2006; Kanehisa
et al. 2006; Fig. 4A,B; Supplemental Tables 1,2). Functional rep-
resentations within the oxygen-correlated and oxygen-
anticorrelated gene groups are discussed below.

During anoxic quiescence, the H. salinarum NRC-1 transcriptome
is poised for a transition to three metabolic modes of energy transduction

Both expected and unexpected results were found within the
oxygen-correlated and oxygen-anticorrelated gene group tran-
scriptome data. For example, we were surprised to find that two

paralogous copies of the gas vesicle biogenesis proteins were an-
ticorrelated with each other, a result that is discussed in detail in
the Supplemental material (Supplemental Fig. 3). However, as
expected, our analysis identified two clusters (10 and 19) with
high “oxic scores” (8.9 and 9.2, respectively) (Fig. 3B). These clus-
ters are functionally enriched with genes involved in aerobic pro-
cesses such as oxidative phosphorylation and TCA cycle, ribo-
some biogenesis, and translation (Fig. 4A; Supplemental Table 1).
This analysis suggests that, as expected, the genes encoding pro-
cesses critical for aerobic metabolism are transcriptionally in-
duced in the presence of oxygen.

In the oxygen-anticorrelated gene group, transcripts encod-
ing DMSO reductase (Muller and DasSarma 2005), phototrophy,
and their respective transcription regulators were significantly
induced when oxygen was removed, and likewise, were repressed
as oxygen increased; oxic score: �4.4 (Figs. 3C, 4B,C; Supple-
mental Table 2). Since no substrate for either of these two pro-
cesses was provided during the experiments (Methods), these
data suggest that H. salinarum NRC-1 appears to anticipate an
alternate growth substrate when oxygen is limiting.

In contrast, the arcRABC gene cluster, which encodes the
enzymes and regulators for the arginine deiminase (ADI) fermen-
tation pathway, did not transcriptionally respond to oxygen
(oxic score = 1.7) (Fig. 4D). This is consistent with the observa-
tion that significant transcriptional induction of these genes is
only observed in halobacterial cells grown fermentatively in the
presence of exogenously added arginine in rich medium (Ruepp
and Soppa 1996). In addition, it has been observed in a previous
report that phototrophy and arginine fermentation may be in-
versely and coordinately regulated, which could also explain our
result (Baliga et al. 2002).

Large-scale changes in two oppositely expressed, temporally coordinated
transcriptomes are associated with the transition from the anoxic to oxic
cellular state

Transcriptional responses to stress can often be classified into
early, middle, or late events based on their temporal separation.
Although oxygen-correlated and oxygen-anticorrelated tran-
scripts were both regulated to new steady-state levels within ∼90
min of an oxygen perturbation (Fig. 3B,C), we did not visually
identify a significant temporal separation among these transcrip-
tional responses (Supplemental Fig. 4). We therefore measured
the average time lag between transcriptional responses, and
found that it had a variance of only 1.5 min (see Supplemental
Methods for calculation). This suggests that the transcript pro-
files for both oxygen-correlated and oxygen-anticorrelated genes
were temporally coherent. This observation contrasts with envi-
ronmental responses to stressors that damage cells, such as excess
iron and heat shock, which are marked by transient induction of
transcripts within 5–15 min of sudden exposure (Yura and Na-
kahigashi 1999; Kaur et al. 2006). The modulation of these dam-
age-responsive genes is temporally separated into early and late
events, suggesting that most of the early changes repair cellular
damage, whereas later responses function to resume the previous
cell state and maintain homeostasis (Yura and Nakahigashi 1999;
Kaur et al. 2006). In contrast, during the response to fluctuating
oxygen, H. salinarum NRC-1 shifts its transcriptome to new
steady-state levels in a temporally synchronized manner to
achieve a completely alternate cell state. In general, cellular tran-
sitions to new metabolic states, therefore, appear to be associated
with a complete change in the transcriptome as has been ob-

Figure 2. Physiological characterization of two opposing cell states in
H. salinarum NRC-1. ATP and growth measurements during the third
chemostat experiment. After a 24-h anoxic incubation period, oxygen
was rapidly sparged into the system within 5 min (blue line, right Y-axis),
and culture aliquots were removed at the time points indicated for mea-
suring ATP concentration (green line, left Y-axis), transcriptomics (Fig. 3),
and cell density (orange line). Flow rate through the chemostat (brown
line) is directly proportional to the doubling time of the culture (see Table
1 for conversion of flow rate to doubling time).
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served in other organisms such as E. coli (Partridge et al. 2006,
2007).

The translational response of H. salinarum NRC-1 to changes
in oxygen tension

To determine the extent to which the transcript level changes
described above are dynamically reflected at the protein level,
and in turn, at the phenotype level, whole-cell quantitative pro-
teomics analysis was conducted using the mass spectrometry-
based iTRAQ method (Ross et al. 2004; Whitehead et al. 2006;
Stensjo et al. 2007).

Over all 28 time points in the proteomics data set (Table 2)
1294 of the 2400 predicted proteins in the H. salinarum NRC-1
proteome (54%) were detected under conditions of fluctuating
oxygen (Supplemental Table 3). For these detected proteins, a
stringent probability cutoff of �0.9 was chosen, giving a low
average false discovery rate of 0.6% � 0.002% at the peptide and
protein levels (Nesvizhskii et al. 2003; Keller et al. 2005; Nes-

vizhskii and Aebersold 2005) (Methods). Using these criteria, up
to 40% of the total predicted proteome was detected in each of
the 10 multiplexed samples (Table 3). The overall coverage for
this study (54%) is the best recorded to date for quantitative
microbial shotgun proteomics experiments (Supplemental mate-
rial; Baliga et al. 2002; Whitehead et al. 2006). In addition, analy-
sis of replicates showed that the coefficient of variation for
iTRAQ was comparable to other established quantitative meth-
ods such as ICAT (CV ∼18% vs. 20%, respectively; Supplemental
Fig. 5; Molloy et al. 2005).

Despite evenly distributed sampling from the oxic and an-
oxic growth regimes, peptides from proteins encoded by oxygen-
correlated transcripts were significantly over-represented (79% de-
tection, P < 10�20), and conversely, the proteins encoded by oxy-
gen-anticorrelated transcripts were significantly under-represented
(27% detection, P < 10�25) in the proteomics data set (Supplemen-
tal Fig. 6). To determine the potential reasons for this bias, we cal-
culated the codon adaptation indices (CAI) for all of the proteins
that were detected (Methods) (Wu et al. 2005). CAI measures the

Figure 3. Microarray results reveal two distinct, temporally coherent gene groups that change in response to oxygen for the duration of the stimulus.
(A) K-means and principal component analysis (PCA) of microarray oxygen time series data. Each small number on the graph represents the location
of an individual gene’s expression profile as projected into the first (X-axis) and third (Y-axis) principal components. Membership in the K-means clusters
is color coded, and the location of the centroid of clusters chosen for further analysis and their cluster numbers (5, 10, 18, 19, 24, 28) are plotted as
large circles. The annotations for genes contained within each cluster are listed in Supplemental Table 4. Mean profiles of the clusters most significantly
correlated and anticorrelated with oxygen are shown in B and C, respectively. (B) Expression profiles for the two most significantly oxygen-correlated
gene clusters, 10 and 19, are plotted against the oxygen tension profile (thick black line, left Y-axis) and time points for all three chemostat experiments
(X-axis). The mean transcriptional profile of cluster 10, which includes (among others) TCA cycle and oxidative phosphorylation genes, is depicted by
the red line; and that of cluster 19, including (among others) ATP synthase, protein biosynthesis, and gas vesicle cluster 1 genes, is shown by the green
line. Standard deviations of each gene from the mean transcript profile were omitted for clarity. (C) Expression profiles for the clusters most significantly
anticorrelated with oxygen. Clusters 5, 18, 24, and 28 are depicted by the cyan, red, gray, and dark blue lines, respectively. The functions listed in the
legend were distributed throughout these four highly correlated clusters.
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bias at the wobble position in each codon, and a bias toward
preferred codons (high CAI) has been shown to be directly pro-
portional to the absolute levels of gene expression (Sharp and Li
1987). For the 97 oxygen-responsive proteins that were detected
in our proteomics data set (Table 3), the average CAI was higher
for oxygen-correlated than that for oxygen-anticorrelated pro-
teins (0.78 vs. 0.65). In addition, the average number of peptides
detected for oxygen-correlated proteins was 6.5, whereas that for
anticorrelated proteins was two (Supplemental Table 5).

Combined, these data suggest that the proteins associated
with oxic physiology (oxygen-correlated) of H. salinarum NRC-1
are in higher abundance relative to anoxic proteins (oxygen-
anticorrelated) irrespective of the oxygen tension in the environ-
ment. This bias toward oxic proteins was taken into consider-
ation in all subsequent analyses (see below; Fig. 5). Although
these results are in keeping with previous genome-wide proteom-
ics studies, which also observed a bias toward highly expressed
proteins (Gygi et al. 1999; Ideker et al. 2001), our data further
suggest that proteins associated with active growth are relatively
abundant even in environments less favorable for their function.

Temporal dynamics of the oxygen response

Comparison of transcriptome and proteome data suggests instances of
post-transcriptional regulation in response to oxygen

Transcription and translation are rapid, dynamic events that oc-
cur sequentially on the order of minutes. Due to the technologi-

cal limitations of proteomics technology, previous studies com-
paring transcriptome and proteome measurements have either
measured only one time point (Gygi et al. 1999; Baliga et al.
2002; Griffin et al. 2002; Kolkman et al. 2006; Newman et al.
2006) or measured a few time points on the order of hours
(Whitehead et al. 2006) or days (Kislinger et al. 2005; Cox et al.
2007). Therefore, to calculate a more realistic relationship be-
tween transcript and protein-expression dynamics during a cell-
state transition, we computed the correlation between the inter-
polated transcript profile for each gene in our data set with its
corresponding time-shifted cognate protein profile (28 time
points) in 1-min intervals from �5 to +40 min (Whitehead et al.
2006; Fig. 5A,B; Methods). This analysis yielded a “correlation
profile,” for which we could identify a maximum mRNA/protein
correlation along this curve (a “peak time-lagged correlation”
[PTLC]; Fig. 5), which occurred at a certain time lag (the “peak
time lag,” �t). We found that the most significantly correlated
genes (P < 0.01; np � 9) had �t’s between 13 and 22 min and
covered a broad range of functions including (among others)
cobalamin biosynthesis (cbiJ [Fig. 5A] and cbiH2), ribosome bio-
genesis (rpl18e, rps24C), ATP biosynthesis (atpB), gas vesicle bio-
genesis (gvpF1), and metal regulation (sirR, fbr) (Supplemental
Fig. 7). Time lags for proteins of similar functions corroborated
each other; for example, the �t of two ribosomal genes (rpl18e,
rps24C; see above) occurred within 1 min of each other (Supple-
mental Fig. 7).

For genes with less coverage (i.e., np < 9), we were able to

Figure 4. Functional categorization of genes significantly correlated or anticorrelated with oxygen. (A) Functional categories for oxygen-correlated
genes. (B) Functional categories for oxygen-anticorrelated genes. Percentages for each slice of the pie chart refer to the fraction of genes from that
category that make up the total 106 oxygen-correlated (A) or 109 oxygen-anticorrelated (B) genes. GO and KEGG functional over-representation
P-values for these categories are shown in parentheses and Supplemental Tables 1 and 2. Those categories with no P-value were not present in the GO
and KEGG database annotations (and are part of the 98 hand-curated annotations described in the Methods). (C) DMSO reduction and bacteriorho-
dopsin-mediated phototrophy genes are induced by anaerobiosis even in the absence of DMSO or light. Each gene in the pathways is shown, the
color-coded profile for which is denoted in the legend. (D) Surprisingly, the arcRABC gene cluster, encoding proteins in the ADI pathway for anaerobic
arginine fermentation, is not correlated with oxygen.
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repeat the PTLC analysis for combined mRNA and protein pro-
files of genes in the same operon (Methods) if we assumed that
genes in an operon are cotranslated as well as cotranscribed. This
operon analysis enabled detailed time-lag calculation for some
genes with relatively poor individual signal in the protein data
(Supplemental Fig. 8).

To our knowledge, this is the first system-wide study of its
kind to enable calculation of time lags between dynamic changes
in transcription and translation at the level of individual genes
(Yildirim and Mackey 2003). Previously, low correlation from
single time-point studies has often been interpreted as evidence
of post-transcriptional regulation (Gygi et al. 1999; Ideker et al.
2001; Beyer et al. 2004; Brockmann et al. 2007). However, we
find that as more time points are included in the analysis, it
becomes possible to identify more genes with significant time-
lagged correlations (Supplemental Figs. 7, 8). For example, ∼95%
of the genes for which we were able to calculate a significant TLC
(P < 0.05) had np � 18 (i.e., covered >50% of the time course).
Thus, prior studies that invoked post-transcriptional regulation
to explain a lack of mRNA/protein correlation in data for one or

a few time-point measurements may be doing so prematurely,
particularly using current high-throughput proteomics technolo-
gies, since those studies may not have sufficient data to investi-
gate dynamics as we have done here. Detailed descriptions of
mRNA/protein dynamics therefore requires high-resolution
time-course sampling, and points to a critical need for improved
proteomics technology, which will increase the quality and com-
prehensiveness of proteomics data while decreasing cost.

Among all genes and operons that were analyzed, we esti-
mated an average peak time lag of �t ∼ 16 min. At this PTL, we
find that the percentage of genes with correlations greater than
random increases from ∼60% at �t = 0 min, to ∼75% at �t = 16
min (Fig. 5D); this difference in percentages is very unlikely to
occur at random (P < 10�4; Fig. 5E). Using this metric, for the 215
oxygen responsive genes, the percentage of genes with signifi-
cantly correlated changes in mRNA and protein increases from
∼70% at �t = 0 min to ∼90% at �t = 16 min. This time lag of 16
min is significantly longer than the expected ∼2-min delay be-
tween transcription and translation based on previous calcula-
tions for certain genes such as the lacZ operon in E. coli (Yildirim
and Mackey 2003). This is probably an outcome of several fac-
tors, including reduced translational capacity, which is a univer-
sal mechanism used by aerobic organisms to conserve energy
during prolonged anoxia (Andersson et al. 1984; Warner 1989;
Borriello et al. 2004; Liu and Simon 2004; Branco-Price et al.
2005). Specifically, the low concentration of rRNA, ribosomes,
amino acids, amino acid precursors, and tRNAs are known to
decrease translation and ribosome production rates (Farrish et al.
1982; Andersson et al. 1984; Pang and Winkler 1994).

Stability of mRNA is an additional factor that has significant
impact on the time gap between transcription and translation.
The median mRNA half-lives measured globally E. coli, Bacillus
subtilis, and Lactococcus lactis are on the order of 3–8 min for
aerobic cells growing at optimum rates (Bernstein et al. 2002;
Hambraeus et al. 2003; Redon et al. 2005). This is somewhat
paradoxical because a 3–8 min mRNA half-life in anoxic cells
hampered by reduced translational capacity would imply that
transcripts are degraded before the 16-min lag when translational
precursors become available (Fig. 5). It is possible that transcripts
are maintained during anoxia by continual refreshment of tran-
scripts in a cycle of low but constant constitutive transcription
and turnover. However, it is known in many other prokaryotic
species that bulk RNA turnover is retarded three- to fourfold
upon starvation by an unknown mechanism to aid anoxic sur-
vival (Georgellis et al. 1993; Kuzj et al. 1998; Redon et al. 2005).
Thus, the mRNA half-life would also be on the same time scale as
the globally measured time lag of ∼16 min in H. salinarum during
the transition from anoxic to oxic conditions. In summary, the
observed delay between transcription and translation (Fig. 5) ap-
pears to be attributable to the time required to replenish ribo-
somes and other translational precursors as cells prepare to go
into the aerobic physiological state. During this period, the si-
multaneous increase in the stability of bulk RNA may be a
complementary mechanism to ensure that the integrity of tran-
scripts is not compromised until resources for renewed transla-
tion are restored.

A transient burst of protein synthesis is an early event during the switch
to aerobic metabolism

Notably, we observed a transient spike in protein levels occurring
in the first ∼20 min after oxygen upshift. This phenomenon was

Table 2. Experimental setup and iTRAQ proteomics labeling
scheme

Set
no.

Sample name
proteomics

Time
(min)

Percent
O2

iTRAQ
reagent (Da)

1 Referencea 114
o2_-001m_L2H_005 �1 0.5 115
o2_0045m_H_939 45 93.9 116
o2_0360m_H_903 360 90.3 117

2 Reference 114
o2_0001m_L2H_500 1 50 115
o2_0005m_H_922 5 92.2 116
o2_0010m_H_947 10 94.7 117

3 Reference 114
o2_0020m_H_937 20 93.7 115
o2_0030m_H_931 30 93.1 116
o2_0090m_H_941 90 94.1 117

4 Reference 114
o2_0180m_H_930 180 93 115
o2_0362m_H2L_860 362 86 116
o2_0367m_H2L_215 367 21.5 117

5 Reference 114
o2_0372m_H2L_079 372 7.9 115
o2_0382m_H2L_048 382 4.8 116
o2_0387m_L_041 387 4.1 117

6 Reference 114
o2_0392m_L_037 392 3.7 115
o2_0397m_L_035 397 3.5 116
o2_0407m_L_030 407 3 117

7 Reference 114
o2_0417m_L_027 417 2.7 115
o2_0432m_L_024 432 2.4 116
o2_0477m_L_017 477 1.7 117

8 Reference 114
o2_0567m_L_011 567 1.1 115
o2_0747m_L_008 747 0.8 116
o2_0750m_L2H_540 750 54 117

9 Reference 114
o2_0755m_L2H_825 755 82.5 115
o2_0760m_L2H_847 760 84.7 116
o2_0770m_L2H_852 770 85.2 117

10 Reference 114
o2_0360m_H_903 360 90.3 115
o2_0477m_L_017 477 1.7 116
o2_0780m_L2H_847 780 84.7 117

aReference sample for all multiplexed iTRAQ proteomics comparisons was
Halobacterium NRC-1 harvested at mid-logarithmic phase (OD600 ∼ 0.05–
0.7) from flasks grown at 37°C with 250 rpm shaking.
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observed only for certain aerobic operons associated with ribo-
some biogenesis (Fig. 6; Supplemental Fig. 8E,G), TCA cycle, and
cobalamin biosynthesis (Supplemental Fig. 8A,B), but not ob-
served for other aerobic operons such as those encoding chemo-
taxis and transport functions (data not shown). Intriguingly, like
other oxygen-correlated genes, the transcript levels for these op-
erons exhibiting the protein spike do not increase until 20–25
min after the switch to oxic conditions, coincident with the re-
turn to baseline of the protein levels (Fig. 6). Three nonexclusive
post-transcriptional mechanisms could account for this protein
burst: (1) differentially regulated translation initiation, perhaps
by a small regulatory RNA (Storz et al. 2005), such that certain
extant transcripts are preferentially translated once resources be-
come available; (2) low-level constitutive transcription of certain
messages; (3) preferential stabilization of certain transcripts,
allowing H. salinarum cells to reside in a state of preparedness
for immediate synthesis of key proteins once a favorable envi-
ronment is encountered (Kuzj et al. 1998), consistent with
similar observations in bacteria and plants (Takayama and
Kjelleberg 2000; Bernstein et al. 2002; Hambraeus et al. 2003;
Branco-Price et al. 2005; Redon et al. 2005). Experiments that
globally measure transcript half-lives would enable differentia-
tion between these three hypotheses, and will be the subject of
future study.

A dynamic temporal map of the physiological response to oxygen

Integration of all transcript, protein, physiological, and pheno-
typic level data generated in this study enabled the temporal
mapping of cellular events following a cell-state shift from an-
oxic quiescence to aerobic growth (Fig. 7). According to this map,
when the dissolved oxygen content of an anoxic culture of H.
salinarum NRC-1 is rapidly increased to saturation within 5 min,
a burst in the synthesis of certain proteins (e.g., ribosomal and
TCA cycle components) prepares the cells for the switch to a new
physiological state. ATP levels begin to rise at 10 min, followed
by an increase in transcription of aerobic genes starting at 15 min
(Fig. 7). The significant correlation observed between the rate of

increase in ATP concentration and transcript levels, with both
reaching maximal levels at 120 min (Fig. 2), suggests that energy
availability may be the rate-limiting step for transcription during
the anoxic/oxic transition. Simultaneously, transcripts associ-
ated with anaerobic physiology are down-regulated and their lev-
els reach a minimum at 120 min. Subsequently, a second wave of
protein induction is observed starting at 90 min, most likely
originating from the newly transcribed mRNA templates. The
sequence of events described above eventually culminates in
growth and cell division ∼120 min after the switch to an oxic
environment.

This descriptive model therefore surprisingly suggests that,
immediately following the anoxic to oxic transition, an increase
in ATP production and the transient induction of certain key
proteins precedes transcriptional induction of all genes associated
with the aerobic physiological state. We hypothesize that the
higher abundance of proteins associated with active growth
(Supplemental Fig. 6) and perhaps the preferential stabilization
of certain transcripts (e.g., those genes encoding ribosomes and
cobalamin biosynthesis enzymes; Fig. 5; Supplemental Fig. 8A)
during anoxic stress could be underlying mechanisms that en-
able “on-demand” energy and protein production upon encoun-
tering a more favorable environment. Using these strategies dur-
ing anoxic quiescence, H. salinarum NRC-1 may remain poised
for DMSO- or phototrophy-mediated anaerobic metabolism (Fig.
4C) as well as oxidative phosphorylation-mediated aerobic me-
tabolism (Fig. 7). The dynamic temporal analysis approach de-
lineated in this study combined with future investigations of
important parameters such as mRNA degradation and protein
turnover rates should enable deeper insight into the regulatory
dynamics of transcription and translation.

Methods

Culturing conditions and experimental design
H. salinarum NRC-1 (ATCC700922) was routinely grown in com-
plex medium (CM; 250 NaCl, 20 g/L MgSO4·7H2O, 3 g/L sodium

Table 3. Proteomics data coverage for functional categories

Percent of proteins detected in iTRAQ multiplex set numbera

Categoryb 1 2 3 4 5 6 7 8 9 10 Percent detected in all 10 sets combined

Total 40 38 31 40 30 32 16 30 28 27 54%
Oxygen-correlated 72 75 62 70 63 66 55 64 61 58 80%
Oxygen-anticorrelated 7 7 6 8 6 6 5 8 6 6 11%
Energy generation 62 66 59 57 57 55 47 55 53 53 72%
Translation 86 91 77 89 80 84 68 80 82 75 93%
RNA polymerase 75 25 0 25 0 25 25 25 0 0 75%
Gas vesicle biogenesis 4 7 4 7 4 4 4 4 4 0 11%
Transport 13 20 13 13 13 20 13 20 13 13 27%
Amino acid metabolism 8 8 8 8 8 8 8 8 8 8 8%
Transcription regulators 0 0 0 0 0 0 0 0 0 0 0%
Protein repair 50 50 50 50 50 50 50 50 50 50 50%
Nucleotide biosynthesis 0 0 0 0 0 0 0 0 0 0 0%
Cell wall biogenesis 0 0 0 50 50 50 0 0 50 0 50%
DNA damage repair 0 0 0 0 0 0 0 0 0 0 0%
Genes of unknown function 15 15 11 17 11 11 8 17 8 11 19%

aSee Table 2 for details about each iTRAQ set number. Percent of proteins detected is calculated from the total number of predicted nonredundant open
reading frames (ORFs) in the complete and annotated H. salinarum NRC-1 genome sequence (baliga.systemsbiology.org) compared with detections in
the proteome data set.
bCategories correspond to those from Figure 4, A and B (genes whose transcripts were significantly differentially expressed in response to oxic/anoxic
transitions), except that all categories pertaining to energy generation were collapsed into one category for clarity in the table. “Oxygen-correlated”
refers to those genes whose transcripts were strongly induced by increases oxygen. “Oxygen-anticorrelated” refers to those genes whose transcripts
were strongly repressed by increases in oxygen.
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citrate, 2 g/L KCl, 10 g/L peptone) at 37°C. For chemostat experi-
ments, starter cultures of NRC-1 were inoculated into 2 L of CM
in a 3.0 L vessel (5%–10% inoculum) and grown to mid-
logarithmic phase (OD600 ∼ 0.5) in batch mode in a BioFlo100
modular bench top fermentor (New Brunswick Scientific) at 300
rpm (pH 7.0). Prior to each experiment, an oxygen sensor (model
InPro 6000, Mettler Toledo) was calibrated to 100% oxygen at
1100 rpm and sparging with 3.2 VVM of air. These conditions
were approximately equivalent to oxygen saturation in CM me-
dium, which is 1.6 mg/L (∼5 uM) according to our salinity com-
pensation calculations (Supplemental Methods). Three replicate

chemostat experiments were conducted. Complete data regard-
ing experiment design, sample preparation schedule, growth
rates, pH, turbidity, and oxygen concentrations for all time
points for the three experiments are listed in Table 1 and de-
picted in Figure 1. During these experiments, no arginine,
DMSO, or TMAO was exogenously added to the rich medium
during anaerobic growth, and ambient light in the lab was mea-
sured in photons at 10 µmol/m2 sec using a LI-COR LI-189 quan-
tum/radiometer/photometer (LI-COR Biosciences). These condi-
tions are known to be insufficient for anaerobic energy produc-
tion via phototrophy (requires 459 µmol/m2 sec) (Oesterhelt and

Figure 5. Time lags between transcription and translation were calculated for individual genes and for the global data set. (A) Interpolated profiles
for an example gene. Quantitative iTRAQ protein data (log10 ratios; �) and mRNA levels (log10 ratios; �) are shown for CbiJ, the precorrin 3-methylase
of the cobalamin biosynthesis pathway. Error bars represent the standard error in all peptide quantitations. Cubic spline interpolated profiles for the
protein data (orange line), and mRNA (blue line) are overlaid (see legend). The X-axis represents time post-shift to high oxygen in the first replicate
chemostat experiment (see also Fig. 1; Table 1). (B) Schematic of time shifting strategy for an example operon. Protein profiles such as those shown in
A (orange) are shifted relative to interpolated mRNA profiles (blue) and the time lag �t corresponding to the maximum correlation is recorded (peak
time lagged correlation; PTLC). Gray lines represent protein profiles at less-than-optimum time lags, and the position at which the orange line (protein)
overlaps the blue line (mRNA) represents the PTLC position. (C) Time-lagged correlation profile for cbiJ is significantly better than random. Permutation
tests were performed whereby 100 different scrambled (green, with standard errors 1-� from mean) and shuffled (red, with standard errors) mRNA
profiles (see Methods) were subjected to the same time-lagged correlation comparison with the CbiJ protein data (as depicted in A and B) and compared
with the true TLC for cbiJ (black dotted line). The most significant difference between the cbiJ profile and random was at �t = 19 min (purple dotted
line; P < 0.01). (D) The mean, global time lag for all genes occurs at ∼16 min. Approximately 75% of time lag correlations for all genes at this time lag
are better than random, whereas only ∼60% of time lags are greater than random when no time lag is considered (�t = 0). (E) The difference between
these global percentages is significant for both types of permutation test (P ∼ 10�4), especially near �t = 16 min. A and C are shown for several other
genes and operons in Supplemental Figures 7 and 8, respectively.

Schmid et al.

1408 Genome Research
www.genome.org



Krippahl 1983), arginine fermentation (Ruepp and Soppa 1996),
and DMSO reduction (Muller and DasSarma 2005). Shifts from
oxic to anoxic conditions were achieved by dropping agitation to
250 rpm and stopping airflow. Under these conditions, oxygen
in the medium dropped rapidly to ∼0%. Shifts from anoxic to
oxic conditions were achieved by increasing flow rate to 1100
rpm and increasing airflow to 3.2 VVM (vessel volumes per
minute). Simultaneous mRNA and protein samples were har-
vested from 10-mL samples at each time point in experiment 1,
mRNA from experiment 2 (5 mL per time point), and simulta-
neous mRNA and ATP measurements were taken in experiment 3

(7 mL per time point) (Fig. 1; Table 1). Removal of these volumes
over the time course did not have a significant effect on the
continuous culture, since they were minimal compared with the
total 2 L volume in the chemostat.

ATP concentration was measured using the ATP Biolumines-
cent Assay Kit (Sigma) according to the manufacturer’s instruc-
tions. To prepare culture samples for the ATP assay, 1 OD unit of
culture was pelleted, washed once in basal salts buffer (CM me-
dium without peptone), and lysed in 1 mL of sterile milliQ water
(H. salinarum NRC-1 cells lyse readily at osmolarities lower than
2 M NaCl due to their obligate halophilicity). Tenfold serial di-
lutions of lysates were measured against serially diluted ATP stan-
dards using 1:625 diluted bioluminescence assay mix on an
EG&G Berthold LB96V microplate luminometer set to inject ev-
ery 10 sec.

RNA preparation and microarray protocol
H. salinarum NRC-1 sample cultures (5 mL) were harvested by
room temperature centrifugation at 16,000g for 30 sec and snap-
frozen on a dry-ice ethanol bath. Sample pellets were stored over-
night at �80°C, followed by RNA preparation using the Abso-
lutely-RNA kit (Stratagene) according to the manufacturer’s in-
structions. A total of 5 µg of each experimental RNA sample was
hybridized against the H. salinarum NRC-1 reference RNA pre-
pared under standard conditions (mid-logarithmic phase batch
cultures grown at 37°C under full-spectrum light in CM). This
common H. salinarum NRC-1 reference RNA has been used as the
reference across all 950 microarray experiments in the H. salina-
rum NRC-1 microarray data repository (Baliga et al. 2004; Bon-
neau et al. 2006; Kaur et al. 2006; Reiss et al. 2006; Whitehead et

al. 2006). Samples were hybridized to a
70-mer oligonucleotide array containing
the 2400 nonredundant ORFs of the H.
salinarum NRC-1 genome as described in
Baliga et al. (2004). Each ORF was spot-
ted on each chip in quadruplicate and
dye-flipping was conducted (to rule out
bias in dye incorporation) for all time
course samples, yielding eight technical
replicates per gene per time point. Two
biological replicates exist for all time
points for a total of 16 replicates per
gene (Table 1). Direct RNA labeling, slide
hybridization, and washing protocols
were performed as described previously
(Baliga et al. 2002, 2004), except that
Dy547 and Dy647 dyes (Kreatech) were
used to directly label RNA. Raw intensity
signals from each slide were processed
by the SBEAMS-microarray pipeline
(Marzolf et al. 2006) (www.SBEAMS.org/
microarray), where resultant data was
median normalized and subjected to sig-
nificance of microarray (SAM) and vari-
ability and error estimates (VERA) analy-
sis. Each data point was assigned a sig-
nificance statistic, �, using maximum
likelihood (Ideker et al. 2000).

Microarray data analysis
Using the Gaggle integrated data analy-
sis software package (Shannon et al.
2006), all mean and variance normalized
transcriptome data from the three repli-
cate oxygen time-series experiments (61

Figure 7. A comprehensive temporal model of molecular events occurring between incidence of
oxygen and resumption of growth. (A) Data summary. Oxygen (black line) is plotted against time
(X-axis) and overlaid with mean profiles for all 106 significantly oxygen-correlated transcripts (purple
line), 109 oxygen-anticorrelated transcripts (orange line), ATP concentrations (green line), growth rate
from chemostat experiments (brown line), and protein profiles for all 83 proteins that were detected
for oxygen-correlated transcripts (red line). Each line in the graph was plotted on its own scaled Y-axis
(data not shown) against time (X-axis) and superimposed on the others for clarity. (B) Dynamic
temporal timeline model. Each parameter measured is shown in a colored box corresponding to its
time of induction (more intense color) and repression (fading to white).

Figure 6. An initial burst of translation for some operons is observed
prior to induction of RNA expression after oxygen up-shift. Mean profiles
are shown for all genes in the largest ribosomal operon, which contains
24 genes from VNG1688–VNG1719 (mean transcript profile in blue and
mean protein profile in orange). The X-axis represents time post-shift to
high oxygen in the first replicate chemostat experiment (see also Fig. 1
and Table 1).
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total conditions for 2400 genes, analyzed as a concatenated data
matrix) were filtered according to the following two protocols to
compile the final oxygen-responsive gene list.

Protocol 1
Data from each of the three experiments was separately filtered
for a VERA-SAM (Marzolf et al. 2006) � likelihood significance
cutoff of 7 in at least five consecutive time points (previously
determined to be a significant cutoff above the signal/noise ratio
by self-self hybridizations; N. Baliga, unpubl.; Ideker et al. 2000)
and subsequently subjected to principal component analysis
(PCA). This analysis resulted in ∼600 genes for each experiment
that were either correlated (∼300) or anticorrelated (∼300) with
oxygen. These gene groups were expanded to include genes pu-
tatively associated in operons. These operon associations were
calculated using a two-step nonhomology model in which (1)
operon boundaries were set by intergenic distance constraints
(Moreno-Hagelsieb and Collado-Vides 2002), and (2) operon
membership required a significantly correlated mRNA coexpres-
sion over ∼950 microarray conditions (Baliga et al. 2004; Kaur et
al. 2006; Reiss et al. 2006; Whitehead et al. 2006). The intersec-
tion of the three separately computed gene groups and the list
derived from protocol 2 (described below) comprises the final list
of 215 genes.

Protocol 2
K-means clustering was used to group the profiles of the entire
transcriptome data set (61 time points). To choose an appropriate
value for k in our data set, we investigated the mean residuals of
the genes from the cluster means for a wide range of k’s (10–200)
and k of 30 enabled the best solution for maintaining simplicity
(small number of clusters) and optimizing cluster coherence.
Principal component analysis (PCA) was then used to assign a
numerical measure for each cluster that correlated with its re-
sponse to oxygen (Fig. 3A). We found that the projected position
of each cluster’s mean profile along the first principal component
(PC1) (Fig. 3A) correlated most strongly with the ability to predict
its dynamics based upon the measured oxygen tension levels via
a linear dynamical model (Supplemental Fig. 2; Bonneau et al.
2006). The third principal component (PC3) was also more
strongly correlated with oxygen than the second component
(Supplemental Fig. 1). In addition, the majority of the variance in
the transcriptome profiles could be explained by the first and
third principal components (Supplemental Fig. 1). We therefore
used PC1 to assign to each cluster a numerical “oxic score,”
which varied from �5 (repressed by oxygen) to +10 (activated by
oxygen) (Fig. 3A); and used PC3 as the second axis. This analysis
yielded 771 genes in nine clusters with highly significant corre-
lation or anticorrelation with oxygen. The intersection between
these genes and those from protocol 1 (described above) yielded
the final list of 215 “oxygen-responsive” genes (Fig. 3; Supple-
mental Tables 1, 2).

Gene annotations were assigned (Fig. 4) based on the fol-
lowing three criteria: (1) Gaggle-integrated functional annota-
tion predictions from the GO, KEGG, COG, and PFAM databases
(Kanehisa 1997; Tatusov et al. 1997, 2003; Kanehisa and Goto
2000; Finn et al. 2006; Kanehisa et al. 2006); (2) matches to the
Protein Data Bank (PDB) (http://www.pdb.org; Berman et al.
2000) of structures predicted by the Rosetta protein-folding al-
gorithm (Bonneau et al. 2004); and (3) experimental character-
izations found in the literature. Through this analysis, 98 puta-
tive functions were either revised or newly assigned for previ-
ously misannotated or unannotated oxygen-responsive genes,
respectively. In summary, annotations were updated for 7% of all

differentially expressed genes, 22% of all oxygen-anticorrelated,
and 5% of all oxygen-correlated genes; these updated anno-
tations have been incorporated into the annotation database,
publicly accessible at http://baliga.systemsbiology.net/
halobacterium. Complete datasets for all differentially expressed
genes including ORF numbers, gene aliases, detailed up-to-date
annotations, and transcript ratios over the complete oxygen time
series are listed in Supplemental Table 1 (induced genes) and
Supplemental Table 2 (repressed genes). P-values for over-
representation of these genes in GO categories were determined
using the cumulative hypergeometric distribution and were cor-
rected for multiple hypothesis testing.

Protein preparation and mass spectrometry analysis
A total of 5 mL of mid-logarithmic phase H. salinarum NRC-1
(∼5 � 109 cells) culture was pelleted at room temperature by cen-
trifugation for 2 min at 9000g. Culture supernatant was discarded
and pellets were immediately snap-frozen on a dry-ice ethanol
bath and stored overnight at �80°C. Lysis of cell pellets was
achieved by resuspending in 1 mM phenylmethylsulfonyl fluo-
ride in water (PMSF, a protease inhibitor; H. salinarum NRC-1 cells
lyse readily at osmolarities lower than 2 M NaCl due to their
obligate halophilicity); soluble and insoluble protein fractions
were separated by centrifugation at 25°C, 16,000g for 5 min. In-
soluble protein pellets were dissolved in 3 µL of 10% SDS, mixed
with the soluble fraction, and stored at �80°C. Nucleic acid was
subsequently removed from protein extracts by incubating at
37°C for 45 min with 37.5 U of Benzonase nuclease (Novagen).
Complete digestion of nucleic acid was verified on a 4% agarose
gel (data not shown). Proteins were then precipitated with six
volumes of cold acetone (as instructed by the iTRAQ reagents kit,
Applied Biosystems) to remove interfering SDS and PMSF, fol-
lowed by resuspension in water. Total protein concentration was
determined using the bicinchoninic acid method (Pierce), and
100 µg of protein from untreated reference and oxygen-treated
cells were digested with trypsin at 37°C for 12–16 h. Resultant
peptides were labeled at primary amines using the iTRAQ re-
agents multiplex kit (Applied Biosystems) according to the
manufacturer’s instructions. Reference samples were labeled with
a 114 Da reagent, whereas oxygen-treated time point samples
were labeled with each of 115-, 116-, or 117-Da reagents. Detailed
multiplex labeling parameters for each of the 10 four-plex time-
course sample sets are listed in Table 2.

iTRAQ-labeled peptide samples were analyzed via LC-MS/
MS using an Applied Biosystems API QSTAR Pulsar i, equipped
with an in-house nanospray device. Samples were eluted onto a
10 cm � 75 µm-fused silica microcapillary reversed phase col-
umn (packed with 5 µm, 100 Å pore Magic C18AQTM beads;
Michrom Bioresources) over a 60-min gradient, ranging from
10:90 (acetonitrile: 0.1% Formic acidaq) to 35:65 with a flow rate
of 200 nL/min. Eluting peptides were analyzed using the IDA
(Information Dependent Acquisition) function of the Analyst QS
software with the two most abundant ions selected for MS/MS.
The MS mass range scanned was from 350 to 1300 m/z, and the
MS/MS mass range scanned was from 60 to 1800 m/z.

Proteomics data analysis
Proteomics data analysis was performed essentially as described
in Whitehead et al. (2006). Briefly, MS/MS spectra peptide and
protein assignment was achieved using SEQUEST and software
within the Trans Proteomic Pipeline (TPP) package (Keller et al.
2005) to match spectra against the H. salinarum NRC-1 protein
database digested in silico with trypsin (Ng et al. 2000). The static
modifications given to SEQUEST for the iTRAQ reagents were an
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addition of 144.23 to the N terminus, an addition of 45.86 to
cysteine, and an addition of 144.102 to lysine. In the assignment
process, SEQUEST was allowed to use one missed cleavage. The
script running SEQUEST constrained the MS/MS identifications
to those spectra with at least five peaks and having a peptide
mass between 600 and 4200 Da. Additionally, the region of
the spectrum containing the iTRAQ peaks was not passed to
SEQUEST for assignment. Subsequent peptide and protein-
relative quantitation and error estimation was conducted using
the Libra algorithm within the TPP as previously described (Nes-
vizhskii et al. 2003; Keller et al. 2005; Nesvizhskii and Aebersold
2005; Whitehead et al. 2006) (Supplemental Methods). The data
for the 10 iTRAQ sets were then merged and loaded into the
Gaggle software package to facilitate data integration and visual-
ization (Shannon et al. 2006; Whitehead et al. 2006). Codon
adaptation indices were calculated with a web-based CAI calcu-
lator (http://www.evolvingcode.net/codon/cai/cais.php) using
the halobacterial codon usage table based on ribosomal protein
codons. Similar results were obtained using alternative codon
usage tables for H. salinarum NRC-1 (Puigbo et al. 2007; Supple-
mental material).

Integrated statistical systems analysis of proteomic and
microarray data

The time-lagged correlation profiles (TLCPs) between mRNA and
protein time-series responses for each gene or operon are a series
of Pearson correlations computed between time-shifted protein
measurements and the corresponding interpolated time points
from the mRNA measurements. The mRNA profiles, rather than
protein profiles, were chosen for interpolation because they were,
in general, less noisy and had no missing values. We used cross-
validated cubic spline interpolation (Berloff et al. 2002) for the
final analysis, although we found that the significant results de-
scribed in this report were independent of the interpolation
method chosen. TLCPs were computed only for genes that had
nine or more protein-level observations. Resultant TLCPs (corre-
lation as a function of protein time lag) were computed for time
lags between �5 and +40 min. Peak time-lagged correlations
(PTLCs) for each gene were assessed, and the corresponding time
lag, �t, was identified.

To validate and assess the significance of the observed PTLC
for each gene, we performed two permutation tests, in which the
TLC analysis was performed on data that were randomized by: (1)
permuting the rows of the mRNA data matrix such that each
gene’s protein profile is compared with the mRNA profile for a
different, randomly selected gene, but where the mRNA profile is
correctly time-ordered (hereafter, the “shuffle” test); and (2) ran-
domizing all values in the mRNA data matrix so that the protein
profile is compared against randomly ordered mRNA data that
contains the same variance structure as the original mRNA data
matrix (hereafter, the “scramble” test). Each permutation test was
repeated 100 times for each gene (Fig. 5C) to obtain P-values that
measure the significance of each gene’s TLC profile as a function
of time lag, �t. The gene’s reported time lag �t (and its signifi-
cance) corresponds to the �t that maximizes the TLC profile.
Thus, two sets of P-values are computed for each gene: one (more
conservative) P-value based upon the shuffle permutation test
and one based on the scramble test. For genes with fewer than
nine time point detections in the protein data, time lags were
computed for operons in a similar fashion to the gene analysis.
Briefly, both mRNA and protein profiles for all genes in the op-
eron were combined and interpolated, and PTLC and random-
ization tests were conducted. Operon associations were calcu-
lated as described above (see Microarray Data Analysis section).

We computed an aggregate, global time-lag profile by count-
ing the total fraction of occurrences, whereby each gene obtained
a TLC better than each of its 100 permutation-test-based TLCs
(Fig. 5D). Because these fractions are based upon 100 permuta-
tion tests over ∼500 genes, they represent a total of >5000 per-
mutated TLC profile calculations. In order to estimate the signifi-
cance of the difference in observed fractions at each time lag �ti
versus that at �t = 0 (Fig. 5D), we counted the frequency at which
100,000 bootstrap samples of pairs of TLCs at �ti were less than
those at �t = 0. The results of these bootstraps for each time lag
are shown in Figure 5E.
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