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How populations diverge and give rise to distinct species remains a fundamental question in evolutionary biology,
with important implications for a wide range of fields, from conservation genetics to human evolution. A promising
approach is to estimate parameters of simple speciation models using polymorphism data from multiple loci. Existing
methods, however, make a number of assumptions that severely limit their applicability, notably, no gene flow after
the populations split and no intralocus recombination. To overcome these limitations, we developed a new Markov
chain Monte Carlo method to estimate parameters of an isolation-migration model. The approach uses summaries of
polymorphism data at multiple loci surveyed in a pair of diverging populations or closely related species and,
importantly, allows for intralocus recombination. To illustrate its potential, we applied it to extensive polymorphism
data from populations and species of apes, whose demographic histories are largely unknown. The
isolation-migration model appears to provide a reasonable fit to the data. It suggests that the two chimpanzee species
became reproductively isolated in allopatry ∼850 Kya, while Western and Central chimpanzee populations split ∼440
Kya but continued to exchange migrants. Similarly, Eastern and Western gorillas and Sumatran and Bornean
orangutans appear to have experienced gene flow since their splits ∼90 and over 250 Kya, respectively.

[Supplemental material is available online at www.genome.org.]

Although central to evolutionary biology, the question of how
species form remains largely open. In fact, the very definition of
species is a subject of active debate (Hey 2006). The most com-
mon definition is the “biological” one, in which species are de-
fined as groups of interbreeding organisms that are reproduc-
tively isolated from other populations. The introduction of this
concept >60 yr ago transformed the study of speciation into a
research program to examine the conditions under which repro-
ductive isolation emerges and to uncover its genetic architecture
(Mayr 1963).

Accumulating evidence suggests that incipient species arise
primarily in populations with restricted gene flow, as alleles (or
combination of interacting alleles) that contribute to repro-
ductive isolation reach fixation (e.g., Wittbrodt et al. 1989;
Sawamura et al. 1993; Ting et al. 1998; Wang et al. 1999; Fossella
et al. 2000; Barbash et al. 2003; Presgraves et al. 2003; Coyne and
Orr 2004a). The speciation process initiates after two populations
become completely isolated from one another (i.e., are in allopa-
try) or as they continue to exchange migrants (i.e., in parapatry).

Under a model of allopatric speciation, the process occurs
through the homogeneous divergence of the genome. Shortly
after the split, the two populations share alleles due to the per-
sistence of ancestral polymorphism (more so if the ancestral
population size is large). Eventually, however, the shared alleles
are lost or reach fixation and the two populations start to accu-
mulate fixed differences, either by genetic drift or due to differ-
ential adaptation (Coyne and Orr 2004a). Under a simple allopat-
ric model with no selection, it will take approximately 9–12N
generations (where N is the effective size of the descendant popu-

lation) for the genealogies of >95% of loci to be reciprocally
monophyletic and, hence, for the two populations not to share
alleles that are identical by descent (Hudson and Coyne 2002).
Given these assumptions, humans and common chimpanzees
should almost never share alleles (as they are thought to have
diverged ∼ 20–25N generations ago) (Wall 2003; Hobolth et al.
2006; Patterson et al. 2006), while bonobos and common chim-
panzees are expected to share alleles at ∼50% of loci (since they
are estimated to have diverged ∼ 4N generations ago; Won and
Hey 2005).

If the incipient species are in parapatry, however, divergence
is not believed to occur homogeneously across the genome but
instead in a number of stages (Wu 2001). First, alleles that cause
a decrease in hybrid fertility or viability reach fixation in the
parental populations. The populations may continue to ex-
change migrants, but in the genomic regions carrying function-
ally divergent or incompatible alleles, gene flow is selected
against and hence effectively restricted. By contrast, in unlinked
(or loosely linked) genomic regions, alleles can be brought in by
migrants with no associated fitness costs. Thus, at neutral loci,
populations share alleles longer than expected under allopatric
speciation. Eventually, reproductive isolation factors accumulate
in sufficient numbers as to prevent gene flow throughout the
genome—the final stage of speciation. This model predicts varia-
tion in the number of shared alleles and levels of divergence
along the genomes of closely related species. While shared alleles
are also expected under a model of recent allopatric speciation,
greater variation is expected along the genome under parapatry,
such that, with enough data, the two scenarios should be distin-
guishable.

In these simple speciation models, the salient parameters are
the split times, effective population sizes, and, in the case of
parapatry, the gene flow rates. Thus, learning about these param-
eters should greatly deepen our understanding of speciation. This
realization has motivated the development of statistical methods
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to estimate the parameters from multilocus patterns of polymor-
phism in closely related species.

Existing methods all assume that genetic variation data are
available from both populations, at a number of independently-
evolving loci, but differ in their assumptions about gene flow and
recombination, and in whether they use all the polymorphism
data or summaries. Loosely, they can be classified into two
groups. The first set assumes an extreme model of allopatry, in
which a panmictic (i.e., randomly mating) ancestral population
instantaneously splits into two panmictic descendant popula-
tions, with no subsequent gene flow. In this model, there are four
parameters: the three effective population sizes and the split
time. The parameters are estimated using summaries of the poly-
morphism data, either by a moment estimator (Wakeley and Hey
1997; Kliman et al. 2000) or by maximum likelihood (Leman et
al. 2005; Putnam et al. 2007). While, in its current version, the
method of Leman et al. (2005) can only be applied to one, non-
recombining locus, other methods can be applied to multiple loci
and incorporate recombination (Wakeley and Hey 1997; Putnam
et al. 2007). They use highly summarized versions of the data,
however, at the potential cost of much information. Moreover,
in the presence of gene flow after the split, their estimates will be
biased—the ancestral effective population size will tend to be
overestimated (Wall 2003) and the split time underestimated (Le-
man et al. 2005).

The second set of methods considers a more general model,
often called the “isolation-migration” model, in which there is
gene flow between incipient species throughout the genome, ei-
ther at fixed (Hey and Nielsen 2004) or locus-specific rates (Won
and Hey 2005). The parameters are estimated from all the poly-
morphism data at a single locus (Nielsen and Wakeley 2001) or at
multiple loci (Hey and Nielsen 2004), using Markov Chain
Monte Carlo (MCMC). The Hey and Nielsen method, henceforth
called IM, has been applied to a number of species, from Helico-
nius (Bull et al. 2006) to cichlids (Hey et al. 2004; Won et al.
2005). These applications suggest that speciation often occurs in
the presence of some gene flow (Hey 2006).

While IM considers a wide range of models, it assumes that
haplotypes are known and that there is no intralocus recombi-
nation. Although not ideal, the first assumption is not restrictive,
as a two-step procedure can be used in which haplotype phase is
inferred (e.g., using the program PHASE; Stephens et al. 2001)
and then IM is run on the phased data. In contrast, the assump-
tion of no recombination is more limiting, because the method
can only be applied to autosomal loci by excluding segments or
haplotypes with evidence for recombination. This practice is
likely to bias estimates of the parameters, as excluding segments
with visible recombination will tend to lead to shorter genealogi-
cal histories (Hey and Nielsen 2004). Moreover, if intralocus re-
combination is not taken into account, a small variance in di-
vergence times across segments may be confounded with a small
ancestral effective population size (Takahata and Satta 2002). The
assumption of no intralocus recombination represents an
especially severe limitation in species in which the ratio of re-
combination to mutation is thought to be high (e.g., Drosophila
melanogaster, Andolfatto and Wall 2003; or Papilio glaucus, Put-
nam et al. 2007). In such species, any segment with polymor-
phisms in a sample is likely to have experienced numerous re-
combination events in its genealogical history, making recombi-
nation hard to ignore (Hudson and Kaplan 1985; Nordborg and
Tavare 2002).

To overcome this limitation, we developed a new Bayesian

approach to estimate parameters of an isolation-migration model
from recombining loci. We have in mind data sets similar to the
ones most commonly collected to date: short noncoding se-
quences distributed throughout the genome. Our approach is to
summarize the polymorphism data at each locus by four statistics
known to be sensitive to the parameters of interest (Wakeley and
Hey 1997; Leman et al. 2005). We then estimate the posterior
probability of the parameters given these summaries using
MCMC. Simulations suggest that, in the absence of recombina-
tion, our method performs as well or almost as well as the full
likelihood approach. Moreover, the approach presents the ad-
vantage of being quite flexible in the demographic model that it
can consider and in allowing for intralocus recombination.

We illustrate the potential of our method by applying it to
multilocus polymorphism data from noncoding loci in chimpan-
zees, gorillas, and orangutans. Very little is known about the
evolutionary history of great apes, in part because of a poor fossil
record. Chimpanzees, the closest living relatives of humans, are
classified into two species, common chimpanzees (Pan trog-
lodytes) and bonobos (Pan paniscus), both found exclusively in
Africa. The two chimpanzee species were thought to have di-
verged as a result of the formation of the River Congo 1.5–3.5
million years ago (Mya) (Beadle 1981; Myers Thompson 2003),
but recent estimates of their split time based on genetic data
appear to be too recent for this scenario to be plausible (Fischer et
al. 2004; Won and Hey 2005). Common chimpanzees are usually
subdivided further into three (or sometimes four) “subspecies,”
including Eastern (P. troglodytes schweinfurtheii), Central (P. tro-
glodytes troglodytes), and Western (P. troglodytes verus) (Hill 1969).
The meaning of the term “subspecies” is unclear, at least to us,
but the labels are thought to correspond to the most pronounced
population structure within the species. This view is supported
by a recent analysis of 310 microsatellites, which found three
populations within common chimpanzees, which correspond to
the three subspecies, and little evidence of recent gene flow be-
tween them (Becquet et al. 2007).

Gorillas, in turn, are classically subdivided into two subspe-
cies: Western (Gorilla gorilla) and Eastern gorilla (Gorilla beringei),
found in western and central African forest, respectively (Groves
1970). Some controversy surrounds this classification: The range
of the two populations does not currently overlap in the wild;
but on the basis of morphological and genetic diversity, it has
been proposed that the subspecies should be elevated to the
rank of species (e.g., Grubb et al. 2003). Here, we refer to Western
and Eastern gorillas as subspecies or populations. A recent appli-
cation of IM to polymorphism data from the two gorilla
populations suggests that they split between 0.08 and 1.6 Mya
and experienced low levels of gene flow since (Thalmann et al.
2006).

Even less is known about the history of orangutans (Pongo
pygmaeus), currently found only in Indonesia and Malaysia, but
whose range is thought to have spanned much of southeast Asia
until recently (Smith and Pilbeam 1980). Some taxonomies con-
sider Sumatran (P. p. abelii) and Bornean (P. p. pygmaeus) orang-
utans to be subspecies (e.g., Groves 1971), and others to be
species (e.g., Zhi et al. 1996). Again, these populations do not
overlap in their range, so that the classification is based on mor-
phology and behavior, as well as on patterns of genetic diversity.
The islands of Sumatra and Borneo were fully formed 500 thou-
sand years ago (Kya) but were reconnected by land bridges during
the two last glaciations, ∼130–200 Kya and ∼10–100 Kya, respec-
tively (Muir et al. 2000; Hughes et al. 2006). Estimates of the
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average time to the most recent common ancestor for both popu-
lations based on mitochondrial DNA (mtDNA) and a small num-
ber of microsatellites and autosomal and X-linked loci are ∼1.5–
2.5 Mya (Zhi et al. 1996; Kaessmann et al. 2001; Zhang et al.
2001), but to our knowledge, there are no published estimates of
the population split time.

Here, we analyze a compilation of multilocus polymor-
phism data recently published in the three great ape species (Yu
et al. 2003; Fischer et al. 2006; Thalmann et al. 2006), refining
population parameter estimates for chimpanzees and gorillas and
providing the first estimates for orangutans.

Results

We developed a method that estimates the demographic param-
eters of an “isolation-migration” model from recombining loci
(Fig. 1). There are five parameters of interest: the population mu-
tation rates for the two descendant populations, �1 and �2, and
the ancestral population, �A; the time since the populations split
in generations, T; and the migration rate, m. To estimate these
parameters, the method requires resequencing data from two
populations (or closely related species) at independently-
evolving loci, and an outgroup sequence. Briefly, the polymor-
phism data for each locus are summarized by the four statistics
studied by Wakeley and Hey (1997), as these carry information
about the divergence time and other parameters of interest
(Wakeley and Hey 1997; Leman et al. 2005). We choose the pa-
rameters of the model from prior distributions, and for each lo-
cus, we generate a set of genealogies under a model with those
parameters. We then estimate the likelihood by calculating the
probability of the data summaries at all the loci given the set of
genealogies and the parameters. Finally, we obtain a sample from
the posterior distribution of the parameters given the data sum-
maries using MCMC (see Methods). Thus, our method follows a
number of Bayesian approaches that use summaries of the data
but differs in that we update the parameters using MCMC (for
more details, see Methods). Hereafter, we refer to our method as
MIMAR: MCMC estimation of the isolation-migration model al-
lowing for recombination.

Performance of MIMAR under the allopatric model

In order to assess the performance of our method, we generated
30 simulated data sets, each consisting of 20 non-recombining
loci, with parameter values applicable to Drosophila species in
which related studies have been conducted (Llopart et al. 2005;
see Methods). Supplemental Figure S1 shows the 30 posterior
distribution samples for the four parameters of interest. As can be
seen, the posterior distributions estimated by MIMAR for �1, �2,
and T are centered around their true values with relatively little
variance, suggesting that the summaries that we use contain
enough information to estimate these parameters precisely and
accurately. However, for these parameters, 20 non-recombining
loci do not seem to contain as much information about the an-
cestral effective population size, leading to a wider posterior dis-
tribution estimate for �A. This does not appear to be a feature of
our statistics, since the use of IM yields similar results, even
though it is based on the full polymorphism data set (data not
shown). As expected, our estimates of �A become more precise
with larger data sets (data not shown).

Comparison to IM for the case of no recombination

Next, we studied the performance of MIMAR by generating 30
simulated data sets under the allopatric model for 20 non-
recombining loci, but this time drawing the parameters from
prior distributions (for details, see Methods); the parameter val-
ues are, as above, applicable to Drosophila species. The results
confirm that the estimates of �1, �2, and T are precise and have
very little bias, while the estimates of �A are less precise (Table 1;
Supplemental Fig. S2).

We analyzed the same simulated data sets with IM to com-
pare the estimates from MIMAR, which are based on summaries,
with a full likelihood approach (since IM does not allow for re-
combination, we set the intralocus recombination rate to 0
when generating the 30 data sets). We found that the two meth-
ods perform similarly well, in terms of both accuracy and preci-
sion (see Table 1). For example, the mean absolute error over the
30 simulated data sets for the estimate of T is 5.19 � 105 using
MIMAR and 5.94 � 105 using IM. Similarly, if we consider the
estimate divided by the true value as a measure of bias, the mean
over the 30 data sets is 1.004 for MIMAR and 0.980 for IM. Similar
results were obtained for all parameters, with the possible excep-
tion of the current effective population sizes, for which MIMAR
appears to yield slightly more reliable estimates (see Table 1).
Moreover, we found that the two methods have similar coverage:

Figure 1. The “isolation-migration” model, in which two populations
diverged T generations ago from a common ancestral population. The
parameters �1, �2, and �A are the population mutation rates per base pair
for populations 1 and 2 and the ancestral population, respectively. The
split time in generations is T, and m is the symmetrical migration rate
between populations per generation (for details, see Methods).

Table 1. Performance of MIMAR and IM

Mean absolute error
Mean of the estimate

divided by the true value

Parameters MIMAR IM MIMAR IM

�1 0.0003 0.0002 1.000 0.983
�2 0.0004 0.0003 1.001a 0.968a

�A 0.0027 0.0037 0.927 0.875
T 5.19 � 105 5.94 � 105 1.004 0.980

Precision and accuracy for the four parameters of the allopatric model
(using the mode as a point estimate). MIMAR and IM were applied to 30
simulated multilocus data sets under the allopatric model (for details, see
Methods).
aThe biases in �2 estimates from IM and MIMAR are significantly different
at the 5% level, after Bonferroni correction (P = 0.006 using a Wilcoxon
signed rank test).
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For both, the central 95th percentiles of the marginal posterior
distribution sample for T included the true value in 29 out of 30
cases; for �A, this occurred in 29 out of 30 cases for IM and 30 out
of 30 cases for MIMAR. We also compared the results of MIMAR
and IM on larger simulated data sets of 100 loci and found that,
in this case, IM outperformed MIMAR. However, with such large
data sets, both methods provided highly accurate and precise
estimates (data not shown).

In the comparison, we ran both methods long enough for
them to appear to have reached convergence (Supplemental Fig.
S3). For the same number of iterations of the MCMC, IM was two
to three times faster than MIMAR (data not shown).

Assessing the evidence for gene flow

To assess our ability to distinguish a model with gene flow from
one without, we generated 20 simulated data sets (each consist-
ing of 40 recombining loci) under both an allopatric and a para-
patric model, with parameter values applicable to apes. In the
parapatric model, we fixed the expected number of migrants
M = 4N1m to 1, which corresponds to an average of 11 migra-
tion events in the history of the sample. We applied MIMAR to
the 40 data sets, allowing for recombination and sampling the
expected number of migrants from the prior ln (M) ∼ U[�5, 2]
(for details, see Methods). When applied to data sets generated
under a model with no gene flow, MIMAR suggested no migra-
tion (using the criterion that the mode of the marginal posterior
distribution, M̂, be < 0.1) in 14 out of 20 cases; moreover, in one
out of the six cases in which M̂ � 0.1, most of the posterior prob-
ability mass for M was close to 0 (data not shown). For the data
sets simulated with gene flow, there was evidence of migration
(i.e., M̂ � 0.1) in 17 out of 20 cases. Other parameter estimates
were generally accurate and precise (see Table 2; Supplemental
Fig. S4), although the estimates of �A were slightly underesti-
mated in data sets generated with M = 0, and the estimates of T
were slightly underestimated in data sets generated with M = 1
(for possible explanations, see Table 2).

When we applied either MIMAR and IM to smaller simu-

lated data sets (i.e., 20 loci and no intralocus recombination),
estimates of the split times and migration rates provided by both
methods were much less reliable (data not shown).

Sensitivity to intralocus recombination rates

Intralocus recombination rates are often unknown or are esti-
mated with substantial error. To assess how this might affect the
reliability of MIMAR, we generated 16 data sets under an allopat-
ric model, with parameter values applicable to Drosophila (see
above). Each data set consisted of 10 recombining loci, with the
locus-specific recombination rates chosen from an exponential
distribution with mean c/µ = 10. These data sets were analyzed
using MIMAR by fixing all the parameters but T to their true
values, and (1) setting the locus-specific recombination rates to
their true values, (2) sampling the recombination rates from the
same prior as used when generating the simulated data, and (3)
setting the intralocus recombination rates to 0 (for details, see
Methods). The results from steps 1 and 2 were virtually identical,
suggesting that error in the locus-specific recombination rates
does not have much effect on the results so long as intralocus
recombination is taken into account. In contrast, when we as-
sumed no recombination in our analysis of recombining loci, the
estimates of the split time were significantly less accurate and
precise (see Supplemental Fig. S5). These results highlight the
importance of allowing for intralocus recombination when esti-
mating demographic parameters.

Application to ape data

We compiled a set of recently published resequencing data in
bonobo and common chimpanzee, gorilla, and orangutan popu-
lations (Yu et al. 2003; Fischer et al. 2006; Thalmann et al. 2006).
Won and Hey (2005) had previously reported evidence for intra-
locus recombination at some of the loci included in this study,
and we found further evidence of recombination, in spite of low
power to do so (given the small sample sizes). We therefore ana-
lyzed these data sets with MIMAR, allowing for intragenic recom-
bination (see Methods). For these analyses, we assumed that the
recombination rate is exponentially distributed across loci but
constant within a locus. This model seems sensible for the short
fragments (∼650 bp on average) that we considered but may not
be appropriate for longer loci.

Chimpanzee species (P. paniscus and P. troglodytes) and subspecies
(P. t. verus, P. t. troglodytes, and P. t. schweinfurthii)

Figures 2 and 3 show the marginal posterior distributions for the
parameters of the model, averaging the results for two indepen-
dent runs (for details, see Methods). We considered each pair of
populations in turn. Running MIMAR under a model that allows
for gene flow strongly suggests that the bonobo and the common
chimpanzee populations split without subsequent migration
(Table 3). In contrast, there is evidence of gene flow since the
split of Western, Central, and Eastern chimpanzee populations
(Table 4; see also Won and Hey 2005). Figure 2 shows the poste-
rior distribution estimates for the parameters of the model for
bonobo and common chimpanzee populations and Figure 3, for
Western, Central, and Eastern chimpanzee populations. We note
slight support for gene flow between Eastern chimpanzees and
bonobos (see Fig. 2C), whose ranges are closer together than
those of bonobos and other chimpanzee subspecies. However,
more data and more precise geographic information are needed
to evaluate this possibility, especially in light of the relatively

Table 2. Performance of MIMAR when detecting gene flow

Mean absolute error
Mean of the estimate

divided by the true value

Parameters M > 0 M = 0 M > 0 M = 0

�1 0.0008 0.0005 1.144 1.153
�2 0.0008 0.0005 1.092 1.085
�A 0.0003 0.0004 1.000 0.880a

T 1.81 � 104 5.66 � 103 0.721a 0.965
M 1.0436 0.487 1.293 NA

Precision and accuracy for the five parameters of the isolation-migration
model (using the mode as a point estimate). MIMAR was applied to 20
simulated multilocus data sets under parapatric and allopatric models (for
details, see Methods). When M = 0, the mean estimate of �A is signifi-
cantly lower than the true value (P = 0.0003, using a Wilcoxon signed
rank test). This can be explained as follows: The prior on M does not
include 0 (the true value) so M̂ is necessarily an overestimate and conse-
quently, �A tends to be underestimated slightly. This problem is likely to
apply to IM as well, since the prior on M is likewise exclusive of 0. When
M = 1, the mean estimate of T is significantly lower than the true value
(P = 0.005, using a Wilcoxon signed rank test). This can be explained by
the fact that, whenever M and/or �A are slightly underestimated, T tends
to be underestimated (see Supplemental Fig. S4)
aA significant bias in the estimates at the 5% level, after Bonferroni cor-
rection.
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unreliable estimates of migration from small data sets (see simu-
lation results above).

Assuming 20 yr per generation and a mutation rate of 2 �

10�8 per base pair per generation (see Methods), the estimates of
the effective population sizes of bonobos and Western chimpan-
zees are ∼10,000 in all analyses involving these populations. In
turn, the estimates of split time for bonobos and common chim-
panzee populations range from 790–920 Kya, and the estimates
of the ancestral effective population size are ∼30,000. These esti-
mates are consistent with those obtained by Won and Hey
(2005), who applied IM to a smaller data set, which overlaps with
ours. The only exception is that they estimated a smaller ances-
tral effective population size than we did, but the confidence
intervals overlap slightly. These results confirm that polymor-
phism data from bonobos and common chimpanzees are consis-
tent with an allopatric speciation model and that the divergence

between the chimpanzee species occurred more recently than the
estimated formation of the River Congo.

In the analyses of Western and Central chimpanzees and
Western and Eastern chimpanzees, the time estimates range from
280–440 Kya, the ancestral effective population sizes from
11,000–15,000, and the migration rate, M = 4N1m, from 0.32–0.43
(where N1 is the effective population size of Western chimpan-
zees). These results are roughly consistent with those of Won and
Hey (2005): Using a model that allowed for asymmetric migra-
tion rates, they estimated that M ∼ 0.28 from Western to Central
chimpanzees but did not find evidence for gene flow in the op-
posite direction.

For the analyses of Central and Eastern chimpanzees, the
split time estimate is ∼220 Kya, the ancestral effective population
size is ∼46,000, and the migration rate, M = 4N1m, is ∼0.80 (where
N1 is the effective population size of Central chimpanzees). Thus,

Figure 2. Smoothed marginal posterior distributions estimated by MIMAR from bonobo and common chimpanzee polymorphism data (for details,
see Methods). The range of the X-axis corresponds to the support of the prior. The distributions are for the analyses of bonobos and Western
chimpanzees (A), bonobos and Central chimpanzees (B), and bonobos and Eastern chimpanzees (C).
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it appears that the split time for Central and Eastern chimpanzees
is about half that of Western and Central (or Eastern) chimpan-
zees.

While the estimates are generally consistent across pairwise
analyses, the effective population size estimates for Central and
Eastern chimpanzees are not. In both analyses of Central chim-
panzees and bonobos and of Central and Eastern chimpanzees,
the effective population size of Central chimpanzees is estimated
to be 15,000–22,000 (consistent with the results of Won and Hey
2005). However, a larger population size estimate is obtained
from the analysis of Western and Central chimpanzees. Simi-
larly, in both analyses of bonobos and Eastern chimpanzees and
of Western and Eastern chimpanzees, estimates of the effective
population size of Eastern chimpanzees are 20,000–25,000, while
in the analysis of Eastern and Central chimpanzees, the estimate
is smaller. These discrepancies may reflect complex histories of

chimpanzee populations not captured by the model (see the
goodness-of-fit test below). For example, analyses of other data
sets suggest that Central chimpanzees may have experienced a
recent population expansion (Fischer et al. 2004; D. Reich, pers.
comm.).

Gorilla subspecies, Western (G. gorilla) and Eastern gorillas
(G. beringei)

Figure 4A shows the posterior distributions of the five parameters
of the parapatric model of speciation. Assuming 15 yr per gen-
eration and a mutation rate of 2 � 10�8 per base pair per gen-
eration (see Methods), the estimates of the effective population
sizes for Western and Eastern gorillas and their ancestral popula-
tion are ∼9000, ∼8000, and ∼27,000, respectively (see Table 5). The
divergence time estimate between Western and Eastern gorilla

Figure 3. Smoothed marginal posterior distributions estimated by MIMAR from the common chimpanzee subpopulation polymorphism data (for
details, see Methods and legend of Fig. 2). The distributions are for the analyses of Western and Central chimpanzees (A), Western and Eastern
chimpanzees (B), and Central and Eastern chimpanzees (C).
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subspecies is ∼92 Kya, and the migration rate, M = 4N1m, is ∼0.87
(where N1 is the effective population size of Western gorillas).

To compare our estimates to those recently obtained by
Thalmann et al. (2006) using IM, we considered their mutation
rate estimate (1.44 � 10�8 per base pair per generation). Our
estimates of the effective population sizes of Western gorillas and
ancestral population and the split time are of the same order
(∼13,000 vs. 17,500, ∼37,000 vs. 42,000, and 92 vs. 78 Kya), but
our estimate of the effective population size of Eastern gorillas is
larger (11,000 vs. 3000). Whether this discrepancy reflects differ-
ences in the use of summaries vs. the whole data or in the prior
distributions is unclear.

Orangutan subspecies, Sumatran (P. p. abelii) and Bornean
orangutans (P. p. pygmaeus)

The posterior distributions of the five parameters of the parapa-
tric model of speciation are shown in Figure 4B. Assuming 20 yr
per generation and a mutation rate of 2 � 10�8 per base pair per
generation (see Methods), the estimates of the effective popula-
tion sizes for Sumatran and Bornean orangutans and their ances-
tral population are ∼17,000, ∼10,000, and ∼87,000, respectively
(see Table 5). The estimate of the symmetrical migration rate,
M = 4N1m, is ∼0.87 (where N1 is the effective population size of
Sumatran orangutans). The data further suggest that the split

time for Sumatran and Borneon orangutan populations is likely
to be older than 250 Kya. However, the data (19 loci) do not
appear to carry much information about this parameter (see the
posterior distribution estimate in Fig. 4B), and in particular, the
mode of the posterior distribution, 1.4 Mya, is likely to be an
unreliable estimate of the split time.

Since the islands of Borneo and Sumatra were connected
during the two last glaciations ∼130–200 Kya and ∼10–100 Kya
ago, it is not surprising to find evidence of gene flow between
those two populations. Our results further suggest that the Su-
matran and Bornean orangutan populations diverged before the
second to last Ice Age. To our knowledge, this analysis provides
the first estimates of population parameters for the two orangu-
tan subspecies.

Goodness-of-fit test

To examine whether the isolation-migration model is an appro-
priate description of the history of the ape species and subspecies,
we generated simulated data sets for parameters sampled from
the posterior distributions estimated by MIMAR, and compared
the simulated data to what is observed for a number of statis-
tics. Encouragingly, the isolation-migration model appears to
provide a reasonable fit to the four statistics used in the infer-
ences of MIMAR as well as to the mean FST, �, and Tajima’s D

Table 4. Results for chimpanzee subspecies

Analysis Loci n1 n2 N1 N2 NA T* Ma

Western � Central chimpanzees 68 20 (12) 20 (10)
Mode 9,750 33,000 15,000 439,000 0.315
2.5th percentile 7,690 24,200 6,140 325,000 0.097
97.5th percentile 12,900 59,700 22,400 1,100,000 0.523

Western � Eastern chimpanzees 26 20 20
Mode 10,800 24,700 11,000 282,000 0.425
2.5th percentile 8,040 18,600 2,270 230,000 0.143
97.5th percentile 21,100 71,800 21,900 1,210,000 2.622

Central � Eastern chimpanzees 26 20 20
Mode 14,400 8,590 46,000 219,000 0.797
2.5th percentile 8,560 5,070 33,500 143,000 0.084
97.5th percentile 22,300 12,700 75,100 1,400,000 1.389

aFor details, see legend of Table 3.

Table 3. Results for chimpanzee species

Analysisa Locib n1
c n2 N1

d N2 NA T *e Mf

Bonobos � Western chimpanzees 69 18 (16) 20 (12)
Mode 9,790 9,790 33,300 873,000 0.007
2.5th percentile 8,360 7,820 25,200 681,000 0.007
97.5th percentile 12,000 11,700 44,300 1,070,000 0.031

Bonobos � Central chimpanzees 68 18 (16) 20 (10)
Mode 9,900 21,900 33,800 918,000 0.008
2.5th percentile 7,870 18,300 27,300 759,000 0.007
97.5th percentile 11,300 27,000 46,800 1,170,000 0.036

Bonobos � Eastern chimpanzees 26 18 20
Mode 11,500 19,900 31,600 785,000 0.062
2.5th percentile 9,150 15,300 22,200 616,000 0.001
97.5th percentile 15,200 25,600 48,700 1,350,000 0.100

aEstimates are obtained from two independent runs (see Methods).
bNumber of loci used in the analyses.
cn1 and n2 are the number of chromosomes in the first and second population of the analysis, respectively (the sample size varies because we pooled
loci from multiple studies and because of missing data).
dNA, N1, and N2 are the estimates of the effective population size for the ancestral, first and second population of the analysis, respectively.
eT* is the estimate of the time since the populations split in years.
fM = 4N1m, where N1 is the effective population size of the first population of the analysis.
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across
loci (Supplemental Fig. S6; for details, see Methods). The
one exception is for Central and Eastern chimpanzees (Supple-
mental Fig. S6f): There is a poor fit to FST and to Tajima’s D for the
Central chimpanzees (see also Supplemental Fig. S6b). This sug-
gests either that an isolation-migration model is not appropriate
for these subspecies or that a crucial demographic feature is miss-
ing from the model. Given the proximity of Central and Eastern
chimpanzees and their low FST, one possibility is that, rather than
a split model, a model of isolation by distance is more appropri-
ate (Fischer et al. 2006). Interestingly, though, there does not
appear to be substantial gene flow between the Eastern and Cen-
tral ranges (see the estimates of the migration rate in this study
and Becquet et al. 2007). We also find that, while the model fits
most aspects of the bonobo data quite well, the observed Tajima’s

D is lower than expected (Supplemental
Fig. S6a–c), perhaps reflecting recent de-
mographic events in bonobos not in-
cluded in the model.

Discussion

Advantages and limitations of MIMAR

We have developed a new method to es-
timate parameters of simple allopatric
and parapatric speciation models. It con-
siders summaries of the polymorphism
data from each locus, rather than the en-
tire data set. Extensive simulations, and
comparisons to IM for the case of no re-
combination, suggest that the use of
these summaries provides accurate and
precise estimates of parameters of inter-
est from data sets comparable in size to
those analyzed to date (see Table 1).

The method presents the important
advantage of allowing for intralocus re-
combination. This feature makes the ap-
proach applicable to autosomal data,
even in species where the ratio of recom-
bination to mutation events is high (�/
� k 1), such as in Drosophila (Andolfatto
and Wall 2003) and Papilio (Putnam et
al. 2007) and hence where any segment
containing polymorphisms is likely to
have experienced recombination in its
genealogical history. In contrast, when
applied to recombining regions, IM re-
quires one to exclude loci that show evi-
dence of recombination and assumes that
no recombination occurred at the other
loci, potentially biasing the estimates.

In other respects, the model of spe-
ciation that we consider is more restric-
tive than the one used in IM. Mutation
rates for each locus are estimated from
divergence data and then fixed, rather
than coestimated along with other pa-
rameters (see Methods). We set the mi-
gration rate, m, to be symmetric between
populations, which may be inappropri-
ate. Finally, we assume that the distribu-
tion of coalescent times only varies

across loci due to differences in the mode of inheritance and,
therefore, that it can be specified a priori. In contrast, IM allows
one to estimate inheritance scalars for each locus from the data,
which may be important if a subset of loci have experienced
recent selection (Hey and Nielsen 2004). Our model could readily
be extended to allow for these features, notably for asymmetric
migration rates (in fact, the MIMAR program that we make avail-
able already allows for this feature). However, the data from a
given locus carry limited information, and it is unclear how
many parameters can reliably be estimated, even using all the
information. Indeed, our simulations suggested that IM and
MIMAR estimates of the migration rate from a small data set can
be unreliable even in the absence of these complications (see
Results).

Figure 4. Smoothed marginal posterior distributions estimated by MIMAR from the gorilla (A) and
orangutan (B) subspecies polymorphism data (for details, see Methods and legend of Fig. 2). (A)
Distributions for the analysis of Western and Eastern gorillas. The apparent multimodality of the
marginal posterior distribution estimated for the split time was also noted by Thalmann et al. (2006).
(B) Distributions for the analysis of Sumatran and Bornean orangutans. Note that the posterior distri-
bution for the split time is rather flat, suggesting that the data do not carry much information about
this parameter.
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In its current implementation, our method is also limited in
the type of data that it can consider, as it is not applicable to
surveys of variation that suffer from ascertainment bias. More-
over, it assumes an infinite site model, so only two alleles can be
present at a given site. As long as the ascertainment bias and
mutation model are known, however, it should be reasonably
straight-forward to extend the model to consider these cases
(Nielsen and Signorovitch 2003). MIMAR is further intended for
use on resequencing data from short, independently-evolving
loci, in which there is little information about how genealogies
change along the genome or, viewed another way, about linkage
disequilibrium (McVean et al. 2004), and for which it is reason-
able to assume that recombination rates are uniform. Applying
MIMAR to longer stretches of sequence may require a change in
the model of recombination to capture fine-scale heterogeneity
in recombination rates. In that setting, it may also be helpful to
consider summaries of linkage disequilibrium in addition to the
four statistics used here. More generally, our approach could be
extended to consider a number of other aspects of the data. For
instance, one could consider the number of singletons in each
population (in addition to the four current statistics) or the joint
frequency spectrum in two population samples.

In addition to improving the inference method, it will also
be important to consider more realistic models of speciation. For
example, detailed studies of closely related species reveal that
many apparent cases of parapatry may in fact reflect allopatric
speciation followed by secondary contact (Coyne and Orr 2004b;
Llopart et al. 2005). One approach to distinguishing between the
two scenarios might be to allow migration between diverging
populations to stop at different time points, and estimate which
times are most likely given the polymorphism data. Similarly, for
sets of species (or populations) that split over a short time period,
it may be important to consider more than two species at a time
(Wall 2000; Degnan and Rosenberg 2006; Pollard et al. 2006).

Another salient feature, ignored in existing methods, may
be population structure in the ancestral population. Indeed, in
many of our analyses of ape data, as well as in most analyses of
the isolation-migration model published to date (e.g., Hey et al.
2004; Hey 2005; Won and Hey 2005; Thalmann et al. 2006), the
estimate of the ancestral effective population size is larger than
that of the descendant populations. Since it seems unlikely that
so many populations have shrunk over time, this suggests that a
salient and fairly common demographic feature is being ignored.
One possibility is that the assumption of a panmictic ancestral
population is inappropriate. If so, it may be relevant to consider
a model of population structure in which a geographic barrier
becomes stronger over time (e.g., Innan and Watanabe 2006). In
this respect, an attractive feature of our method is that it is easy
to generalize to other demographic settings (see Methods).

Finally, our approach could also be extended to scan the
genome for regions that contribute to reproductive isolation
(Won et al. 2005; Bull et al. 2006; Geraldes et al. 2006; Miller et
al. 2006). Indeed, models of parapatric speciation predict that
loci involved in the formation of species will experience no or
little gene flow since the split and therefore have more fixed
differences and fewer shared alleles than do background loci.
Moreover, theoretical results suggest that, in this setting and un-
less selection in very strong, regions of marked differentiation
should be relatively short (Barton and Bengtsson 1986). Thus,
identifying regions with evidence for decreased gene flow should
be an effective way to find the specific loci that contribute to
reproductive isolation. This idea has been implemented by esti-
mating gene flow for each locus separately (Won et al. 2005).
However, this approach may have limited power to detect loci with
reduced gene flow. An alternative may be to use the goodness-of-
fit test results for individual loci to identify outliers that behave
as expected if they contributed to reproductive isolation.

Analyses of ape polymorphism data

Analyses of genetic polymorphism data from apes can help to
characterize the geographic distribution of variation (e.g., Bec-
quet et al. 2007), shed light on their demographic history, and
place the evolutionary history of humans in context (Stone and
Verrelli 2006). Here, we considered the largest set of polymor-
phism data to date for all three species of nonhuman great apes,
and estimated parameters of a simple isolation-migration model.
Using a goodness-of-fit test, we find that this model provides a
reasonable point of departure for analyzing ape data, other than
for Eastern and Central common chimpanzees.

The use of the model suggests that the effective populations
sizes of the ape populations range from 8000–33,000, on the
same order as estimates for human populations (10,000–15,000;
Frisse et al. 2001; Voight et al. 2005). In contrast, the subspecies
split times appear to be older than those of human populations
(Cavalli-Sforza and Feldman 2003; Goebel 2007), ranging from
92–440 Kya.

We find no evidence for gene flow since the split for chim-
panzee species (with the possible exception of Eastern chimpan-
zees and bonobo), consistent with the results of Won and Hey
(2005), but do detect limited migration (M̂ � 1) for all ape sub-
species. The split time estimate for chimpanzee species is 790–
920 Kya, suggesting that speciation occurred after the formation
of the River Congo, 1.5–3.5 Mya. These estimates do not take into
account possible error in the mutation rate per year. But even if
we consider a time to the most recent common ancestor between
human and chimpanzee at the upper limit of what has been
estimated so far, 8 Mya, and a generation time of only 15 yr, the

Table 5. Results for gorilla and orangutan subspecies

Analysis Loci n1 n2 N1 N2 NA T* Ma

Western � Eastern gorillas 15 30 6 (2)
Mode 9,130 8,140 26,400 91,500 0.867
2.5th percentile 5,090 3,570 5,990 84,300 0.282
97.5th percentile 14,100 18,100 49,100 1,440,000 2.059

Sumatran � Bornean orangutans 19 12 20 (18)
Mode 17,200 10,200 86,900 1,390,000 0.868
2.5th percentile 10,200 6,230 52,400 254,000 0.361
97.5th percentile 26,600 15,000 143,000 1,900,000 2.235

aFor details, see legend of Table 3.
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central 95th percentile for the split time is 1–2.3 Mya. More-
over, the recent finding of a chimpanzee fossil in Kenya indicates
that common chimpanzees may have occupied a much wider
range than inferred on the basis of their current distribu-
tion (McBrearty and Jablonski 2005). Thus, existing data support a
more recent speciation time for common chimpanzees and bono-
bos, which may have occurred outside of their current habitats.

More generally, this application illustrates how the increas-
ing availability of multilocus polymorphism data sets, together
with development of novel statistical approaches, can yield in-
sights into speciation, both in apes and in other organisms.

Methods

Model
We consider a neutral model in which an ancestral population
suddenly splits into two populations, which either diverge in
isolation or continue to exchange migrants (Fig. 1). We further
assume that n1 and n2 chromosomes have been sampled from
two populations and fully resequenced at Y randomly chosen,
independently-evolving loci.

The population model, often called “isolation-migration”, is
described by the population split time in generations, T, and
three population mutation rates, �1 = 4N1µ, �2 = 4N2µ, and
�A = 4NAµ (Fig. 1). Throughout, the subscripts 1, 2, and A refer to
parameters that describe populations 1 and 2 and the ancestral
population, respectively. Following IM, we assume that there is
an independent estimate of the average mutation rate across loci,
µ, which can be used to estimate the effective population sizes
from the population mutation rates (e.g., as N1 = �1/4µ). In ad-
dition, there is a symmetric migration rate, m, which corresponds
to the fraction of a population that is replaced by migrants from
the other population each generation.

The parameters �1, �2, and �A are defined per base pair and
are chosen from uniform distributions; the time in generations,
T, is also chosen from a uniform distribution. The prior for the
migration rate is on the expected number of individuals in popu-
lation 1 replaced by migrants (backward in time), M = 4N1m,
where N1 is obtained from �1 by dividing by 4µ̂ (µ̂ is the estimate
of µ). Specifically, ln(M) is chosen from a uniform distribution.

In addition to the five demographic parameters, there are a
number of locus-specific parameters. We assume that each locus
follows the infinite sites mutation model (Kimura 1969), then
define an inheritance scalar, u, which, for example, is equal to 1
for autosomal, 3⁄4 for X-linked, and ¼ for Y-linked and mtDNA-
linked loci. To allow for mutation rate variation among loci with
the same mode of inheritance, we introduce an additional scalar,
v, for each locus. Given this parameterization, the locus-specific
mutation rate in population 1 is given by uvZ�1, where Z is the
length of the locus in base pairs; the locus-specific population
mutation rates for other populations are defined analogously.

The population recombination rate per base pair is defined
as � = 4N1c, where c is the per base pair per generation recombi-
nation rate. We ignore gene conversion, treating all recombina-
tion as crossovers alone. We also define an inheritance scalar for
recombination, w (w = 0 for the mtDNA and Y, 2/3 for X, and 1
for autosomes). We then consider three options to specify the
locus-specific population recombination rate. We either fix �

across loci, such that the population recombination rate at a
locus is wZ�. Alternatively, if an estimate, �̂, of the population
recombination rate is available for each locus, we set the scalar w
to the inheritance scalar for recombination multiplied by �̂ to
incorporate this knowledge in the estimation. The final option is

to allow rates to vary for each locus, in which case the locus-
specific population recombination rate is r � wZ�1, and we draw
the ratio r = �/�1 from an exponential distribution with mean �

for each locus. Thus, we allow for rate variation among loci but
assume a constant rate within a locus. This model should be a sen-
sible description of the rate variation if the loci are short (e.g., 1
kb), as in most data sets collected to date. The set of locus-specific
population recombination rates, (�1, � � � , �Y), is referred to as P.

Data summaries
Our goal is to estimate the parameters of the isolation-migration
model illustrated in Figure 1. We do so by estimating the
posterior distr ibution � (� | D ) � p (D | � )p (� ) , where
� = (�1,�2,�A,T,M,P), D is the data, and p(�) denotes the prior
distribution. Unfortunately, when D is the entire polymorphism
data set under our model, estimating the likelihood of the data
given the parameters, p(D|�), is computationally extremely in-
tensive and becomes prohibitive when recombination is in-
cluded (Nielsen and Wakeley 2001; Hey and Nielsen 2004). In
their program IM, Hey and Nielsen (2004) address this problem
by considering the full data set and using a MCMC approach but
restricting themselves to a model with no intralocus recombina-
tion (i.e., P = 0). Instead, we focus on a model with intralocus
recombination but summarize the polymorphism data from each
locus with the summary statistics described below. To do so, we
initially explored an importance sampling approach, which pro-
vided reliable estimates but was inefficient. We then imple-
mented an MCMC algorithm, which is more efficient than our
initial algorithm when the prior and posterior distributions differ
substantially.

To summarize the data, we use the statistics introduced by
Wakeley and Hey (1997) for this type of inference problem: For
each locus, we consider the number of polymorphisms unique to
the samples from populations 1 and 2 (S1 and S2, respectively),
the number of shared alleles between the two samples (S3), and
the number of fixed alleles in either sample (S4). Previous work
has shown that these statistics contain considerable information
about the demographic parameters of the isolation-migration
model (e.g., Clark 1997; Wakeley and Hey 1997; Hudson and
Coyne 2002; Leman et al. 2005). In what follows, we refer to the
vector of summaries, Sk, k ∈ [1,4], for locus y as Dy. In turn, we
refer to the set of statistics for the Y loci as D = (D1, � � � , DY).

In calculating these statistics, we assume that an outgroup
sequence is available and can be used to determine which allele
is derived without error. We note that, in practice, it may be
advisable to use two outgroup sequences to minimize error in
inferring the ancestral state. We assign each polymorphic site to
one of the statistics depending of the frequency of the derived
allele in the population i, fi. Specifically, if 0 < fi � 1 in each
population sample, the allele is shared, if fi = 0, fj = 1, i 	 j, the
allele is fixed in the sample j, and if fi = 0 and fj < 1, i 	 j, the
allele is specific to sample j. The statistics are easy to calculate and
do not require determination of haplotypes.

Estimation method
Our goal is to sample from the posterior distribution,�(�|D)
� p (D|�)p(�), which is the likelihood of the data summaries
given the parameters times the prior distributions of the param-
eters. The parameters are initially chosen from these prior distri-
butions and subsequently updated using MCMC, which requires
information about the likelihood of the data given the param-
eters. Very briefly, our strategy is to estimate the likelihood of the
data summaries at all the loci for a chosen set of parameters by,
for each of the Y loci, (1) generating a set of X ancestral recom-
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bination graphs (ARGs) (Hudson 1983) given the parameters and
(2) calculating the probability of the data summaries given the
set of ARGs. Specifically, we estimate the likelihood p(D|�) as

�
y=1

Y 1
X �

x=1

X

p�Dy|Gyx,��p�Gyx|��, (1)

where Gyx is the xth ARG at locus y (Hudson 1983). In other
words, we estimate p(D|�) by taking the average of p(Dy|Gyx,�)
over X ARGs, then taking the product over loci (since they are
assumed to be independent). The term p(Gyx|�) is given by the
coalescent, using a modified version of the program ms (Hudson
2002).

We can readily calculate p(Dy|Gyx,�). Given a coalescent
genealogy, Gyx, we compute the sum of the lengths of all the
branches (in coalescent units), which would lead to unique poly-
morphisms in sample 1 and 2 (L1 and L2, respectively), alleles
shared by both samples (L3), and alleles fixed in either samples
(L4). Given the infinite site mutation model, the numbers of
mutations, Sk, randomly placed along the branches of type
k ∈ [1,4], is Poisson distributed with mean LkuvZ�1. Conditional
on a genealogy, the probabilities of observing S1, S2, etc. . . are
independent, so the probability of the data Dy for the locus y is
given by

p�Dy|Gyx,�� = �
k = 1

4

Po�Sk|LkuvZ�1�. (2)

Equation 2 also applies to a recombining locus, but in this
case, Gyx is an ARG and Lk is computed as follows: With recom-
bination, a locus of size Z has R segments of length Zj, j ∈ [1, R],
with different genealogical histories. The genealogy of a segment
has branch length Ljk, such that Lk = ∑R

j=1LjkZj/Z for the ARG.
Our prior distributions for the parameters, p(�), are uniform

over a bounded support (except for P and a uniform prior on
ln(M)). For the MCMC, we use random walk Metropolis transi-
tion kernels to propose parameter values, so that the proposed
value of a parameter is taken from a normal distribution with
mean its previous value and variance defined to maximize the
acceptance rate (after exploratory simulations) (Gilks et al. 1996).
If a parameter value lies outside the support of the prior, the
proposed set of parameters is rejected. In turn, P is a nuisance
parameter and its values are either fixed (when � is fixed), or
drawn from the distribution described above (see Model); in the
MCMC, the values of P are sampled independently at each step
from the prior.

Our approach follows a number of Bayesian methods based
on summaries of the data, developed in other contexts (e.g., Ta-
varé et al. 1997; Pritchard et al. 1999; Beaumont et al. 2002;
Przeworski 2003). It differs in that we update the parameters us-
ing MCMC rather than sampling them independently from the
prior. This general approach was described by Beaumont (2003).
As pointed out to us by Matthew Stephens (pers. comm.), our
approach can also be viewed as a MCMC on the set of all gene-
alogies, G = (G11,...,G1X,...,GY1,...,GYX), and the parameters. In
this case, the X ARGs are independent samples from the coales-
cent prior across the Y independent loci. Thus, for the MCMC,
the set of ARGs is updated using the transition kernel
q(G → G�) = p(G�| �), while the parameters of interest are up-
dated using Metropolis transition kernels. We sample sets (G, �)
from the following target distribution:

��G, ����
y=1

Y �1
X �

x=1

X

p�Dy|Gyx,��� p���p�G|��. (3)

The marginal distribution of sampled values of � from the
target distribution is �(
|D) (as shown in the Supplemental Ma-
terials; see also Beaumont 2003: appendix). A nice feature of
viewing our approach in this way is that it demonstrates that the
stationary distribution of the Markov chain is the correct distri-
bution, i.e., that we are exploring the true posterior distribution
rather than an approximation.

MIMAR—MCMC estimation of the isolation-migration model
allowing for recombination
To sample from the target distribution �(G, �), we use an MCMC
approach (MIMAR). In the initial step, � is chosen from the
prior, p(�), and G is sampled from the coalescent with those
parameters. Subsequent sets (G, �) are updated following a Me-
tropolis-Hastings algorithm (Metropolis et al. 1953; Hastings
1970). More specifically, we proceed as follows:

I1. If now at (G, �), propose a move to (G�, ��) according to the
transition kernels q(� → ��) and q(G → G�) (i.e., Generate X
ARGs given the parameters �� for each of the Y loci).

I2. For the yth locus:
a. Calculate p(Dy|G�yx, ��) for each of the X ARGs using

Equation 2.
b. If the average of p(Dy|G�yx, ��) over the X ARGs is 0,

record (G, �) and go to I1; else go to I2a for the locus
y + 1.

I3. Calculate

h = min �1,
A�

A � , (4)

where

A� = �
y=1

Y �1
X �

x=1

X

p�D|G�yx,����p����p�G�|���q��� → ��q�G� → G�

A = �
y=1

Y �1
X �

x=1

X

p�D|Gyx,����p���p�G|��q�� → ���q�G → G��

I4. Move to (G�, ��) with probability h [i.e., record (G�, ��)] or
else record (G, �). Return to I1.

The choice of proposal distribution for G and P and normal
kernel distributions and uniform prior distributions for the pa-
rameters of interest lead to the following simplification of Equa-
tion 4:

h = min�1,
�
y=1

Y �1
X �

x=1

X

p�D|G�yx,����
�
y = 1

Y �1
X �

x=1

X

p�D|Gyx,��� � (5)

In practice, we consider X = 100 (or X = 50 or 5, see below),
thus generating 100 (50 or 5) ARGs given the locus-specific pa-
rameters. Generating so many ARGs is computationally demand-
ing, but we find that this approach has improved mixing over
X = 1.

We note that our approach presents the advantage of being
flexible, since it can easily be extended to consider any summa-
ries for which p(Dy|Gyx, �) can be readily calculated, such as the
allele frequency spectrum at each locus.

MIMAR and its documentation are available at http://
mplab.bsd.uchicago.edu/dataNprograms.htm.
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Assessing the performance of the estimator
To assess the performance of our method, we ran MIMAR on
simulated data sets with two independent seeds (see below). We
considered that MIMAR reached convergence when the posterior
distributions from the two independent runs were highly similar
(e.g., Supplemental Fig. S3). In the documentation provided with
MIMAR, we describe a number of other criteria that can be used
to assess convergence and proper mixing. We took the mode and
the central 95th percentile of the marginal posterior distribu-
tion averaged over the two independent runs as the point esti-
mate and measure of uncertainty, respectively.

Simulated data and performance analyses
We generated simulated data sets under the isolation-migration
model using a modified version of the program ms (Hudson
2002). Unless otherwise indicated, we considered 20 loci of 1 kb
each, and sampled 20 chromosomes from each of two popula-
tions.

Performance of MIMAR under allopatry
We generated 30 simulated data sets with no recombination and
fixed parameter values relevant for Drosophila yakuba and D. san-
tomea (Llopart et al. 2005), assuming a per base pair per genera-
tion mutation rate of µ = 2 � 10�9 and 20 generations per year
(Andolfatto and Przeworski 2000). We analyzed the 30 simulated
data sets for 60 h with 1 � 105 burnin steps and prior distribu-
tions as indicated (see Supplemental Fig. S1).

Comparison to IM under allopatry
In order to compare our estimates with those generated by IM
(Hey and Nielsen 2004), which does not allow for intralocus re-
combination, we set the population recombination rate, �, to 0.
To be comparable to IM, we also chose uniform prior distribu-
tions with 0 as the lower limit. We generated 30 simulated data
sets with parameters relevant for Drosophila species as above, set-
ting M to 0 and drawing the other parameters from prior distri-
butions: �1 and �2 from U (0, 0.01) and �A from U (0, 0.02) per
base pair and T from U(0, 1.5 � 107) generations. We analyzed
those 30 simulated data sets with MIMAR and IM using the same
prior distributions as used when simulating the data sets, 4 � 106

recorded steps and 5 � 105 burnin steps.

Assessing the evidence for gene flow
We generated 40 data sets, consisting of 40 recombining loci
with parameter values relevant for apes (see below). We assumed
that µ = 2 � 10�8 per base pair per generation to translate coa-
lescent time units into generations (Nachman and Crowell
2000). This mutation rate estimate is also obtained assuming a
most recent common ancestor of human and chimpanzee of 7
Mya and an average nucleotide divergence of 1.28% (The Chim-
panzee Sequencing and Analysis Consortium 2005). The intralo-
cus recombination rate was set for each locus by choosing r = c/µ
from the prior exp(1/0.6) (assuming that the mean c is 1.2 �

10�8) (Kong et al. 2002). The other parameter values were
sampled from the following prior distributions: �1, �2, and �A

from U (0.0006, 0.006) per base pair and T from U(0, 1 � 105)
generations. M was either fixed to 0 (for 20 data sets simulated
under the allopatric model) or to 1 (for 20 data sets simulated
with parapatric divergence). We analyzed the 40 simulated data
sets with MIMAR, choosing ln(M) from U (–5, 2) and the other
parameters from the same prior distributions as used when simu-
lating the data sets, the number of ARGs per locus set to X = 50,
4 � 106 recorded steps, and 5 � 105 burnin steps.

Effect of uncertainty in the intralocus recombination rates
We generated 16 simulated data sets, consisting of 10 recombin-
ing loci with parameter values relevant for Drosophila species.
The intralocus recombination rate was set for each locus by
choosing r = c/µ from the prior exp(1/10) (assuming that the
mean c is 2 � 10�8; Andolfatto and Przeworski 2000). M was
fixed to 0 and the other parameter values were sampled from the
following prior distributions: �1, �2, and �A from U (0.001, 0.01)
per base pair and T from U(0, 1 � 106) generation. We then
analyzed the data sets with MIMAR in three ways: (1) the locus-
specific population recombination rates were fixed to their true
values, (2) the locus-specific population recombination rates
were sampled from the same prior as used when generating the
simulated data, and (3) the locus-specific population recombina-
tion rates were set to 0. For the three sets of analysis, we fixed �1,
�2, and �A to their true values and used the same prior distribu-
tion for T as when generating the simulated data. MIMAR was
run with X = 5 (cases 1 and 2) or X = 100 (case 3), 4.5 � 105

recorded steps, and 5 � 104 burnin steps.

Analysis of ape polymorphism data

Polymorphism data
We analyzed the ape polymorphism data reported in Fischer et
al. (2006), Thalmann et al. (2006), and Yu et al. (2003). The first
set was kindly provided by A. Fischer (Max Planck Institute for
Evolutionary Anthropology, Leipzig, Germany); we downloaded
the two other data sets from GenBank (http://www.ncbi.nlm.
nih.gov/entrez/query.fcgi?CMD=search&DB=Nucleotide). The
data from Fischer et al. (2006) (and Thalmann et al. 2006) and
Yu et al. (2003), consisted of loci of median length ∼780 bp and
∼470 bp, respectively. The data sets were as follows (see Tables
3–5): 69 loci surveyed in nine unrelated bonobos (pigmy chim-
panzee, P. paniscus), 26 loci in 10 and 43 loci in six Western
chimpanzees (P. t. verus), 26 loci in 10 and 42 in five Central
chimpanzees (P. t. troglodytes), 26 loci in 10 Eastern chimpanzees
(P. t. schweinfurthii), 15 loci in 15 Western gorillas (G. gorilla) and
three Eastern gorillas (G. beringei), and 19 loci in six Sumatran or-
angutans (P. p. abelii) and 10 Bornean orangutans (P. p. pygmaeus).

For each locus, we obtained two outgroup sequences. For
the chimpanzee data sets, one orangutan sequence and one hu-
man sequence were available for 26 and 19 loci, respectively
(Fischer et al. 2006); one human sequence (Yu et al. 2002) and
one gorilla sequence (G. g. gorilla; Yu et al. 2004) were obtained
for 43 loci. We blasted the seven remaining loci and downloaded
a homologous human sequence for each of them (BLASTN,
http://www.ncbi.nlm.nih.gov/BLAST) (Altschul et al. 1990). For
the gorilla data set, one orangutan sequence and one human
sequence were available for all loci; for the orangutan data set,
one chimpanzee sequence and one human sequence
were available for all loci (Fischer et al. 2006). We used CLUSTALW
in MEGA3.1 (Thompson et al. 1994; Kumar et al. 2001) to align
the resequencing data and the two outgroup sequences. We then
wrote a Perl script that requires both outgroup sequences to be
consistent to infer the ancestral state at each site, thus minimiz-
ing error in the reconstruction of the ancestral state. We ignored
sites with gaps, missing data, and more than two variants. (There
were only one site with three alleles in the entire gorilla data set,
three in the orangutan data, and six in the chimpanzee/bonobo
data.) We used a Perl script to calculate for each locus the four
statistics S1, S2, S3, and S4 (see above) and FST (Hudson et al. 1992)
for pairs of populations, as well as the mean pairwise differences,
� (Nei and Li 1979) and Tajima’s D (Tajima 1989) in each popu-
lation.
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Estimates of mutation rate variation
To allow for variation in mutation rates, we used the scalars v
described above. To do so, we calculated the mean pairwise di-
vergence per site between a human sequence and an ape se-
quence (div), using a Perl script. We obtained the expected locus
divergence given the number of base pairs, E(div) � Z, where
E(div) is the mean divergence per base pair over the loci, and
performed a goodness-of-fit test using Pearson’s �2 (Frisse et al.
2001). The gorilla and orangutan data did not deviate signifi-
cantly from expectation (P-value = 0.24 and 0.85, respectively);
therefore, we set v = 1 for all loci in the analysis of these two data
sets. However, data from the three common chimpanzee popu-
lations and the bonobo rejected the null hypothesis of a homo-
geneous mutation rate across loci (at the 5% level). Thus, for a
pair of chimpanzee populations or species, we set v at a locus to
the observed divergences per base pair divided by E(div).

Recombination rates
Won and Hey (2005) found evidence of recombination in bono-
bos, Central and Western chimpanzees in 10 of the 43 short
segments surveyed by Yu et al. (2003) used in this study. We
estimated the locus-specific recombination rate in the data sets
using MAXDIP (http://genapps.uchicago.edu/maxdip/
index.html; Hudson 2001), setting 0.005 as the initial value and
the gene conversion rate to 0. From each species, we chose the
subspecies with the largest estimate of the mean recombination
rate across loci, which were Central chimpanzees, Western goril-
las, and Sumatran orangutans. Then, to assess whether the point
estimates were significantly greater than 0, we simulated 1000
data sets using ms (Hudson 2002), setting the number of segre-
gating sites to what was observed and � to 0. We ran MAXDIP on
the simulated data sets and calculated how many times �̂ (i.e.,
estimated by MAXDIP) was equal or larger than observed under
the standard neutral model. By this approach, we rejected �̂ = 0
for four out of 35 loci in Central chimpanzees, one out of seven
loci in Western gorillas, and three out of 15 loci in Sumatran
orangutans (at the 5% level). Given the small sample sizes, our
power to detect recombination was limited. Nonetheless, our re-
sults suggest that ignoring recombination will result in a loss of
data—even in species in which �/� is relatively small. In the
analyses of the ape data, we chose r = �/�1 for each locus from
exp(1/0.6) (see above). We chose this distribution because it has
been shown to be a good description of fine-scale recombination
rate variation in humans and may also apply to a number of
other organisms, notably to other apes (Coop and Przeworski
2007).

Analyses
We ran MIMAR for 2 � 107 recording steps with 1 � 106 burnin
steps, X = 50, recording the parameters every 50 steps and using
prior distributions chosen after preliminary analyses. We re-
peated our analyses for two independent seeds and considered
that convergence was reached when the posterior distributions of
both runs were very similar (data not shown). Results reported
are for the average from the two independent runs. We obtained
estimates of the effective population sizes and split times in years
for all the ape species and subpopulations using µ = 2 � 10�8 per
base pair per generation and assuming 20 yr per generation for
chimpanzees and orangutans (Gage 1998; Fischer et al. 2004) and
15 yr per generation for gorillas (Thalmann et al. 2006).

Goodness-of-fit test
We investigated how well the data fit the estimated model by
generating the posterior predictive distributions of the four sta-

tistics S1, S2, S3, and S4 summed over all loci, the mean FST (Hud-
son et al. 1992), and, in each population, the mean pairwise
differences, � (Nei and Li 1979) and the mean Tajima’s D (Tajima
1989) across loci. To do so, we simulated data sets under the
isolation-migration model, sampling the parameters from the
posterior distribution estimated by MIMAR. We then compared
the observed values of the statistics to the simulated distribution
(see Supplemental Fig. S6), conservatively considering the model
to be a poor fit if the observed value of a data summary fell in the
2.5th percentile tails of any statistic. We note that, since this
goodness-of-fit test takes into account the uncertainties associ-
ated with the estimates, it is similar to the Bayesian posterior
predictive P-value (e.g., Meng 1994).
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