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Abstract
A major attraction of voxel-based morphometry (VBM) is that it allows researchers to explore large
datasets with minimal human intervention. However, the validity and sensitivity of the Statistical
Parametric Mapping (SPM2) approach to VBM is the subject of considerable debate. We visually
inspected the SPM2 gray matter segmentations for 101 research participants and found a gross
inclusion of non-brain tissue surrounding the entire brain as gray matter in five subjects, and focal
areas bordering the brain in which non-brain tissue was classified as gray matter in many other
subjects. We also found many areas in which the cortical grey matter was incorrectly excluded from
the segmentation of the brain. The major source of these errors was the misregistration of individual
brain images with the reference T1-weighted brain template. These errors could be eliminated if
SPM2 operated on images from which non-brain tissues (scalp, skull, and meninges) are removed
(brain-extracted images). We developed a modified SPM2 processing pipeline that used brain-
extracted images as inputs to test this hypothesis. We describe the modifications to the SPM2 pipeline
that allow analysis of brain-extracted inputs. Using brain-extracted inputs eliminated the non-brain
matter inclusions and the cortical gray matter exclusions noted above, reducing the residual mean
square errors (RMSEs, the error term of the SPM2 statistical analyses) by over thirty percent. We
show how this reduction in the RMSEs profoundly affects power analyses. SPM2 analyses of brain-
extracted images may require sample sizes only half as great as analyses of non-brain extracted
images.
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Introduction
Voxel-based morphometry (VBM) using Statistical Parametric Mapping (SPM2) is a fully
automated approach to the statistical assessment of differences (usually atrophic) between
groups of subjects in their magnetic resonance images (MRI) of the brain. SPM2 uses T1-
weighted brain images that include the non-brain tissues of scalp, skull, and meninges as input.
The goal of VBM is to separate relevant differences in brain tissue from normal anatomic
variation, artifact, and noise (Ashburner and Friston, 2000;Good et al., 2001;Wright et al.,
1995).
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The power of SPM2 lies in its assumption that model error terms are normally distributed and
that the set of residuals is spatially distributed as a Gaussian field. This enables hypothesis
testing on individual voxels with correction for multiple comparisons (Salmond et al., 2002).
The important advantages over whole brain or region-of-interest structural image analysis
methods are 1) the ability to localize structural differences with weak, or no, a priori
assumptions, 2) the computation of confidence intervals on results, and 3) the incorporation of
an automated tissue classification algorithm.

A major attraction of VBM is that it allows researchers to explore large datasets with minimal
human intervention; however, its validity and sensitivity are the subject of considerable debate.
Although its source code is openly available, the source code is highly complex and requires
a large investment of time to understand, examine, and modify its component parts. This has
slowed progress in assessing SPM2’s validity and sensitivity. Many investigators use SPM2
as a ‘black box’, influencing its output by the choice of input images and system options,
followed by a non-quantitative visual inspection of its results. Some assert that competent
identification of errors by visual inspection is a hopeful assumption at best, given the ad hoc
nature of these visual approaches (Bookstein, 2001;Crum et al., 2003).

Practical testing of the performance of SPM2 under various conditions has proven to be a
daunting task. Wilke et al. (2003) screened numerous variations in SPM2 system options for
the ability to detect malformations of cortical development in epilepsy patients (using
neuroradiological readings of cortical dysplasias as the gold standard), and found that the
specific choice of preprocessing settings (smoothing, modulation, normalization) resulted in a
variety of detection sensitivities. Mehta et al. (2003) evaluated the ability of SPM2 to detect
focal lesions compared to expert classification and found that SPM2 was unable to reliably
identify lesions “due to the adverse influence of lesions on preprocessing steps, and to
insufficient statistical power”. Tisserand et al. (2002) evaluated SPM2 using manual
identification and voluming of pre-defined regions as the gold standard and concluded that
although voxel-based methods can provide a reasonable estimate of regional brain volume,
they cannot serve as a substitute for manual volumetry. In contrast, Testa et al. (2004) reported
that SPM2 detected more instances of hippocampal atrophy in Alzheimer’s disease than a
comparison region-of-interest based method. In summary, these studies found that for some
research questions SPM2 may have greater sensitivity than region-of-interest methods, while
for other questions it may have reduced sensitivity; however, none of these reports suggested
that SPM2 produces false results.

From a theoretical perspective, Bookstein argued that registration and normalization errors in
the neighborhood of tissue boundaries can profoundly affect the outcome of statistical analyses
(Bookstein, 2001). Ashburner and Friston (2001) agreed that such errors likely arise in VBM,
but maintain that these errors should not be associated with group membership (bias), but
should only add to error (increasing noise, and therefore decreasing sensitivity). Recently, a
number of updated and optimized methods have been introduced to minimize registration and
normalization errors (often due to ventricle size and segmentation failures around the border
of the brain) by allowing use of custom templates (Davis et al., 2004;Good et al., 2001).

In our use of SPM2 for VBM, we found that a major source of error was the misregistration
of each individual’s brain image to the reference T1-weighted brain template. We hypothesized
that these errors would be diminished if SPM2 operated on images from which non-brain tissue
(scalp, skull, and meninges) was removed (brain-extracted images). We developed a modified
SPM2 processing pipeline that used brain-extracted images as inputs to test this hypothesis.

In this manuscript, we describe the modifications to the SPM2 pipeline that allow analysis of
brain-extracted inputs. We also evaluate the effects (both qualitatively and quantitatively) of
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these changes through: 1) a qualitative visual inspection of each subject’s gray matter
segmentation, and 2) a quantitative analysis of residual mean square errors, which are the error
terms of the SPM2 General Linear Model statistical analyses (therefore directly associated with
SPM2’s sensitivity).

Methods
Subjects

This study examines recent MRI data in abstinent alcoholics and controls. Each MRI was read
by a neuroradiologist. Scans were excluded for abnormalities other than white matter signal
hyperintensities. The images were normal observations that did not violate the SPM2
assumptions (e.g., imaging artifact). The institutional review board approved all procedures,
and written consent was obtained from all individuals prior to study.

Image Acquisition
All studies were performed on a 1.5T GE Signa Infinity with the LX platform (GE Medical
Systems, Waukesha, WI) located at the Pacific Campus of the California Pacific Medical
Center. The imaging protocol included a transaxial T1-weighted Spoiled Gradient image (TR/
TE/NEX = 35/5/1; 0.859 × 0.859 mm2 in-plane resolution; contiguous 1.3 mm thick slices).

Optimized VBM Analysis
Optimized VBM was implemented in the framework of SPM2 (Good et al., 2001), testing for
gray matter differences between groups and included age, years of education, and cranium size
as covariates. The difference in tissue volumes associated with the normal variation in cranium
size was removed using the inverse of the FSL v-scaling parameter (Smith et al., 2002), which
we have shown previously is an excellent surrogate variable for the size of the intracranial
vault (Fein et al., 2004). The analysis included all voxels in the brain that segmented as more
than 15% gray matter.

Examination of VBM Performance
We visually inspected the SPM2 gray matter segmentations (prior to scaling and smoothing)
for all 101 research participants (see Figure 1). A gross inclusion of non-brain tissue
surrounding the entire brain as gray matter was apparent in five subjects (gross non-brain matter
inclusions – gross NBMIs). In addition, for many other individuals, there were focal areas
bordering the brain in which non-brain tissue was classified as gray matter (subtle NBMIs).
Figure 2 shows the sagittal T1-weighted image and the gray matter segmentation for three
participants, illustrating gross NBMIs, subtle NBMIs and zero NBMIs. The relatively high
amount of scalp fat (bright signal) around the boundary of the brain in the T1 images of the
five individuals with gross NBMIs was striking. Based on this observation, we hypothesized
that the body mass index (BMI) was elevated in individuals with gross NBMIs. Table 1 presents
the BMI and other demographics for the five individuals with gross NBMIs.

We performed a Monte-Carlo simulation to evaluate the hypothesis of elevated BMIs in
individuals with gross NBMIs. We constructed 10,000 random combinations of 3 females and
2 males from the 100 participants for whom we had BMI values (the five segmentation failures
occurred in 3 females and 2 males). The sum of the BMIs for the five participants with gross
NBMIs was greater than the sum of 9366 of the 10,000 quintuples, yielding a probability of <
0.064 that the gross NBMIs were unrelated to a participant’s BMI.

Since identification of non-brain tissue as gray matter appeared to be the primary error in the
segmentations, we hypothesized that misalignment of individuals’ brains with the brain in the
MNI152 template was the culprit. Figures 3a, 3b, and 3c illustrate: 1) gross misalignment of
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the MNI152 template brain with the participant’s brain for a gross NBMI individual, 2) focal
misalignments of the template brain for a subtle NBMI subject, and 3) the correct alignment
of the template brain in a zero NBMI subject. Figure 3 illustrates that misalignment also can
result in exclusion of cortical gray matter (see the subtle NBMI subject), not just in inclusion
of non-brain tissue.

We tested the hypothesis that the presence of non-brain tissue in the input images and MNI
template causes brain misalignment by modifying the SPM2 processing pipeline to use brain-
extracted images and a brain-extracted MNI152 T1-weighted reference template. Non-brain
tissue was removed from each subject’s MRI using FSL’s Brain Extraction Tool (Smith,
2002) (with default settings) followed by manual removal of any additional non-brain tissue
missed by BET using an in-house custom written plugin to Image J (Rasband, 2002). We also
used the brain-extracted MNI152 template provided by FSL (rather than the MNI152 template
that is provided by SPM2, which includes the non-brain tissues of scalp, skull, and meninges).
The FSL template was smoothed using a 12 mm FWHM Gaussian kernel to match the
smoothing of the SPM2 template before inserting it into the SPM2 pipeline. Figures 4a, 4b,
and 4c show that the outer boundaries of the SPM2 segmentations align with the outer boundary
of the brain when SPM2 uses brain-extracted inputs for the subjects in Figures 3a–c. Figure 5
presents, for all 101 participants, the difference image subtracting the SPM2 segmentation
computed with brain-extracted inputs from those computed with non-brain extracted inputs,
displaying only the positive values as white. This figure illustrates the magnitude and
prevalence of the effect of non-brain matter inclusions on the gray matter segmentations. Figure
6 presents the difference images subtracting the SPM2 segmentations computed with non-brain
extracted inputs from those computed with brain-extracted inputs, also only displaying the
positive values as white. This figure illustrates the magnitude and prevalence of the effect of
incorrect exclusion of gray matter on the gray matter segmentations (as displayed in Figure
3b, above). In the analysis of non-brain extracted input images, the incorrect exclusion of gray
matter appears to be as big a problem as are non-brain matter inclusions.

Residual Mean Square Errors (RMSEs)

We denote the theoretical average RMSEs for each SPM2 implementation by σi1
2  and σi2

2 , and

the measured RMSEs by si1
2  and si2

2 . Figures 7 and 8 present the measured RMSEs for SPM2
using brain-extracted inputs versus non-brain extracted inputs. The histograms of the RMSEs
across the approximately 1.5 million observations (one for each voxel) are also presented in
these figures. These figures illustrate dramatically reduced RMSEs result from using brain-
extracted inputs.

The mean RMSEs are s̄1
2 = .2098 and s̄2

2 = .4708, with variances v1 = .0132 and v2 = .0758.
The average RMSE using brain-extracted inputs is less than half the average RMSE using non-
brain extracted inputs, and the variance using brain-extracted inputs is about one sixth the
variance using non-brain extracted images. SPM2 test statistics for main effect and interactions
will have standard deviations proportional to 0.4580 and 0.6861 (√.2098 and √.4708). If brain-
extracted image inputs are used, SPM2 can detect effect sizes that are about one third smaller
than those that can be detected using non-brain extracted inputs (0.4580/0.6861)=0.6675.

Given that the images have about 100 independent observations, and letting n = min (n1, n2)
≈ 100,
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z =
(s̄1

2 − s̄2
2)

v1
n1

+
v2
n2

will have an approximately normal distribution for reasonably large n. In this case, we obtain
z = −5.96 which has a P-value of ≪0.001; a very strong rejection of the hypothesis of equal
average RMSEs. In fact, for any n > 16, the 0.001 critical value for z = −3.09 is dramatically
exceeded. With n ≈ 100, the α will be orders of magnitude smaller than 0.001.

Discussion
SPM2 is an implementation of VBM that uses T1-weighted brain images (that include the
scalp, skull and meninges) as inputs, and incorporates a morphological clean-up step to remove
‘non-brain’ tissue. We found that: 1) SPM2 does a poor job at the removal of non-brain tissue,
2) poor alignment of individual images with the MNI template also results in incorrect
exclusion of cortical gray matter, and 3) that both of these effects negatively impact the
sensitivity of the method to detect experimental effects. Registration of each individual’s MRI
to a template (the MNI152 is the SPM2 default template) is the first step in the SPM2 processing
pipeline. In the work reported above, we show that errors in this initial registration occur in
SPM2 and negatively impact results. Fortunately, a relatively simple modification to the SPM2
pipeline can fix this misregistration problem.

Examining the SPM2 gray matter segmentation results, we observed gross segmentation errors
in a number of subjects. These errors occurred primarily at the outer boundaries of the brain,
where non-brain was included in the segmentation of the brain and cortical gray matter was
incorrectly excluded from the segmentation of the brain. SPM2’s morphological clean-up
function inadequately addressed these problems. Our solution to this problem was to modify
SPM2 to process brain-extracted MRIs, and to register those images to a brain-extracted
template. This solution is conceptually very simple, but does involve significant work. There
was nothing special (abnormal or ‘below par’) about our subjects’ MRIs. The MRIs were
clinically normal, except for the presence of white matter signal hyperintensities. However,
sample characteristics may magnify the SPM2 registration errors described above. We noted
that MRIs with failed segmentations tended to have an abundance of high signal scalp fat. We
also found a strong statistical trend for those individuals to have a higher BMI than our other
research participants. It may be that any condition or disease that affects the fat signal from
the scalp (obesity, anorexia, etc.) may impact the sensitivity SPM2 results.

Senjem et al (2005) recently compared a number of different methodological implementations
of SPM2 in the analysis of morphological changes in Alzheimer’s disease. One of the methods
he presented did include removal of non-brain tissue from the image inputs (brain extraction).
However, their publication is not directly comparable to this manuscript. While Senjem helped
identify important questions about the SPM2 approach to VBM, they did not: 1) assess
sensitivity or validity in a quantitative manner 2) incorporate brain extraction prior to
registration and alignment, 3) examine segmentation results for individual subjects.

The increased sensitivity that derives from the analysis of brain-extracted images has dramatic
effects on experimental power. For example, if one wanted to replicate a finding of a mean
difference of d=0.8 from a non-brain extracted analysis, this would translate into an effect size
of d=1.19 for the analysis of brain-extracted images. Power of 0.80 for such a replication study
would require samples of 26 subjects per group for non-brain extracted images (d=0.8) and
about 12 subjects per group for brain-extracted images (d=1.19). Conversely, an effect size of
d=0.8 from a study with brain-extracted images (requiring the same 26 subjects per group)
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would translate to an effect size of d=0.54 for non-brain extracted images (now requiring 54
subjects per group for power of 0.80). Thus, our best estimate is that sample sizes half as large
are required to detect the same size effects for brain-extracted vs. non-brain extracted inputs.

In sum, complete initial removal of all non-brain tissue from brain MRIs results in more
sensitive analyses of brain morphology using SPM2. We note that we have not even begun to
address the controversy in the literature regarding SPM2 that deals with its use of prior
probability templates in its Bayesian approach to tissue segmentation. First, the prior
probability template must be appropriate for the population from which research subjects are
drawn. For example, it may not be appropriate to use MNI152 tissue probability templates for
samples outside of the age range from which the MNI152 sample was drawn. Second, the prior
probability template used may better match tissue probabilities in one research group than
another. This is likely to be the case in comparing an Alzheimer Disease sample to age
comparable normal controls. The AD sample is likely to have much larger ventricles and
cortical atrophy. No single template would be equally appropriate for both groups; however,
each group’s MRIs must be processed identically to avoid the introduction of method induced
bias. One might consider replacing the Bayesian segmentation in SPM2 with a segmentation
approach that does not require a prior probability template. In the manuscript presented above
we provide a framework for the examination of these problems and their potential solutions.
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Figure 1.
Midaxial slice of the gray matter SPM2 segmentation for each of the 101 research subjects.
Subjects in row 3, column 2; row 4, column 1 and 3; row 9, column 6; and row 10, column 1
stand out as having poor segmentations.
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Figure 2.
Midsagittal slice of 3 subjects illustrating various degrees of segmentation errors (gross errors
– left, subtle errors – middle, good segmentation – right).

Fein et al. Page 9

Neuroimage. Author manuscript; available in PMC 2007 September 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fein et al. Page 10

Neuroimage. Author manuscript; available in PMC 2007 September 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fein et al. Page 11

Neuroimage. Author manuscript; available in PMC 2007 September 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Triplanar view of the outer boundary of the GM segmentation (outlined in white) using the
non-brain-extracted T1s as input for the subjects presented in Figure 2. The GM segmentation
for (a) is outside the border of the brain and in many cases within the skull. The segmentation
in (b) has less (but some) non-brain tissue included in the outline of the GM segmentation.
However, this example shows another problem that is not obvious without examining these
boundaries – that there are brain regions excluded from the GM segmentation (visible in the
sagittal and coronal views in the anterior right). (c) the GM segmentation is well aligned with
the brain boundary, with no problems indicated.
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Figure 4.
Triplanar view of the outer boundary of the GM segmentation (outlined in white) using the
brain-extracted T1s as input for the same subjects as in Figures 2 and 3. The GM segmentations
for all subjects are well aligned with the brain boundary.
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Figure 5.
Midaxial slice (for each of the 101 research subjects) of the difference in the gray matter SPM2
segmentations computed by subtracting the segmentation using brain-extracted inputs from
that using non-brain extracted inputs. Bright areas denote non-brain matter inclusions in the
segmentation using non-brain extracted inputs.
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Figure 6.
Midaxial slice (for each of the 101 research subjects) of the difference in the gray matter SPM2
segmentations computed by subtracting the segmentation using non-brain extracted inputs
from that of using brain-extracted inputs. Bright areas denote areas where gray matter was
incorrectly excluded from the segmentation using non-brain extracted inputs.
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Figure 7.
Triplanar view with histogram of the Residual Mean Square Error (RMSE) for the 101 subjects
using brain-extracted inputs.
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Figure 8.
Triplanar view with histogram of the Residual Mean Square Error (RMSE) for the 101 subjects
using non-brain extracted inputs. Note the RMSE values are larger than for brain-extracted
inputs (Figure 7), particularly near the surface boundaries.
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Table 1
Demographics of Subjects with Failed Segmentations

[[|]] [[Subjects|]]
[[Variables|]] [[A253|]] [[A403|]] [[A432|]] [[A987|]] [[D272|]]

[[Group|]] [[Abstinent|]] [[Abstinent|]] [[Abstinent|]] [[Control|]] [[Control|]]
[[Sex|]] [[Female|]] [[Female|]] [[Male|]] [[Female|]] [[Male|]]
[[Age (years)|]] [[51|]] [[53|]] [[54|]] [[48|]] [[35|]]
[[BMI|]] * [[27|]] [[27|]] [[29|]] [[30|]] [[26|]]
[[Ethnicity|]] [[C|]] [[C|]] [[C|]] [[AA|]] [[AA|]]

*
The BMI (mean±S.D.) by group and sex are: 23.8±3.6 abstinent females, 27.4±3.3 abstinent males, 24.6±4.5 control females, and 24.6±3.4 control males.
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